The pleating lamination of convex co-compact hyperbolic manifolds Joint work w/ Bruno Dular

Jean-Marc Schlenker

University of Luxembourg

Discrete geometric structures 2024 September 2-6, 2024, TU Wien

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

The hyperbolic space

Definition

$$\mathbb{H}^3 = \{ \in \mathbb{R}^{3,1} \mid \langle x, x \rangle_{3,1} = -1 \& x_0 > 0 \}$$
, with the induced metric.

Complete, simply connected manifold of constant curvature -1. Klein: as the interior of the unit ball in \mathbb{R}^3 . Isometry group $PSL(2, \mathbb{C})$, acting conformally on $\mathbb{C}P^1 = \partial_{\infty} \mathbb{H}^3$.

Definition

A hyperbolic 3-manifold is a Riemannian manifold M of constant curvature -1 (or equivalently, locally modelled on \mathbb{H}^3).

If *M* is complete and oriented, $M = \mathbb{H}^3/\rho(\pi_1 M)$, where $\rho : \pi_1 M \to PSL(2, \mathbb{C})$.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 2/10

Definition

A (non-compact) hyperbolic manifold is *convex co-compact* if it is complete and contains a non-empty, compact, geodesically convex subset $K \subset M$.

NB: $K \subset M$ is geodesically convex if any geodesic segment with endpoints in K is contained in K.

Definition

M is quasifuchsian if convex co-compact and homeomorphic to $S \times \mathbb{R}$, where *S* is a closed surface of genus ≥ 2 .

We will focus on quasifuchsian manifolds, but things extend to convex co-compact manifolds.

(ロ) (個) (注) (注) (注) (3/10)

Simultaneous uniformization

Let M be quasifuchsian, $M \simeq S \times \mathbb{R}$. $M = \mathbb{H}^3 / \rho(\pi_1 S), \rho : \pi_1 S \to PSL(2, \mathbb{C}).$ Limit set: $\Lambda_\rho = \overline{\rho(\pi_1 S)} \times \cap \partial_\infty \mathbb{H}^3$ is a Jordan curve (quasicircle). $\mathbb{C}P^1 \setminus \Lambda_\rho = \Omega_- \cup \Omega_+.$ ρ acts properly discontinuously on Ω_\pm , conformally. $\partial_\infty M = (\Omega_+ / \rho(\pi_1 S)) \cup (\Omega_- / \rho(\pi_1 S)).$ Therefore we get two conformal structures on S, $(c_-, c_+) \in \mathcal{T}_S \times \mathcal{T}_S.$

Theorem (Bers double uniformization (1950))

The map $M \mapsto (c,c_+)$, from $Q\mathcal{F}$ to $\mathcal{T}_S \times \mathcal{T}_S$, is 1-1 (biholomorphism).

(ロ) (個) (注) (注) (注) (10 (min)) (10 (mi)

Let M be quasifuchsian.

The intersection of two non-empty geodesically convex subsets is geodesically convex and non-empty. Therefore, M contains a smallest non-empty convex subset, its *convex core* C(M). M is *Fuchsian* if C(M) is a totally geodesic surface. Otherwise, C(M) is 3d (considered below).

C(M) is a convex subset without extremal points (because minimal). Therefore, $\partial C(M)$ is the union of two *pleated surfaces*: totally geodesic except along geodesics where it is "pleated". Therefore $\partial C(M)$ is equipped with:

- its induced metric, hyperbolic: $m_+, m_- \in \mathcal{T}_S$,
- its measured pleating lamination, a closed union of disjoint geodesics, equipped with a transverse measure which records the pleating. (-, l₊) ∈ ML_S × ML_S.

Let S be a closed surface, of genus ≥ 2 , with m hyperbolic metric. Measured laminations are composed of:

- a geodesic lamination: closed union of disjoint, complete geodesics,
- a transverse measure (weight on transverse segments).

In fact does not require m, topological data (e.g. closed curves vs geodesics). Properties:

- $\mathcal{ML}_{\mathcal{S}}$ homeomorphic to ball, piecewise linear structure,
- $dim(\mathcal{ML}_S) = dim(\mathcal{T}_S) = 6g 6$,
- $PML_S = \partial T_S$ (Thurston compactification),

-
$$\mathcal{T}_S \times \mathcal{ML}_S \simeq T^* \mathcal{T}_S$$
.

Measured laminations correspond to HQD in the "hyperbolic" (vs "complex") Teichmüller theory.

4 ロ ト 4 回 ト 4 三 ト 4 三 ト 3 の 4 の 6/10

Thurston asked two questions (1980s).

Question (induced metrics)

Can any pair $(m_+, m_-) \in \mathcal{T}_S \times \mathcal{T}_S$ be uniquely realized as induced metric on $\partial C(M)$?

Question

Is *M* uniquely determined by (I_-, I_+) ?

Analogy with e.g. hyperbolic polyhedra (compact, ideal):

- (Alexandrov) $P \subset \mathbb{H}^3$ compact is uniquely determined by the induced metric on ∂P , hyperbolic metric with cone singularities of angle $< 2\pi$ on S^2 ,

Motivation (cont'd)

. . .

- (Rivin) $P \subset \mathbb{H}^3$ ideal is uniquely determined by the induced metric on ∂P , hyperbolic metric with cusps on $S^2 \setminus \{x_1, \cdots, x_n\}$,
- (Andreev, Hodgson-Rivin) $P \subset \mathbb{H}^3$ compact is uniquely determined by dihedral angles (if acute) or *dual metric*,
- (Andreev, Rivin) $P \subset \mathbb{H}^3$ ideal is uniquely determined by dihedral angles.

Deeper motivation: quasifuchsian (resp. convex co-compact) manifolds connect the *complex* Teichmüller theory "at infinity" to the *hyperbolic* Teichmüller theory on the boundary of the convex core.

- Complex \mathcal{T}_S : complex structures, holomorphic quadratic differentials, ...
- Hyperbolic $\mathcal{T}_{\mathcal{S}}$: hyperbolic structures, measured laminations,

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ s/10

Theorem (Sullivan, Epstein-Marden, Labourie, 1990s)

Any $(m_+, m_-) \in T_S \times T_S$ can be realized on $\partial C(M)$. Uniqueness ???

Theorem (Bonahon-Otal 2004)

 (I_-, I_+) can be realizes on $\partial C(M)$ iff it fills and has no curve with weight $> \pi$.

Theorem (Dular-S. 2024)

M (non Fuchsian) quasifuchsian manifold is uniquely determined by (I_-, I_+) .

A word on the proof

Definition

 $\mathcal{L}: \mathcal{QF} \to \mathcal{FML}_{\pi} \subset \mathcal{ML}_{S} \times \mathcal{ML}_{S}, M \mapsto (I_{-}, I_{+}).$

We want to prove that \mathcal{L} is 1-1.

1. \mathcal{L} is a limit of homeomorphisms.

Uses a foliation of $M \setminus C(M)$ by K-surfaces, $K \in (-1, 0)$

(Labourie 1992) and characterization of M by III on those

K-surfaces (S. 2006). Defines $\mathcal{L}_{\mathcal{K}} : \mathcal{QF} \to \mathcal{T}_{\mathcal{S}} \times \mathcal{T}_{\mathcal{S}}$,

$$M o (III_{-,K}, III_{+,K})$$
. Then $\mathcal{L}_K o \mathcal{L}$ as $K o -1$.

- 2. $\mathcal{L}^{-1}(\{l\})$ is compact (Bonahon-Otal 2004, "closing lemma").
- Since L is a limit of homeos and ANR, L⁻¹({*I*}) is contractible (Finney 1967, Daverman 1986).
- 4. $\mathcal{L}^{-1}(\{l\})$ is a real analytic variety (follows from Bonahon).
- 5. A compact, contractible real analytic variety is a point (Sullivan).

◆□▶ ◆□▶ ◆ 三▶ ◆ 三 ● ● へへ 10/10