Discrete Painlevé equations and pencils of quadrics in \mathbb{P}^3

Yuri B. Suris

(Technische Universität Berlin)

Discrete Geometric Structures 2024 Vienna, 05.09.2024

Painlevé equations (P_I – P_{VI} , 1902): 2nd order nonlinear ODEs u'' = F(u', u, t) with the *Painlevé property* (solutions have no initial value dependent singularities other than poles). E.g.,

$$P_I: \quad u''=6u^2+t,$$

$$P_{III}: \quad u'' = \frac{u'^2}{u} - \frac{u}{t} + \frac{1}{t}(\alpha u^2 + \beta) + \gamma u^3 + \frac{\delta}{u}$$

Integrability: *isomonodromic structure* (each Painlevé equation is a condition for a certain Fuchsian system with *u*-dependent coefficients to have *t*-independent monodromy).

First appearance: Shohat (1936),

$$u_n(u_{n+1}+u_n+u_{n-1})=\alpha n+\beta,$$

equation for coefficients of the three-term recurrence for certain orthogonal polynomials (now called dP_I).

- Grammaticos, Ramani, Papageorgiou (1991): singularity confinement as a discrete analogue of Painlevé property. Systematic search for discrete Painlevé equations. Isomonodromic structure.
- Sakai (2001): geometric classification scheme, based on relation to generalized Halphen surfaces (blow-up of P¹ × P¹ at eight points).

Example: qP_{III} vs a QRT recurrence

$$qP_{III}: \qquad y_{n+1}y_{n-1} = \frac{y_n^2 - 1}{1 - c_n^{-2}y_n^2}, \quad c_n = c_0 q^{2n}.$$

A non-autonomous version of a QRT recurrence

$$y_{n+1}y_{n-1} = \frac{y_n^2 - 1}{1 - c^{-2}y_n^2},$$

which can be put as $f : \mathbb{C}^2 \to \mathbb{C}^2$ (a *QRT root*),

$$f: (x,y) \mapsto (\widetilde{x},\widetilde{y}) = \left(y, \frac{y^2-1}{x(1-c^{-2}y^2)}\right).$$

Inverse map:

$$f^{-1}: (\widetilde{x}, \widetilde{y}) \mapsto (x, y) = \left(\frac{\widetilde{x}^2 - 1}{\widetilde{y}(1 - c^{-2}\widetilde{x}^2)}, \widetilde{x}\right).$$

QRT as a birational map

Lift *f* to $\mathbb{P}^1 \times \mathbb{P}^1$. Then it has four indeterminacy points

$$p_1 = (\infty, c), \quad p_2 = (\infty, -c), \quad p_5 = (0, 1), \quad p_6 = (0, -1),$$

while f^{-1} has four indeterminacy points

$$p_3 = (c, \infty), \quad p_4 = (-c, \infty), \quad p_7 = (1, 0), \quad p_8 = (-1, 0).$$

The eight singular points define a *pencil of biquadratic curves* in $\mathbb{P}^1 \times \mathbb{P}^1$, which are invariant under the map *f*:

$$C_{\mu}:=\Big\{c^{-2}x^{2}y^{2}-x^{2}-y^{2}+1-\mu xy=0\Big\}.$$

(Note that C_{∞} is the union of four lines from the previous picture.)

Singularity confinement patterns for *f* read:

$$\{ y = -c \} \rightarrow (-c, \infty) \rightarrow (\infty, c) \rightarrow \{ x = c \},$$

$$\{ y = c \} \rightarrow (c, \infty) \rightarrow (\infty, -c) \rightarrow \{ x = -c \},$$

$$\{ y = -1 \} \rightarrow (-1, 0) \rightarrow (0, -1) \rightarrow \{ x = -1 \},$$

$$\{ y = 1 \} \rightarrow (1, 0) \rightarrow (0, -1) \rightarrow \{ x = -1 \}.$$

One can construct *f* starting with the pencil C_{μ} .

- For a given (x, y), determine μ such that $(x, y) \in C_{\mu}$.
- Define the *vertical switch* i_1 and the *horizontal switch* i_2 as the second intersection point of C_{μ} with the line x = const, resp. y = const. One computes:

$$i_1(x,y) = \Big(x, \frac{x^2-1}{y(1-c^{-2}x^2)}\Big), \quad i_2(x,y) = \Big(\frac{y^2-1}{x(1-c^{-2}y^2)}, y\Big).$$

Define the QRT map F = i₁ ∘ i₂. If the pencil C_µ is symmetric under s(x, y) = (y, x), define the QRT root f = s ∘ i₂ = i₁ ∘ s, so that F = f².

One can consider qP_{III} as a sequence of maps of the type *f*, but for which (some of) the points p_1, \ldots, p_8 depend on *n* (*de-autonomization*).

Main requirement (which singles out the evolution $c_n = c_0 q^{2n}$): the same singularity confinement patterns.

No algebraic integrals of motion! However, universally accepted as an integrable system:

- vanishing algebraic entropy
- isomonodromic structure (hence, monodromy data serve as transzendental integrals of motion)

Discrete time Euler top

Features:

• Equations are linear w.r.t. $\tilde{x} = (\tilde{x}_1, \tilde{x}_2, \tilde{x}_3)^{\mathrm{T}}$:

$$A(x,\epsilon)\widetilde{x} = x, \qquad A(x,\epsilon) = \begin{pmatrix} 1 & -\epsilon\alpha_1 x_3 & -\epsilon\alpha_1 x_2 \\ -\epsilon\alpha_2 x_3 & 1 & -\epsilon\alpha_2 x_1 \\ -\epsilon\alpha_3 x_2 & -\epsilon\alpha_3 x_1 & 1 \end{pmatrix},$$

imply a rational map, which is *reversible* (therefore birational):

$$\widetilde{x} = \Phi(x,\epsilon) = A^{-1}(x,\epsilon)x, \quad \Phi^{-1}(x,\epsilon) = \Phi(x,-\epsilon).$$

Explicit formulas:

$$\begin{cases} \widetilde{x}_1 = \frac{x_1 + 2\epsilon\alpha_1 x_2 x_3 + \epsilon^2 x_1 (-\alpha_2\alpha_3 x_1^2 + \alpha_3\alpha_1 x_2^2 + \alpha_1\alpha_2 x_3^2)}{\Delta(x,\epsilon)}, \\ \widetilde{x}_2 = \frac{x_2 + 2\epsilon\alpha_2 x_3 x_1 + \epsilon^2 x_2 (\alpha_2\alpha_3 x_1^2 - \alpha_3\alpha_1 x_2^2 + \alpha_1\alpha_2 x_3^2)}{\Delta(x,\epsilon)}, \\ \widetilde{x}_3 = \frac{x_3 + 2\epsilon\alpha_3 x_1 x_2 + \epsilon^2 x_3 (\alpha_2\alpha_3 x_1^2 + \alpha_3\alpha_1 x_2^2 - \alpha_1\alpha_2 x_3^2)}{\Delta(x,\epsilon)}, \end{cases}$$

where $\Delta(x, \epsilon) = \det A(x, \epsilon)$

$$= 1 - \epsilon^2 (\alpha_2 \alpha_3 x_1^2 + \alpha_3 \alpha_1 x_2^2 + \alpha_1 \alpha_2 x_3^2) - 2\epsilon^3 \alpha_1 \alpha_2 \alpha_3 x_1 x_2 x_3.$$

In homogeneous coordinates on \mathbb{P}^3 :

$$\Phi: [x_1:x_2:x_3:x_4] \mapsto [\widetilde{x}_1:\widetilde{x}_2:\widetilde{x}_3:\widetilde{x}_4],$$

where

$$\begin{cases} \widetilde{x}_{1} = x_{1}x_{4}^{2} + 2\epsilon\alpha_{1}x_{2}x_{3}x_{4} + \epsilon^{2}x_{1}(-\alpha_{2}\alpha_{3}x_{1}^{2} + \alpha_{3}\alpha_{1}x_{2}^{2} + \alpha_{1}\alpha_{2}x_{3}^{2}), \\ \widetilde{x}_{2} = x_{2}x_{4}^{2} + 2\epsilon\alpha_{2}x_{3}x_{1}x_{4} + \epsilon^{2}x_{2}(\alpha_{2}\alpha_{3}x_{1}^{2} - \alpha_{3}\alpha_{1}x_{2}^{2} + \alpha_{1}\alpha_{2}x_{3}^{2}), \\ \widetilde{x}_{3} = x_{3}x_{4}^{2} + 2\epsilon\alpha_{3}x_{1}x_{2}x_{4} + \epsilon^{2}x_{3}(\alpha_{2}\alpha_{3}x_{1}^{2} + \alpha_{3}\alpha_{1}x_{2}^{2} - \alpha_{1}\alpha_{2}x_{3}^{2}), \\ \widetilde{x}_{4} = x_{4}^{3} - \epsilon^{2}(\alpha_{2}\alpha_{3}x_{1}^{2} + \alpha_{3}\alpha_{1}x_{2}^{2} + \alpha_{1}\alpha_{2}x_{3}^{2})x_{4} - 2\epsilon^{3}\alpha_{1}\alpha_{2}\alpha_{3}x_{1}x_{2}x_{3}. \end{cases}$$

A birational map $\Phi : \mathbb{P}^3 \dashrightarrow \mathbb{P}^3$ of deg = 3.

Two independent integrals:

$$I_3(x,\epsilon) = \frac{1-\epsilon^2\alpha_2\alpha_3x_1^2}{1-\epsilon^2\alpha_3\alpha_1x_2^2}, \quad I_1(x,\epsilon) = \frac{1-\epsilon^2\alpha_3\alpha_1x_2^2}{1-\epsilon^2\alpha_1\alpha_2x_3^2}.$$

Invariant volume form:

$$\omega = rac{dx_1 \wedge dx_2 \wedge dx_3}{\phi(x)}, \quad \phi(x) = 1 - \epsilon^2 lpha_i lpha_j x_k^2.$$

bi-Hamiltonian structure found by [M. Petrera, Yu.S.'10].

Space \mathbb{P}^3 is foliated by joint level sets of two integrals of dET, each being a spatial elliptic curve – an intersection of two quadrics

$$\mathcal{C}_{\lambda\mu} = \mathcal{Q}_{\lambda} \cap \mathcal{P}_{\mu},$$

where

$$\mathcal{Q}_{\lambda} = \left\{ H_{12}(\boldsymbol{x}, \boldsymbol{\epsilon}) = \frac{\alpha_1 \boldsymbol{x}_2^2 - \alpha_2 \boldsymbol{x}_1^2}{1 - \boldsymbol{\epsilon}^2 \alpha_1 \alpha_2 \boldsymbol{x}_3^2} = \lambda \right\}$$

is a hyperboloid, while

$$\mathcal{P}_{\mu} = \left\{ I_3(\boldsymbol{x}, \boldsymbol{\epsilon}) = \frac{1 - \boldsymbol{\epsilon}^2 \alpha_2 \alpha_3 \boldsymbol{x}_1^2}{1 - \boldsymbol{\epsilon}^2 \alpha_3 \alpha_1 \boldsymbol{x}_2^2} = \mu \right\}$$

is a cylinder.

For any $x \in \mathbb{P}^3$, determine λ and μ so that $x \in \mathcal{Q}_{\lambda} \cap \mathcal{P}_{\mu}$.

Let ℓ_1, ℓ_2 be two straight line generators of \mathcal{Q}_{λ} through *x*.

Denote by $i_1(x)$, $i_2(x)$, the second intersection points of ℓ_1 , ℓ_2 with \mathcal{P}_{μ} . This defines two birational involutions $i_1, i_2 : \mathbb{P}^3 \dashrightarrow \mathbb{P}^3$.

Both Q_{λ} and \mathcal{P}_{μ} are symmetric w.r.t. a linear projective involution $s(x_1, x_2, x_3) = (x_1, x_2, -x_3)$.

Theorem [N. Smeenk' 20]. *The discrete time Euler top can be represented as the 3D QRT root*

$$\Phi = i_1 \circ s = s \circ i_2.$$

dET as a 3D QRT root

dET vs. Cremona inversion

Theorem. [J. Alonso, Yu.S., K. Wei' 21] Discrete time Euler top can be represented as

$$\Phi = M_1 \circ \sigma \circ M_2^{-1},$$

where M_1 and M_2 are linear projective automorphisms of \mathbb{P}^3 ,

$$M_1^{-1} = \begin{pmatrix} b_1 & -b_2 & -b_3 & 1 \\ -b_1 & b_2 & -b_3 & 1 \\ -b_1 & -b_2 & b_3 & 1 \\ b_1 & b_2 & b_3 & 1 \end{pmatrix}, \quad M_2^{-1} = \begin{pmatrix} -b_1 & b_2 & b_3 & 1 \\ b_1 & -b_2 & b_3 & 1 \\ b_1 & b_2 & -b_3 & 1 \\ -b_1 & -b_2 & -b_3 & 1 \end{pmatrix}$$

with $b_i = \epsilon \sqrt{\alpha_j \alpha_k}$, and $\sigma : \mathbb{P}^3 \dashrightarrow \mathbb{P}^3$ is the *Cremona inversion*

$$\sigma: \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{bmatrix} \mapsto \begin{bmatrix} 1/z_1 \\ 1/z_2 \\ 1/z_3 \\ 1/z_4 \end{bmatrix} = \begin{bmatrix} z_2 z_3 z_4 \\ z_1 z_3 z_4 \\ z_1 z_2 z_4 \\ z_1 z_2 z_3 \end{bmatrix}$$

Algebraic geometry of Cremona inversion

The critical set and the indeterminacy set:

$$\mathcal{C}(\sigma) = \bigcup_{i=1}^{4} \prod_{i}, \qquad \mathcal{I}(\sigma) = \bigcup_{1 \le i < j \le 4} \ell_{ij},$$

where $\Pi_i = \{z_i = 0\}$ are the coordinate planes and $\ell_{ij} = \Pi_i \cap \Pi_j$ are lines. Use also the four points

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, e_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Singularity confinement patterns:

$$\sigma: \quad \Pi_i \to \boldsymbol{e}_i \to \Pi_i, \quad i=1,\ldots,4.$$

Singularity confinement for dET

For
$$\Phi = M_1 \sigma M_2^{-1}$$
, we set $A_i := M_1(e_i)$ and $B_i := M_2(e_i)$, then
 $\Phi : M_2(\Pi_i) \rightarrow A_i, \quad B_i \rightarrow M_1(\Pi_i).$

Suppose

$$\Phi(A_i)=B_i, \qquad i=1,\ldots,4,$$

then have the following singularity patterns:

$$\Phi: \quad M_2(\Pi_i) \ \rightarrow \ A_i \ \rightarrow \ B_i \ \rightarrow \ M_1(\Pi_i).$$

The above condition says:

$$(M_1 \sigma M_2^{-1}) M_1 e_i = M_2 e_i \Leftrightarrow M \sigma M(e_i) = e_i, \quad i = 1, \dots, 4,$$

where $M = M_2^{-1} M_1$. It is satisfied for discrete time Euler top, for which

$$M = M_2^{-1}M_1 \simeq \begin{pmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{pmatrix}$$

.

Φ as a 3D QRT root, again

For $\Phi = M \circ \sigma$, the family of quadrics through eight points $A_i = Me_i$, $B_i = e_i$ is two-dimensional, containing two pencils

$$\begin{aligned} \mathcal{Q}_{\lambda} &= \big\{ z \in \mathbb{P}^3 : Q_0(z) - \lambda Q_1(z) = 0 \big\}, \\ \mathcal{P}_{\mu} &= \big\{ z \in \mathbb{P}^3 : Q_0(z) - \mu Q_2(z) = 0 \big\}, \end{aligned}$$

where

$$egin{aligned} Q_0(z) &= (z_1+z_3)(z_2+z_4), \quad Q_1(z) &= (z_1-z_3)(z_2-z_4), \ Q_2(z) &= z_1^2+z_2^2-z_3^2-z_4^2. \end{aligned}$$

Base curve of the pencil Q_{λ} – a skew quadrilateral.

Map Φ is the 3D QRT root defined by Q_{λ} , \mathcal{P}_{μ} . In particular, it leaves each Q_{λ} invariant. It is instructive to compute the restriction of Φ to Q_{λ} .

Φ fiberwise

For this, one can parametrize each Q_{λ} by $(x, y) \in \mathbb{P}^1 \times \mathbb{P}^1$ according to

$$\begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{bmatrix} = \begin{bmatrix} x + \lambda^{-1} xy \\ y + 1 \\ x - \lambda^{-1} xy \\ y - 1 \end{bmatrix}$$

(pencil-adapted coordinates on \mathbb{P}^3). Thus,

$$x = \frac{z_1 + z_3}{z_2 - z_4} = \frac{\lambda(z_1 - z_3)}{z_2 + z_4}, \quad y = \frac{z_2 + z_4}{z_2 - z_4} = \frac{\lambda(z_1 - z_3)}{z_1 + z_3}, \quad \lambda = \frac{Q_0(z)}{Q_1(z)}$$

In these coordinates:

$$\Phi: \quad \widetilde{x} = y, \quad \widetilde{y} = \frac{y^2 - 1}{x(1 - \lambda^{-2}y^2)}, \quad \widetilde{\lambda} = \lambda.$$

Each Q_{λ} is invariant, and in pencil-adapted coordinates Φ acts on Q_{λ} as a λ -dependent 2D QRT root.

A more general solution of $M \circ \sigma \circ M(e_i) = e_i$, i = 1, ..., 4:

$$M = M_q = \begin{pmatrix} -1 & q & 1 & q \\ q & -1 & q & 1 \\ 1 & q & -1 & q \\ q & 1 & q & -1 \end{pmatrix}$$

The corresponding map $\Phi_q = M_q \circ \sigma$:

$$\Phi_{q}: \begin{bmatrix} z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{bmatrix} \mapsto \begin{bmatrix} \widetilde{z}_{1} \\ \widetilde{z}_{2} \\ \widetilde{z}_{3} \\ \widetilde{z}_{4} \end{bmatrix} = \begin{bmatrix} z_{2}z_{4}(z_{1}-z_{3})+qz_{1}z_{3}(z_{2}+z_{4}) \\ z_{1}z_{3}(z_{2}-z_{4})+qz_{2}z_{4}(z_{1}+z_{3}) \\ z_{2}z_{4}(z_{3}-z_{1})+qz_{1}z_{3}(z_{2}+z_{4}) \\ z_{1}z_{3}(z_{4}-z_{2})+qz_{2}z_{4}(z_{1}+z_{3}) \end{bmatrix}$$

We have: $\Phi_q = L_q \circ \Phi$, where $L_q = M_q M^{-1}$.

From generalized dET to qP_{III}

Map $\Phi_q = M_q \circ \sigma = L_q \circ \Phi$ has exactly the same singularity confinement patterns as Φ :

$$\Phi_q: \quad \Pi_i \rightarrow A_i \rightarrow B_i \rightarrow M_q(\Pi_i),$$

where $A_i = M_q e_i$, $B_i = e_i$. But:

The family of quadrics through eight points $A_i = M_q e_i$, $B_i = e_i$ is one-dimensional, the pencil Q_{λ} . Φ_q has no rational integrals and maps each Q_{λ} to $Q_{q^2\lambda}$. In pencil-adapted coordinates:

$$\Phi_q: \quad \widetilde{x} = y, \quad \widetilde{y} = \frac{y^2 - 1}{x(1 - \lambda^{-2}y^2)}, \quad \widetilde{\lambda} = q^2 \lambda.$$

This is equivalent to qP_{III} :

$$y_{n+1}y_{n-1} = \frac{y_n^2 - 1}{1 - \lambda_n^{-2}y_n^2}, \qquad \lambda_n = \lambda_0 q^{2n}.$$

Input data.

- A pencil {C_μ} of biquadratic curves in P¹ × P¹ with the base points s₁,..., s₈ ∈ P¹ × P¹, and the corresponding QRT map f = i₁ ∘ i₂.
- 2. One distinguished biquadratic curve C_{∞} of the pencil.

Goal.

► Construct a discrete Painlevé equation as a de-autonomization of *f* along the fiber C_∞.

General scheme

Construction [J. Alonso, Yu.S., K. Wei '24].

1. Let $Q_0 = \{X_1X_2 - X_3X_4 = 0\}$. Recall that Q_0 is the image of the *Segre embedding* of $\mathbb{P}^1 \times \mathbb{P}^1$ to \mathbb{P}^3 , via

 $\mathbb{P}^1 \times \mathbb{P}^1 \ni ([x_1 : x_0], [y_1 : y_0]) \mapsto [x_1 y_0 : x_0 y_1 : x_1 y_1 : x_0 y_0] \in \mathcal{Q}_0.$

- Let S₁,..., S₈ be the images of the base points s₁,..., s₈ under Segre embedding.
- 3. To each biquadratic curve

$$egin{aligned} \mathcal{C}_{\mu} &: ig\{ a_1 x^2 y^2 + a_2 x^2 y + a_3 x y^2 + a_4 x^2 + a_5 y^2 \ &+ a_6 x y + a_7 x + a_8 y + a_9 = 0 ig\} \subset \mathbb{P}^1 imes \mathbb{P}^1 \end{aligned}$$

there corresponds a quadric

$$\begin{aligned} \mathcal{P}_{\mu} &: \left\{a_1 X_3^2 + a_2 X_1 X_3 + a_3 X_2 X_3 + a_4 X_1^2 + a_5 X_2^2 \right. \\ &+ a_6 X_3 X_4 + a_7 X_1 X_4 + a_8 X_2 X_4 + a_9 X_4^2 = 0\right\} \subset \mathbb{P}^3. \end{aligned}$$

(Actually, C_{μ} can be identified with $\mathcal{Q}_0 \cap \mathcal{P}_{\mu}$.)

Construction (contunued).

- Construct the *pencil of quadrics* {Q_λ} in P³ spanned by Q₀ and P_∞. The base curve of {Q_λ} is Q₀ ∩ P_∞, the image of C_∞ under Segre embedding. Its intersection with the base curve of {P_μ} consists of S₁,..., S₈.
- Consider 3D QRT involutions i₁, i₂ on P³ defined by intersections of generators ℓ₁, ℓ₂ of Q_λ with the quadrics P_μ. On each quadric Q_λ, the map Φ = i₁ ∘ i₂ induces a λ-deformation of the original QRT map f.

Construction (Painlevé deformation).

- 6. Find a birational map *L* on \mathbb{P}^3 with the following properties.
 - a) *L* preserves the pencil $\{Q_{\lambda}\}$, and maps each Q_{λ} to $Q_{\sigma(\lambda)}$, where $\sigma : \mathbb{P}^1 \to \mathbb{P}^1$ is a Möbius automorphism fixing the set

Sing $(\mathcal{Q}) := \{ \lambda \in \mathbb{P}^1 : \mathcal{Q}_{\lambda} \text{ is degenerate} \}.$

b) The maps $L \circ i_1, L \circ i_2$ have the same singularity confinement properties as the QRT involutions i_1, i_2 .

Then the map $\Psi = (L \circ i_1) \circ (L \circ i_2)$ is declared to be a discrete Painlevé equation obtained by the de-autonomization of the QRT map along the fiber C_{∞} .

Projective classification of pencils of quadrics in \mathbb{P}^3 (From: E. Casas-Alvero. *Analytic projective geometry*. EMS, 2014).

