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Painlevé equations

Painlevé equations (P—Py;, 1902): 2nd order nonlinear ODEs
U’ = F(U', u, t) with the Painlevé property (solutions have no
initial value dependent singularities other than poles). E.g.,

P . U =6u®+t,

uz o ou 1 )
X "o v o 2 3 e
Py: u = t+ t(au +B)+u —l—u.

Integrability: isomonodromic structure (each Painlevé equation
is a condition for a certain Fuchsian system with u-dependent
coefficients to have t-independent monodromy).
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Discrete Painlevé equations

» First appearance: Shohat (1936),
Un(Ups1 + Up + Up_1) = an+ B,

equation for coefficients of the three-term recurrence for
certain orthogonal polynomials (now called dP,).

» Grammaticos, Ramani, Papageorgiou (1991): singularity
confinement as a discrete analogue of Painlevé property.
Systematic search for discrete Painlevé equations.
Isomonodromic structure.

» Sakai (2001): geometric classification scheme, based on

relation to generalized Halphen surfaces (blow-up of
P! x P! at eight points).
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Example: gP, vs a QRT recurrence

ya—1

5
1—c®ya

A non-autonomous version of a QRT recurrence

qPy : Ynt1Yn—1 = Cn = CoG°".
Yny1¥Yn—1 =

which can be put as f : C?> — C? (a QRT root),

2 _
fro(y) e (y) = (yx(1y—c—12y2)>

Inverse map:

~2_
1 (%) = (X, y) = <M}> .
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QRT as a birational map

Lift f to P! x P'. Then it has four indeterminacy points
p1 = (007 C)? P2 = (007 _C)> Ps = (07 1)7 Pe = (07 _1)’
while f~1 has four indeterminacy points

ps = (Cv OO), Pa = (_07 OO): p7 = (170)7 Ps = (_170)'

4 3
V=5 2
° .
6 1
° .
y=0 7 8
x=0 X = o0
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QRT as a birational map

The eight singular points define a pencil of biquadratic curves in
P! x P', which are invariant under the map f:

C.: {szxzyz X2 —yP 1 —puxy = 0}.
(Note that C is the union of four lines from the previous
picture.)
Singularity confinement patterns for f read:
{y = _C} — (_07 OO) — (007 C) - {X = 0}7
{y=c¢} = (c,0) — (0,—Cc) — {x=-c},

{y=-1 = (-1,00 = (0,1) = {x=1}
{y=1} - (1,00 —» (0,-1) — {x=-1}.
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From a pencil of biquadratic curves to QRT map

One can construct f starting with the pencil C,.

» For a given (x, y), determine 1 such that (x,y) € C,,.

» Define the vertical switch i; and the horizontal switch i> as
the second intersection point of C,, with the line x = const,
resp. y = const. One computes:

. x% —1 . y2 —1

h(x,y)= (X» m)a b(x,y) = (ma}’)-
» Define the QRT map F = iy o ix. If the pencil C,, is

symmetric under s(x, y) = (¥, x), define the QRT root

f=soip=ij08, sothat F = f.
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From a QRT recurrence to gPyy

One can consider gPy; as a sequence of maps of the type f,
but for which (some of) the points py, ..., pg depend on n
(de-autonomization).

Main requirement (which singles out the evolution ¢, = ¢yg?"):
the same singularity confinement patterns.

No algebraic integrals of motion! However, universally accepted
as an integrable system:
» vanishing algebraic entropy

» isomonodromic structure (hence, monodromy data serve
as transzendental integrals of motion)
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Discrete time Euler top

X1 = a1 X2X3, X1 — X1 = eaq(X2X3 + X2X3),

Xo = apX3Xy, Xo — Xp = eap(X3X1 + X3X1),

X3 = agX1Xo, X3 — X3 = eaz(X1 X2 + X1 X2).
Features:

» Equations are linear w.r.t. x = (X1, X2, X3)™:

1 —€1X3 —€a1Xo
A(x, €)X = X, A(x,e) = | —eanxs 1 —eapXq |,
—€a3Xo —easXq 1

imply a rational map, which is reversible (therefore
birational):

X=d(x,6) =A(x,6)x, &7 T(x,€) = d(x,—¢).
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Explicit formulas:

5 Xy + 2ecqt1 XoX3 + 62X1 (—a2a3x12 + gy X22 + o4 O¢2X§)
1 =
A(x,€) ’
5 2 > 2 )
% — Xo + 2e€coX3Xq + € Xg(ozga3X1 aza X5 + o Oész)
2= A(X, ) ’
5 2 2 2 2
Yn X3 + 2eaz X1 Xo + € X3(052043X1 + azaq X5 — OéQXS)
8 A(x,¢€) ’

where A(x, ) = det A(x, ¢)

=1- 62(042043X12 + a3a1X22 + 0410[2X32) — 263a1a2a3X1 X2 X3.
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Projective formulation

In homogeneous coordinates on P3:
¢Z[X1 ZX22X3ZX4]'—>[X1 ZX2:X3ZX4],

where

( ~
X1 = X1 X2 + 21 XoXaXgq + €2 X1 (—pa3X? + azaq X2 + aqapX3),
4 1 2 3

Xo = X2X42 + 2€cioX3X1 X4 + €2X2(Ck20z3X12 — (i3(rq X22 + o 042X§),
}3 = Xng + 2eqz Xy XoXq4 + 62X3(042a3X12 + azoq X22 — 0 agxg),

}4 :Xz‘?

— 62(a2a3X12 + 30 X22 + o4 Ozgxg)X4 — 263Oz1 o3 X1 X2 X3.

A birational map ¢ : P3 --» P8 of deg = 3.
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Integrability of dET

» Two independent integrals:

2 2 2 2
1 — e“apasX] 1 — e“aga X5

I1 (X 6) = .
1-— 62043041 X22’ ’ 1-— 62041042X§

I3(X7 6) =

» |nvariant volume form:
w— adxq A dxo A dxs
o(x) ’

» bi-Hamiltonian structure found by [M. Petrera, Yu.S.10].

op(x)=1-— 620[,'041'XE.
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Geometry of the discrete time Euler top

Space PP is foliated by joint level sets of two integrals of dET,
each being a spatial elliptic curve — an intersection of two

quadrics
Cru =2 NPy,
where ) )
=<{Hpp(X,6) = —=—"—> =)\

A\ { 12(X; €) 1 aasx? }

is a hyperboloid, while
1 — apagx?
P = I X7 = _ - Tere =

is a cylinder.
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dET is a 3D QRT root

For any x € P?, determine )\ and p so that x € @, N P,.
Let ¢4, /> be two straight line generators of Q) through x.

Denote by i1(x), iz(x), the second intersection points of ¢4, ¢
with P,,. This defines two birational involutions iy, i> : P3 --» PS.

Both Q) and P, are symmetric w.r.t. a linear projective
involution s(xq, X2, X3) = (X1, X2, —X3).

Theorem [N. Smeenk’ 20]. The discrete time Euler top can be
represented as the 3D QRT root

d=jjos=So0lk.
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dET as a 3D QRT root
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dET vs. Cremona inversion

Theorem. [J. Alonso, Yu.S., K. Wei’ 21] Discrete time Euler top
can be represented as

®=MoooM',

where M; and M, are linear projective automorphisms of P3,

by —by —bs 1 —-b1 b by 1
4_|-b b2 —bs 1 4 | b1 —by b3 1

My = —by —b2 b3 1|’ My~ = by b2 —bs 1]’
by b bz 1 —by —by —bs 1

with b; = €, /ajay, and o : P3 --» P3 is the Cremona inversion

Zq 1/21 202324

2o 1/22 212324
o — =

3 1/z3 212224

zy 1/24 212523
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Algebraic geometry of Cremona inversion

The critical set and the indeterminacy set:
C(O’) = U ni7 I(O') = U él]a
i=1 1<i<j<4

where IN; = {z; = 0} are the coordinate planes and ¢;; = N; N T;
are lines. Use also the four points

1 0 0 0
e = 0 € = 1 e = 0 €4 = 0
1= 0 b 2 — O I 3 — 1 b 4 — 0
0 0 0 1
Singularity confinement patterns:
o: Mi—e—nN;, i=1,...,4
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Singularity confinement for dET

For & = MyoM, ', we set A, := M;(g;) and B; := My(e;), then
d . Mg(ﬂ,') — A,’7 B,' — M1(|_|,').

Suppose
d(A) = B i=1,...,4,

then have the following singularity patterns:
o M) — A — B — Mq(I)).
The above condition says:
(MioMy YMye; = Mpe; = MoM(e)) =e;, i=1,...,4,

where M = M, ' M;. Itis satisfied for discrete time Euler top, for

which
—1 1 1
PP B B B B
M=My M~y ~1 1
T 1 1
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¢ as a 3D QRT root, again

For & = M o ¢, the family of quadrics through eight points
A; = Me;, B; = e; is two-dimensional, containing two pencils

Q) = {zeP®: Qy(z) — \Q4(2) =0},

PM = {z cPp3: Qo(Z) - MQZ(Z) = 0}7
where

Qo(2) = (21 + z3)(22 + 24), Qu(2) = (21 — 23)(22 — 24),

Q(2) =22+ 25 — 25 — 2.

Base curve of the pencil Q, — a skew quadrilateral.

Map ¢ is the 3D QRT root defined by Q,, P,. In particular, it
leaves each Q, invariant. It is instructive to compute the
restriction of ¢ to 9,.
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For this, one can parametrize each Q, by (x,y) € P! x P
according to

21 X+ X"xy
Zo . Y+ 1
zz | | x=XTxy
Zy y—1
(pencil-adapted coordinates on P?). Thus,
oAt _Na-z) zntza Mza-z) | Q)
Zo — 24 Zo + 24 ’ Zo — 24 Z1 + 2Z3 ’ 01(2)‘

In these coordinates:

% oyt 5

Each Q) is invariant, and in pencil-adapted coordinates ¢ acts
on Q) as a A-dependent 2D QRT root.
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Generalized dET

A more general solution of Moo o M(eg)=¢€;,i=1,...,4:
-1 g 1 gq
M=M= |9 1 9 1
91 g -1 g
g 1 q -1

The corresponding map ®q = Mg oo

z4 Zy 2p24(21 — 23) + Qz123(22 + 24)

o | 2 || 2| 2| #17(22—2)+qzz(z + z)
T z3 Z3 2p24(23 — 21) + Qz123(22 + 24)
z4 Z4 2123(Z4 — 22) + QZoz4(21 + 23)

We have: ¢4 = Ly o &, where Ly = MgM~".
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From generalized dET to qPyy

Map &4 = My o 0 = Ly o ® has exactly the same singularity
confinement patterns as &:

d)q; |_|,' — A,' — B,' — Mq(”,’),
where A; = Mye;, B; = e;. But:

The family of quadrics through eight points A; = Mge;, B; = e;
is one-dimensional, the pencil Q. ®q has no rational integrals
and maps each Q) to Q). In pencil-adapted coordinates:

- ~ y2 —1 ~ 5
b, = = —— —  A=Q0g°\
q X ya y X(1 - A_zyz)a q
This is equivalent to gP;:
2
Yn — 1 2n
y +1y 71 g 5 5> )\n = )\0q .
(G P
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General scheme

Input data.

1. A pencil {C,} of biquadratic curves in P! x P! with the

base points sq,...,83 € P! x P!, and the corresponding
QRT map f =iy o bo.

2. One distinguished biquadratic curve C., of the pencil.

Goal.

» Construct a discrete Painlevé equation as a
de-autonomization of f along the fiber C.
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General scheme

Construction [J. Alonso, Yu.S., K. Wei ’24].
1. Let Qg = {X1 Xo — X3X4 = 0}. Recall that Qy is the image
of the Segre embedding of P! x P! to P3, via

]P1 XIP)1 = ([X1 : Xo], [y1 :yo]) — [X1yo T XoY1 i XY Xoyo] € Qp.

2. Let Sy, ..., Sg be the images of the base points s4,..., sg
under Segre embedding.

3. To each biquadratic curve
C. : {a1X®y? + apxPy + asxy® + asx® + asy®
+ Xy + arx + dgy + ag =0} C P! x P!
there corresponds a quadric
P {a XZ + ap X1 Xa + agXoXa + as X2 + as X
+ 85 XaXq + @ X1 Xa + @3 Xo Xy + g XZ = 0} C P2
(Actually, C,, can be identified with Qo N P,,.)
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General scheme

Construction (contunued).

4. Construct the pencil of quadrics {Q,} inP® spanned by Qg
and P... The base curve of {Q,} is Qy N P, the image of
C under Segre embedding. Its intersection with the base
curve of {P,} consists of Sy, ..., Ss.

5. Consider 3D QRT involutions iy, i, on P® defined by
intersections of generators /1, ¢> of Q) with the quadrics
P,. On each quadric Q), the map ® = j; o jp induces a
A-deformation of the original QRT map f.
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General scheme

Construction (Painlevé deformation).

6. Find a birational map L on P2 with the following properties.
a) L preserves the pencil {Q,}, and maps each Qy to Q,(»),
where ¢ : P! — P! is a Mdbius automorphism fixing the set

Sing(Q) := {A € P': Q, is degenerate}.
b) The maps Lo iy, L o ir have the same singularity

confinement properties as the QRT involutions iy, i.

Thenthe map W = (Lo jj) o (Lo ip) is declared to be a
discrete Painlevé equation obtained by the
de-autonomization of the QRT map along the fiber C..
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Projective classification of pencils of quadrics in P3
(From: E. Casas-Alvero. Analytic projective geometry. EMS, 2014).
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