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A quad equation

Edge-based p, q, r , s ∈ A for some unit associative algebra A

such that

(λ + q)(λ + p) = (λ + s)(λ + r) for all scalars λ

⇔ p + q = r + s and qp = sr

Goal: study geometric applications of this equation!
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Some (discrete) examples

(λ + q)(λ + p) = (λ + s)(λ + r)

Cross-ratio systems [Nijhoff ’97]

K-Nets/ Pseudospherical nets [Bobenko,Pinkall ’96]

Lund-Regge systems [Schief ’07]

Euler top [Moser, Veselov ’91]

Hashimoto flow [Pinkall,Springborn,Weißmann ’07][Hoffmann ’08]

Bicycle transformation [Tabachnikov, Tsukerman ’13]

Isothermic nets [Bobenko,Pinkall ’96][Hertrich-Jeromin ’00]

Polygon recutting [Adler ’93][Izosimov ’23]

Closed linkages [Hegedüs,Schicho,Schröcker ’13],...

...

Please tell me if you know more!
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Factorization

Quadratic polynomial L belongs to diagonal

Converse: Can we factorize polynomial equations?
simpler equations
more complicated combinatorics

Example: CMC Lax representation [Bobenko,Pinkall ’99](
a λ2b + 1

λ2
1
b

− 1
λ2 b̄ − λ2 1

b̄ ā

)
?= (λ + 1

λ
s)(λ + 1

λ
r)

Result: CMC can be interpreted as slice in a 4D cross-ratio system.
→ Topic of this talk!
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Overview

Complex plane Euclidean space

Cross-ratio system
f : Z2 → C

associated
family

Constant curvature surface
f t : Z2 → R3

represented by matrices(
a b
c d

)
∈ C2×2

represented by quaternions(
a b

−b̄ ā

)
∈ H ⊆ C2×2
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Cross-ratio systems

Definition (Edge labelling)
A map α : {edges of Zn} → C where values on
opposite edges agree.

Cross-ratio of four points in C:

cr(a, b, c, d) = a − b
b − c

c − d
d − a

Definition (Cross-ratio system)
A map f : Zn → C with

cr(f , fi , fij , fj) = (αi)2

(αj)2

for some edge labelling α.

Holomorphic map: cr = −1
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Matrix representation

Define pi :=
(

0 fi − f
− (αi )2

fi −f 0

)
on each edge.

Theorem
f is a cross-ratio system if and only if

(λ + 1
λ

pj
i )(λ + 1

λ
pi) = (λ + 1

λ
pi

j )(λ + 1
λ

pj)

for all λ ∈ C.

This is a linear Lax representation of cross-ratio systems as in [Nijhoff ’97].
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The Hirota system

Define vertex based map s : Zn → C:

s(0, ..., 0) = 1, fi − f = αisis

Cross-ratio equation becomes:

sij
s = αjsj − αisi

αjsi − αisj

Matrix representation:

λ + 1
λ

pi =
(

λ 1
λ αisis

− 1
λ

αi

si s λ

)
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Associated family

1 Choose a λ : R → C
2 Define frame Φ : Zn × R → C2×2

by

Φ(0, ..., 0, t) =
(

1 0
0 1

)
,

Φi = (λ(t) + 1
λ(t)pi)Φ

3 The associated family is given by

f t = Φ−1 d
dt Φ

f t is no cross-ratio system
λ + 1

λ pi ∈ H ⇒ f t ∈ H
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K-nets

Observation: For real λ, αi ∈ R and unitary s ∈ S1

λ + 1
λ

pi =
(

λ 1
λ αisis

− 1
λ

αi

si s λ

)
is a quaternion!

associated
family

Cross-ratio system
with cr = (αi )2

(αj )2 > 0 K-net
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K-Nets

K-Nets: Discrete surfaces with Gaussian curvature K = −1.

Can we find other types of surfaces from this construction?
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More possibilities
Idea: We only require every second point of f t to be real:

Then, it suffices if L := (λ + 1
λ p3

1)(λ + 1
λ p1) is a quaternion!

Real quad corresponds to 4D cube!
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4D cross-ratio systems

4D Cross-ratio system:

f : Z4 → C

Diagonal net D:

f (i , j , i , j) : Z2 → C

First diagonal direction:

α1, α3, s1, s3, L, ...

Second diagonal direction:

α2, α4, s2, s4, M, ...



Reductions

One direction at vertices (i , j , i , j) ∈ D:

1 The C− lattice: If

s3 = 1
s̄1

and α3 = ᾱ1

then L is a quaternion for all λ ∈ R.
2 The C+ lattice: If

s3 = 1
s̄1

and α3 = −1
ᾱ1

then L̃ = 1
β G13LG−1 is a quaternion for all λ ∈ S1.

(Here: gauge G =
(

1 0
0 s

)
and β =

√
−α3α1 scaling factor)
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Extension

Theorem
Every 2D cross-ratio system f (·, ·, 0, 0) : Z2 → C can be extended into a
unique C+ and a unique C− lattice.

Construction:
1 1,3-coordinate plane f (·, 0, ·, 0):

s3 = 1
s̄1

Cross-ratio evolution

2 2,4-coordinate plane f (0, ·, 0, ·) analogously.
3 Axes determine everything.
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The C+ lattice and CMC surfaces

Theorem
The associated family of a C+ lattice yields a family of discrete nets with
constant positive Gaussian curvature K > 0.

Holomorphic map
C+-extension

’DPW’
C+-lattice

associated
family constant positive

Gaussian curvature
surface

± 1
2 n constant mean

curvature (CMC)
surface
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The DPW method

Construction of CMC surfaces from holomorphic data
Smooth [Dorfmeister, Pedit, Wu ’98]

Discrete [Hoffmann ’99][Ogata, Yasumoto ’17]

Holomorphic data

constant mean curvature
(CMC) surface

We can interpret DPW as extension of holomorphic data to a 4D
cross-ratio system!
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The C− lattice and a surprising object

Theorem
The associated family of a C− lattice yields a family of (algebraic)
discrete nets with constant negative Gaussian curvature K < 0.

Holomorphic map C−-extension C−-lattice

associated
family

constant negative
Gaussian curvature

surface?

This does not look right!
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Breather transformations

’long edge’

Complex surface

Straight line Breather transformation

Idea: Use C− lattice to construct a lattice of breather transformations!
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The breather lattice

Holomorphic
map

+

K-net



Factorization of a breather transformation

Straight line Factors (no K-Nets)
Breather transformation



read our preprint: https://arxiv.org/abs/2401.08467

Thank you!
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