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A quad equation

\ K

Edge-based p, g, r,s € A for some unit associative algebra A
such that
A+ q)(A+p) = (A+s)(A+r) for all scalars A
& p+g=r+sand gp=sr

Goal: study geometric applications of this equation!



Some (discrete) examples

A+ q)A+p)=OA+5s)A+71)

Cross-ratio systems [Nijhoff '97]

K-Nets/ Pseudospherical nets [Bobenko,Pinkall '96]
Lund-Regge systems [Schief '07]

Euler top [Moser, Veselov '91]

Hashimoto flow [Pinkall,Springborn,WeiBmann '07][Hoffmann '08]
Bicycle transformation [Tabachnikov, Tsukerman '13]
Isothermic nets [Bobenko,Pinkall '96][Hertrich-Jeromin '00]
Polygon recutting [Adler '93][Izosimov '23]

Closed linkages [Hegediis,Schicho,Schrécker '13],...
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Please tell me if you know more!
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Converse: Can we factorize polynomial equations?
@ simpler equations

@ more complicated combinatorics
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L=(A+q(+p)
Quadratic polynomial L belongs to diagonal

Converse: Can we factorize polynomial equations?
@ simpler equations

@ more complicated combinatorics

Example: CMC Lax representation [Bobenko,Pinkall '99]
a b+ L1\ 2 1 1
(_;25_)\2%, 5 —()\-l-Xs)()\—i—Xr)

Result: CMC can be interpreted as slice in a 4D cross-ratio system
— Topic of this talk!
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Overview

Complex plane Euclidean space
Cross-ratio system Constant curvature surface
f.72 > C ft:72 - R3
associated
family
represented by matrices represented by quaternions

a b 2%2 a b 2%2
<c d)G(C <—I_3 a HeC



Cross-ratio systems

Definition (Edge labelling)

A map « : {edges of Z"} — C where values on
opposite edges agree.
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Cross-ratio systems

Definition (Edge labelling)

. m f ot f .
A map « : {edges of Z"} — C where values on J > ]
opposite edges agree.
Cross-ratio of four points in C: O‘]A Aa]
a—bc—d
b,c,d) =
cr(,b,c,d) b—cd-a f o fi

Definition (Cross-ratio system)
A map f : Z" — C with

Cr(fvf;'af}jafj-') = ( :

for some edge labelling a.

Holomorphic map: cr = —1



Matrix representation
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Matrix representation

. fi—f
Define p' := (o) on each edge.
—ek 0

Theorem
f is a cross-ratio system if and only if

O+ 3RO+ 360 = A+ RO+ )

for all A € C.
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Matrix representation

. fi—f
Define p' := (o) on each edge.
—ek 0

LB g

Theorem j j
f is a cross-ratio system if and only if A
(R TS SR >
(3RO = SO TR Ry,
for all A € C.

This is a linear Lax representation of cross-ratio systems as in [Nijhoff '97].



The Hirota system

Define vertex based map s : Z" — C:

s(0,...,0) =1, fi—f=a's;s

Y=

Y
Cross-ratio equation becomes: /
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The Hirota system

Define vertex based map s : Z" — C:

s(0,...,0) =1, fi—f=a's;s

. . S5 ot Sis
Cross-ratio equation becomes: ' J
sj  odsi—al's; , .
s ols; — a's;
Matrix representation: S Zi S

1, A %a"s,-s



Associated family

©Q Choosea \:R— C
@ Define frame ¢ : Z" x R — C2%2

by
®(0,...,0, ) = <(1) 2) 7

© The associated family is given by

d
ff=0"1—0
dt
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Associated family

©Q Choosea \:R— C
@ Define frame ¢ : Z" x R — C2%2

by
®(0,...,0,t) = <(1) 2),

O = (A(t) + ——p')®
OO+ 3757
© The associated family is given by
d
fl=0""—0
dt

@ f'is no cross-ratio system
e A+tipeH=fcH

Lyi
A+ %p’j \ A+ %pf
[01] > d;
A+ 17!



K-nets

Observation: For real A\,a’ € R and unitary s € S!
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K-nets

Observation: For real A\,a’ € R and unitary s € S!

a's;s

>
+
> =
‘O\
|
|
>
K4 |Q\
>
b
~—

associated
family

—

Cross-ratio system
K-net

with cr:%g—;)é>0



K-Nets

K-Nets: Discrete surfaces with Gaussian curvature K = —1.




K-Nets

K-Nets: Discrete surfaces with Gaussian curvature K = —1.

Can we find other types of surfaces from this construction?



More possibilities

Idea: We only require every second point of f! to be real:
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More possibilities

Idea: We only require every second point of f! to be real:

o figE
p ///*\\\21
///V’ ~—
>
— » —
t e RS T it c RS
f €R 3\\\.I_//)‘1 f13€R

fi ¢ R

~.

Then, it suffices if L := (A + $p3)(A + +p') is a quaternion!

T
i

1\ ~—

|
Real quad corresponds to 4D cube! M




4D cross-ratio systems

4D Cross-ratio system:
f.7Z* - C
Diagonal net D:
f(i,j,i,j): 7> = C
First diagonal direction:
at, ol s, s, L, ...
Second diagonal direction:

2 4
ac,a”, s, 8, M, ...
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Reductions

One direction at vertices (i, /,j) € D:
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Reductions

One direction at vertices (i, /,j) € D:

Q@ The C lattice: If

S3 = and

i)

then L is a quaternion for all A € R.

1 "3
DTt
5 i’\\\
=30
s =~ ——" 5
E;\\\ - 13
A p3
83
L
3 -1
a” =«



Reductions

. . - . . . . //’ -~
One direction at vertices (i, /,j) € D: s.‘T»—).
P
L
Q@ The C— lattice: If
1
53 = — and o =at
S1
then L is a quaternion for all A € R.
@ The CT lattice: If
1 -1
3= — and ad = =
S1 «Q

then [ = %GBLG_1 is a quaternion for all A € S'.

(Here: gauge G = <(1) 2) and 8 = vV —a3al scaling factor)



Extension

Theorem

Every 2D cross-ratio system f(-,-,0,0) : Z? — C can be extended into a
unique C* and a unique C~ lattice.
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Extension

Theorem

Every 2D cross-ratio system f(-,-,0,0) : Z? — C can be extended into a
unique C* and a unique C~ lattice.

Construction:
@ 1,3-coordinate plane f(-,0,,0):

N

1
053:§

*

*
s

S1
o Cross-ratio evolution

N

@ 2,4-coordinate plane (0, -,0,-) analogously.
© Axes determine everything.
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constant positive Gaussian curvature K > 0.
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The C™ lattice and CMC surfaces

Theorem

The associated family of a C* lattice yields a family of discrete nets with
constant positive Gaussian curvature K > 0.

Holomorphic map

CT-extension
= CT-lattice -9
'DPW’

. —
associated 41
. 5n
family constant positive 2 constant mean

curvature (CMQ)
surface

Gaussian curvature
surface



The DPW method

Construction of CMC surfaces from holomorphic data
@ Smooth [Dorfmeister, Pedit, Wu '98]
@ Discrete [Hoffmann '99][Ogata, Yasumoto '17]

constant mean curvature
(CMCQ) surface

Holomorphic data



The DPW method

Construction of CMC surfaces from holomorphic data
@ Smooth [Dorfmeister, Pedit, Wu '98]
@ Discrete [Hoffmann '99][Ogata, Yasumoto '17]

constant mean curvature
(CMCQ) surface

Holomorphic data

We can interpret DPW as extension of holomorphic data to a 4D
cross-ratio system!



The C~ lattice and a surprising object

Theorem

The associated family of a C~ lattice yields a family of (algebraic)
discrete nets with constant negative Gaussian curvature K < 0.
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Theorem

The associated family of a C~ lattice yields a family of (algebraic)
discrete nets with constant negative Gaussian curvature K < 0.

C~-extension
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Holomorphic map
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The C~ lattice and a surprising object

Theorem

The associated family of a C~ lattice yields a family of (algebraic)
discrete nets with constant negative Gaussian curvature K < 0.

Holomorphic map C™-extension C~-lattice =)

associated
family

This does not look right!

constant negative
Gaussian curvature
surface?



Breather transformations

Complex surface
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Breather transformations

Complex surface

Straight line Breather transformation

Idea: Use C~ lattice to construct a lattice of breather transformations!



The breather lattice

Holomorphic
map

L, =

K-net




Factorization of a breather transformation

Straight line

o

Factors (no K-Nets
( ) Breather transformation



read our preprint: https://arxiv.org/abs/2401.08467



read our preprint: https://arxiv.org/abs/2401.08467

Thank you!
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