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Painlevé equations

Painlevé equations (PI–PVI , 1902): 2nd order nonlinear ODEs
u′′ = F (u′,u, t) with the Painlevé property (solutions have no
initial value dependent singularities other than poles). E.g.,

PI : u′′ = 6u2 + t ,

PIII : u′′ =
u′2

u
− u

t
+

1
t

(αu2 + β) + γu3 +
δ

u
.

Integrability: isomonodromic structure (each Painlevé equation
is a condition for a certain Fuchsian system with u-dependent
coefficients to have t-independent monodromy).
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Discrete Painlevé equations

I First appearance: Shohat (1936),

un(un+1 + un + un−1) = αn + β,

equation for coefficients of the three-term recurrence for
certain orthogonal polynomials (now called dPI).

I Grammaticos, Ramani, Papageorgiou (1991): singularity
confinement as a discrete analogue of Painlevé property.
Systematic search for discrete Painlevé equations.
Isomonodromic structure.

I Sakai (2001): geometric classification scheme, based on
relation to generalized Halphen surfaces (blow-up of
P1 × P1 at eight points).
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Example: qPIII vs a QRT recurrence

qPIII : yn+1yn−1 =
y2

n − 1
1− c−2

n y2
n
, cn = c0q2n.

A non-autonomous version of a QRT recurrence

yn+1yn−1 =
y2

n − 1
1− c−2y2

n
,

which can be put as f : C2 → C2 (a QRT root ),

f : (x , y) 7→ (x̃ , ỹ) =

(
y ,

y2 − 1
x(1− c−2y2)

)
.

Inverse map:

f−1 : (x̃ , ỹ) 7→ (x , y) =

(
x̃2 − 1

ỹ(1− c−2x̃2)
, x̃
)
.
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QRT as a birational map

Lift f to P1 × P1. Then it has four indeterminacy points

p1 = (∞, c), p2 = (∞,−c), p5 = (0,1), p6 = (0,−1),

while f−1 has four indeterminacy points

p3 = (c,∞), p4 = (−c,∞), p7 = (1,0), p8 = (−1,0).
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QRT as a birational map

The eight singular points define a pencil of biquadratic curves in
P1 × P1, which are invariant under the map f :

Cµ :
{

c−2x2y2 − x2 − y2 + 1− µxy = 0
}
.

(Note that C∞ is the union of four lines from the previous
picture.)

Singularity confinement patterns for f read:

{y = −c} → (−c,∞) → (∞, c) → {x = c},
{y = c} → (c,∞) → (∞,−c) → {x = −c},
{y = −1} → (−1,0) → (0,1) → {x = 1},
{y = 1} → (1,0) → (0,−1) → {x = −1}.
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From a pencil of biquadratic curves to QRT map

One can construct f starting with the pencil Cµ.

I For a given (x , y), determine µ such that (x , y) ∈ Cµ.
I Define the vertical switch i1 and the horizontal switch i2 as

the second intersection point of Cµ with the line x = const,
resp. y = const. One computes:

i1(x , y) =
(

x ,
x2 − 1

y(1− c−2x2)

)
, i2(x , y) =

( y2 − 1
x(1− c−2y2)

, y
)
.

I Define the QRT map F = i1 ◦ i2. If the pencil Cµ is
symmetric under s(x , y) = (y , x), define the QRT root
f = s ◦ i2 = i1 ◦ s, so that F = f 2.
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From a QRT recurrence to qPIII

One can consider qPIII as a sequence of maps of the type f ,
but for which (some of) the points p1, . . . ,p8 depend on n
(de-autonomization).

Main requirement (which singles out the evolution cn = c0q2n):
the same singularity confinement patterns.

No algebraic integrals of motion! However, universally accepted
as an integrable system:
I vanishing algebraic entropy
I isomonodromic structure (hence, monodromy data serve

as transzendental integrals of motion)
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Discrete time Euler top


ẋ1 = α1x2x3,

ẋ2 = α2x3x1,

ẋ3 = α3x1x2,

 


x̃1 − x1 = εα1(x̃2x3 + x2x̃3),

x̃2 − x2 = εα2(x̃3x1 + x3x̃1),

x̃3 − x3 = εα3(x̃1x2 + x1x̃2).

Features:
I Equations are linear w.r.t. x̃ = (x̃1, x̃2, x̃3)T:

A(x , ε)x̃ = x , A(x , ε) =

 1 −εα1x3 −εα1x2
−εα2x3 1 −εα2x1
−εα3x2 −εα3x1 1

 ,

imply a rational map, which is reversible (therefore
birational):

x̃ = Φ(x , ε) = A−1(x , ε)x , Φ−1(x , ε) = Φ(x ,−ε).
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Explicit formulas:

x̃1 =
x1 + 2εα1x2x3 + ε2x1(−α2α3x2

1 + α3α1x2
2 + α1α2x2

3 )

∆(x , ε)
,

x̃2 =
x2 + 2εα2x3x1 + ε2x2(α2α3x2

1 − α3α1x2
2 + α1α2x2

3 )

∆(x , ε)
,

x̃3 =
x3 + 2εα3x1x2 + ε2x3(α2α3x2

1 + α3α1x2
2 − α1α2x2

3 )

∆(x , ε)
,

where ∆(x , ε) = det A(x , ε)

= 1− ε2(α2α3x2
1 + α3α1x2

2 + α1α2x2
3 )− 2ε3α1α2α3x1x2x3.
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Projective formulation

In homogeneous coordinates on P3:

Φ : [x1 : x2 : x3 : x4] 7→ [x̃1 : x̃2 : x̃3 : x̃4],

where

x̃1 = x1x2
4 + 2εα1x2x3x4 + ε2x1(−α2α3x2

1 + α3α1x2
2 + α1α2x2

3 ),

x̃2 = x2x2
4 + 2εα2x3x1x4 + ε2x2(α2α3x2

1 − α3α1x2
2 + α1α2x2

3 ),

x̃3 = x3x2
4 + 2εα3x1x2x4 + ε2x3(α2α3x2

1 + α3α1x2
2 − α1α2x2

3 ),

x̃4 = x3
4 − ε

2(α2α3x2
1 + α3α1x2

2 + α1α2x2
3 )x4 − 2ε3α1α2α3x1x2x3.

A birational map Φ : P3 99K P3 of deg = 3.
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Integrability of dET

I Two independent integrals:

I3(x , ε) =
1− ε2α2α3x2

1

1− ε2α3α1x2
2
, I1(x , ε) =

1− ε2α3α1x2
2

1− ε2α1α2x2
3
.

I Invariant volume form:

ω =
dx1 ∧ dx2 ∧ dx3

φ(x)
, φ(x) = 1− ε2αiαjx2

k .

I bi-Hamiltonian structure found by [M. Petrera, Yu.S.’10].
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Geometry of the discrete time Euler top

Space P3 is foliated by joint level sets of two integrals of dET,
each being a spatial elliptic curve – an intersection of two
quadrics

Cλµ = Qλ ∩ Pµ,

where

Qλ =
{

H12(x , ε) =
α1x2

2 − α2x2
1

1− ε2α1α2x2
3

= λ
}

is a hyperboloid, while

Pµ =
{

I3(x , ε) =
1− ε2α2α3x2

1

1− ε2α3α1x2
2

= µ
}

is a cylinder.
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dET is a 3D QRT root

For any x ∈ P3, determine λ and µ so that x ∈ Qλ ∩ Pµ.

Let `1, `2 be two straight line generators of Qλ through x .

Denote by i1(x), i2(x), the second intersection points of `1, `2
with Pµ. This defines two birational involutions i1, i2 : P3 99K P3.

Both Qλ and Pµ are symmetric w.r.t. a linear projective
involution s(x1, x2, x3) = (x1, x2,−x3).

Theorem [N. Smeenk’ 20]. The discrete time Euler top can be
represented as the 3D QRT root

Φ = i1 ◦ s = s ◦ i2.
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dET as a 3D QRT root
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dET vs. Cremona inversion

Theorem. [J. Alonso, Yu.S., K. Wei’ 21] Discrete time Euler top
can be represented as

Φ = M1 ◦ σ ◦M−1
2 ,

where M1 and M2 are linear projective automorphisms of P3,

M−1
1 =


b1 −b2 −b3 1
−b1 b2 −b3 1
−b1 −b2 b3 1
b1 b2 b3 1

 , M−1
2 =


−b1 b2 b3 1
b1 −b2 b3 1
b1 b2 −b3 1
−b1 −b2 −b3 1

 ,

with bi = ε
√
αjαk , and σ : P3 99K P3 is the Cremona inversion

σ :


z1
z2
z3
z4

 7→


1/z1
1/z2
1/z3
1/z4

 =


z2z3z4
z1z3z4
z1z2z4
z1z2z3

 .
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Algebraic geometry of Cremona inversion

The critical set and the indeterminacy set:

C(σ) =
4⋃

i=1

Πi , I(σ) =
⋃

1≤i<j≤4

`ij ,

where Πi = {zi = 0} are the coordinate planes and `ij = Πi ∩ Πj
are lines. Use also the four points

e1 =


1
0
0
0

 , e2 =


0
1
0
0

 , e3 =


0
0
1
0

 , e4 =


0
0
0
1

 .
Singularity confinement patterns:

σ : Πi → ei → Πi , i = 1, . . . ,4.
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Singularity confinement for dET

For Φ = M1σM−1
2 , we set Ai := M1(ei) and Bi := M2(ei), then

Φ : M2(Πi)→ Ai , Bi → M1(Πi).

Suppose
Φ(Ai) = Bi , i = 1, . . . ,4,

then have the following singularity patterns:

Φ : M2(Πi) → Ai → Bi → M1(Πi).

The above condition says:

(M1σM−1
2 )M1ei = M2ei ⇔ MσM(ei) = ei , i = 1, . . . ,4,

where M = M−1
2 M1. It is satisfied for discrete time Euler top, for

which

M = M−1
2 M1 '


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 .
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Φ as a 3D QRT root, again

For Φ = M ◦ σ, the family of quadrics through eight points
Ai = Mei , Bi = ei is two-dimensional, containing two pencils

Qλ =
{

z ∈ P3 : Q0(z)− λQ1(z) = 0
}
,

Pµ =
{

z ∈ P3 : Q0(z)− µQ2(z) = 0
}
,

where

Q0(z) = (z1 + z3)(z2 + z4), Q1(z) = (z1 − z3)(z2 − z4),

Q2(z) = z2
1 + z2

2 − z2
3 − z2

4 .

Base curve of the pencil Qλ – a skew quadrilateral.

Map Φ is the 3D QRT root defined by Qλ, Pµ. In particular, it
leaves each Qλ invariant. It is instructive to compute the
restriction of Φ to Qλ.
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Φ fiberwise

For this, one can parametrize each Qλ by (x , y) ∈ P1 × P1

according to 
z1
z2
z3
z4

 =


x + λ−1xy

y + 1
x − λ−1xy

y − 1


(pencil-adapted coordinates on P3). Thus,

x =
z1 + z3

z2 − z4
=
λ(z1 − z3)

z2 + z4
, y =

z2 + z4

z2 − z4
=
λ(z1 − z3)

z1 + z3
, λ =

Q0(z)

Q1(z)
.

In these coordinates:

Φ : x̃ = y , ỹ =
y2 − 1

x(1− λ−2y2)
, λ̃ = λ.

Each Qλ is invariant, and in pencil-adapted coordinates Φ acts
on Qλ as a λ-dependent 2D QRT root.
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Generalized dET

A more general solution of M ◦ σ ◦M(ei) = ei , i = 1, . . . ,4:

M = Mq =


−1 q 1 q
q −1 q 1
1 q −1 q
q 1 q −1

 .

The corresponding map Φq = Mq ◦ σ:

Φq :


z1
z2
z3
z4

 7→


z̃1
z̃2
z̃3
z̃4

 =


z2z4(z1 − z3) + qz1z3(z2 + z4)
z1z3(z2 − z4) + qz2z4(z1 + z3)
z2z4(z3 − z1) + qz1z3(z2 + z4)
z1z3(z4 − z2) + qz2z4(z1 + z3)

 .
We have: Φq = Lq ◦ Φ, where Lq = MqM−1.
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From generalized dET to qPIII

Map Φq = Mq ◦ σ = Lq ◦ Φ has exactly the same singularity
confinement patterns as Φ:

Φq : Πi → Ai → Bi → Mq(Πi),

where Ai = Mqei , Bi = ei . But:

The family of quadrics through eight points Ai = Mqei , Bi = ei
is one-dimensional, the pencil Qλ. Φq has no rational integrals
and maps each Qλ to Qq2λ. In pencil-adapted coordinates:

Φq : x̃ = y , ỹ =
y2 − 1

x(1− λ−2y2)
, λ̃ = q2λ.

This is equivalent to qPIII :

yn+1yn−1 =
y2

n − 1
1− λ−2

n y2
n
, λn = λ0q2n.
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General scheme

Input data.

1. A pencil {Cµ} of biquadratic curves in P1 × P1 with the
base points s1, . . . , s8 ∈ P1 × P1, and the corresponding
QRT map f = i1 ◦ i2.

2. One distinguished biquadratic curve C∞ of the pencil.

Goal.

I Construct a discrete Painlevé equation as a
de-autonomization of f along the fiber C∞.
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General scheme

Construction [J. Alonso, Yu.S., K. Wei ’24].
1. Let Q0 = {X1X2 − X3X4 = 0}. Recall that Q0 is the image

of the Segre embedding of P1 × P1 to P3, via

P1×P1 3
(
[x1 : x0], [y1 : y0]

)
7→ [x1y0 : x0y1 : x1y1 : x0y0] ∈ Q0.

2. Let S1, . . . ,S8 be the images of the base points s1, . . . , s8
under Segre embedding.

3. To each biquadratic curve

Cµ :
{

a1x2y2 + a2x2y + a3xy2 + a4x2 + a5y2

+ a6xy + a7x + a8y + a9 = 0
}
⊂ P1 × P1

there corresponds a quadric

Pµ :
{

a1X 2
3 + a2X1X3 + a3X2X3 + a4X 2

1 + a5X 2
2

+ a6X3X4 + a7X1X4 + a8X2X4 + a9X 2
4 = 0

}
⊂ P3.

(Actually, Cµ can be identified with Q0 ∩ Pµ.)
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General scheme

Construction (contunued).

4. Construct the pencil of quadrics {Qλ} in P3 spanned by Q0
and P∞. The base curve of {Qλ} is Q0 ∩ P∞, the image of
C∞ under Segre embedding. Its intersection with the base
curve of {Pµ} consists of S1, . . . ,S8.

5. Consider 3D QRT involutions i1, i2 on P3 defined by
intersections of generators `1, `2 of Qλ with the quadrics
Pµ. On each quadric Qλ, the map Φ = i1 ◦ i2 induces a
λ-deformation of the original QRT map f .
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General scheme

Construction (Painlevé deformation).

6. Find a birational map L on P3 with the following properties.
a) L preserves the pencil {Qλ}, and maps each Qλ to Qσ(λ),

where σ : P1 → P1 is a Möbius automorphism fixing the set

Sing(Q) :=
{
λ ∈ P1 : Qλ is degenerate

}
.

b) The maps L ◦ i1,L ◦ i2 have the same singularity
confinement properties as the QRT involutions i1, i2.

Then the map Ψ = (L ◦ i1) ◦ (L ◦ i2) is declared to be a
discrete Painlevé equation obtained by the
de-autonomization of the QRT map along the fiber C∞.
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Projective classification of pencils of quadrics in P3

(From: E. Casas-Alvero. Analytic projective geometry. EMS, 2014).

(vii) rp1, 1, 1q, 1s
(viii) rp2, 1q, 1s
(ix) r3, 1s
(x) rp2, 1, 1qs
(xi) rp2, 2qs
(xii) rp3, 1qs
(xiii) r4s

Figure 43. The 13 cases of pencils of quadrics in CP3 and their base curves.
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