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Fig. 1. Material-aware form finding of a cold bent glass façade. From left to right: initial and revised panel layouts from an interactive design session with
immediate feedback on the glass shape and maximum stress (red color indicates panel failure). The surface design is then optimized for stress reduction and
smoothness. The final façade realization using cold bent glass features doubly curved areas and smooth reflections.

Cold bent glass is a promising and cost-efficient method for realizing doubly
curved glass façades. They are produced by attaching planar glass sheets to
curved frames and must keep the occurring stress within safe limits. How-
ever, it is very challenging to navigate the design space of cold bent glass
panels because of the fragility of the material, which impedes the form find-
ing for practically feasible and aesthetically pleasing cold bent glass façades.
We propose an interactive, data-driven approach for designing cold bent
glass façades that can be seamlessly integrated into a typical architectural
design pipeline. Our method allows non-expert users to interactively edit
a parametric surface while providing real-time feedback on the deformed
shape and maximum stress of cold bent glass panels. The designs are au-
tomatically refined to minimize several fairness criteria, while maximal
stresses are kept within glass limits. We achieve interactive frame rates by
using a differentiable Mixture Density Network trained from more than
a million simulations. Given a curved boundary, our regression model is
capable of handling multistable configurations and accurately predicting the
equilibrium shape of the panel and its corresponding maximal stress. We
show that the predictions are highly accurate and validate our results with
a physical realization of a cold bent glass surface.
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1 INTRODUCTION
Curved glass façades allow the realization of aesthetically stunning
looks for architectural masterpieces, as shown in Figure 2. The
curved glass is usually made with hot bending, a process where
the glass is heated and then formed into a shape using a mold or
using tailored bending machines for spherical or cylindrical shapes.
While being able to unleash these stunning designs from being
restricted to flat panels, this process is laborious and expensive and,
thus, an economic obstacle for the realization of exciting concepts
such as the NHHQ skyscraper project by Zaha Hadid Architects
(Figure 10). As a cost-effective alternative, in recent years, architects
have started exploring cold bending [Beer 2015]. Here, planar glass
sheets are deformed by mechanically attaching them to a curved
frame. Cold bending introduces a controlled amount of strain and
associated stress in the flat glass at ambient temperatures to create
doubly curved shapes [Datsiou 2017]. Compared with hot bent glass,
it has the advantage of higher optical and geometric quality, a wide
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Fig. 2. Examples of
curved glass façades.
Left: Fondation Louis
Vuitton, Paris, by Frank
Gehry. Right: Opus,
Dubai, by Zaha Hadid
Architects (Photo:
Danica O. Kus).

range of possibilities regarding printing and layering, the usage
of partly tempered or toughened safety glass, and the possibility
of accurately estimating the stresses from deformation [Belis et al.
2007; Fildhuth and Knippers 2011]. Furthermore, it reduces energy
consumption and deployment time because no mold, heating of the
glass, nor elaborate transportation are required.

However, designing cold bent glass façades comes with a challeng-
ing form-finding process. How can we identify a visually pleasing
surface that meets aesthetic requirements such as smoothness be-
tween panels while ensuring that the solution is physically feasible
and manufacturable? Significant force loads can occur at the con-
nection between the glass and frame, and it is essential that the
deformation of the glass stays within safe limits to prevent it from
breaking.
We propose an interactive, data-driven approach for designing

cold bent glass façades. Starting with an initial quadrangulation of
a surface, our system provides a supporting frame and interactive
predictions of the shape and maximum stress of the glass panels.
Following a designer-in-the-loop optimization approach, our system
enables users to quickly explore and automatically optimize designs
based on the desired trade-offs between smoothness, maximal stress,
and closeness to a given input surface. Our workflow allows users to
work on the 3D surface and the frame only, liberating the designer
from the need to consider or manipulate the shape of flat panels –
the optimal shape of the flat rest configuration of the glass panels is
computed automatically.
At a technical level, we aim to determine the minimum energy

states of glass panels conforming to the desired boundary without
knowing their rest configuration. Based on extensive simulations
of more than a million panel configurations with boundary curves
relevant for our application domain, we observed the existence of
several (in most cases up to two) stable states for many boundary
curves. Identifying bothminimum energy states without knowing the
rest configuration and potentiallymultiple stable states is a non-trivial
problem and cannot be easily computed using standard simulation
packages. Furthermore, as a prerequisite for enabling interactive
design for glass façades, we need to solve this problem for hundreds
of panels within seconds.
To achieve these goals, we have developed a learning-based

method utilizing a deep neural network architecture and Gauss-
ian mixture model that accurately predicts the shape and maximum
stress of a glass panel given its boundary. The training data for the
network is acquired from a physics-based shape optimization rou-
tine. The predictions of the trained network not observed originally
are re-simulated and used for database enrichment. Our model is
differentiable, fast enough to interactively optimize and explore the

shape of glass façades consisting of hundreds of tiles, and tailored
to be easily integrated into the design workflow of architects. As
a proof of concept, we have integrated our system into Rhino. We
have carefully validated the accuracy and performance of our model
by comparing it to a real-world example, and demonstrate its ap-
plicability by designing and optimizing multiple intricate cold bent
glass façades.

2 RELATED WORK
Interactive design and shape optimization are areas that have a
considerable history in Engineering [Christensen and Klarbring
2008], architecture [Adriaenssens et al. 2014], and computer graph-
ics research [Bermano et al. 2017; Bickel et al. 2018], including tools
for designing a wide variety of physical artifacts, such as furni-
ture [Umetani et al. 2012], cloth [Wolff and Sorkine-Hornung 2019],
robotics [Megaro et al. 2015], and structures for architecture [Eigen-
satz et al. 2010].
Motivated by the digitalization of manufacturing, there is an

increased need of computational tools that can predict and sup-
port optimizing the physical performance of an artifact during the
design process. Several approaches have been developed to guar-
antee or improve the structural strength of structures [Stava et al.
2012; Ulu et al. 2017]. Focusing on shell-like structures, Musialski
et al. [2015] optimized their thickness such that it minimizes a pro-
vided objective function. More recently, Zhao et al. [2017] proposed
a stress-constrained thickness optimization for shells, and Gilureta
et al. [2019] computed a rib-like structure for reinforcing shells, that
is, adding material to the shell to increase its resilience to external
loads. Considering both aesthetic and structural goals, Schumacher
et al. [2016] designed shells with an optimal distribution of artis-
tic cutouts to produce a stable final result. Although we share the
general goal of structural soundness, in our problem setting, we
cannot change the thickness or material distribution. Additionally,
even just determining the feasibility of a desired bent glass shape
requires not only solving a forward simulation problem, but also
an inverse problem because the rest shape of the glass panel is a
priori unknown. Finding an optimal rest shape is often extremely
important. Schumacher et al. [2018] investigated sandstone as build-
ing material that is weak in tension, thus requiring computing an
undeformed configuration for which the overall stress is minimized.
Similarly, glass panels have a low tensile strength and are subject
to very high compression loads during the assembly process, which
motivates the need for identifying minimal energy panels.

Notably, several methods have recently been proposed to design
doubly curved objects from flat configurations [Guseinov et al.
2017; Konaković-Luković et al. 2018; Malomo et al. 2018; Panetta
et al. 2019; Peloux et al. 2013]. However, all these methods rely on
significantly more elastic materials and are not targeted for use
within an interactive design pipeline. In our application, having an
accurate estimation of the stress is critical to predict panel failure
and interactively guide designers towards feasible solutions. The
need to bridge the gap between accuracy and efficiency motivates
the use of a data-driven approach.

Computational design of façades. Covering general freeform sur-
faces with planar quadrilateral panels is a fundamental problem in
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Fig. 3. Doubly curved surface panelized using a planar quad mesh following the principal curvature network (left). This is the smoothest possible panelization
of this surface achievable with flat panels [Pellis et al. 2019]. The solution using cold bent glass panels designed with our method (right) shows much smoother
results. The bottom pictures show the corresponding zebra stripping for both solutions; clearly, smoother stripes are indicators of higher visual smoothness.

architectural geometry and has received much attention [Glymph
et al. 2004; Liu et al. 2006, 2011; Mesnil et al. 2017; Pottmann et al.
2015]. The difficulties lie in the close relationship between the curva-
ture behavior of the reference surface and the possible panel layouts.
Problems occur especially in areas of negative curvature and if the
design choices on the façade boundaries are not aligned with the cur-
vature constraints imposed by planar quad meshes (Figure 3). Using
triangular panels, the problems are shifted toward the high geo-
metric complexity of the nodes in the support structure [Pottmann
et al. 2015]. Eigensatz et al. [2010] formulated relevant aspects for
architectural surface paneling into a minimization problem that also
accounts for re-using molds, thereby reducing production costs. Re-
stricting the design to simple curved panels, Pottmann et al. [2008]
presented an optimization framework for covering freeform sur-
faces by single-curved (developable) panels arranged along surface
strips. However, glass does not easily bend into general developable
shapes, limiting the applicability of this technique for paneling with
glass.
A recent alternative for manufacturing doubly curved panels is

cold bending of glass. A detailed classification and description of the
performance of cold bent glass can be found in [Datsiou 2017]. Evers-
mann et al. [2016a] explored simulations based on a particle-spring
method and a commercially available FE analysis tool. Furthermore,
they compared the resulting geometries to the measurements of
the physical prototypes. For designing multi-panel façade layouts,
Eversmann et al. [2016b] calculated the maximum Gaussian curva-
ture for a few special types of doubly curved panels. This defined a
minimal bending radius for exploring multi-panel façade layouts.
Berk and Giles [2017] developed a method for freeform surface ap-
proximation using quadrilateral cold bent glass panels. However,
they limited their fabricability studies to two modes of deformation.
Although conceptually simple, we found these approaches too lim-
iting for general curved panels and, thus, have based our approach
on a data-driven method.

Machine learning for data-driven design. Finite element methods
(FEM) are widely used in science and engineering for computing
accurate and realistic results. Unfortunately, they are often slow
and, therefore, prohibitive for real-time applications, especially in
the presence of complex material behavior or detailed models.

Dimensionality reduction is a powerful technique for improving
simulation speed. Reduced space methods, for example, based on
modal analysis [Barbič and James 2005; Pentland andWilliams 1989],
are often used to construct linear subspaces, assuming that the de-
formed shape is a linear combination of precomputed modes. Simu-
lations can then be performed in the spanned subspace, which, how-
ever, limits its accuracy, especially in the presence of non-linear be-
havior. Non-linear techniques such as numerical coarsening [Chen
et al. 2015] allow for the reduction of the models with inhomoge-
neous materials, but usually require precomputing and adjusting
the material parameters or shape functions [Chen et al. 2018] of the
coarsened elements. Recently, Fulton et al. [2019] proposed employ-
ing autoencoder neural networks for learning nonlinear reduced
spaces representing deformation dynamics. Using a full but linear
simulation, NNWarp [Luo et al. 2018] attempts to learn a mapping
from a linear elasticity simulation to its nonlinear counterpart. Com-
mon to these methods is that they usually precompute a reduced
space or mapping for a specific rest shape but are able to perform
simulations for a wide range of Neumann and Dirichlet boundary
constraints. In our case, however, we are facing a significantly differ-
ent scenario. First, we need to predict and optimize the behavior of
a whole range of rest shapes, which are defined by manufacturing
feasibility criteria (in our case, close to, but not necessarily perfect,
rectangular flat panels). Second, our boundary conditions are fully
specified by a low-dimensional boundary curve that corresponds to
the attachment frame of the glass panel. Instead, we propose directly
infer the deformation and maximal stress from the boundary curve.
Recently, data-driven methods have shown great potential for

interactive design space exploration and optimization, for example,
for garment design [Wang et al. 2019], or for optimized tactile ren-
dering based on a data-driven skin mechanics model [Verschoor
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Fig. 4. Overview of our design tool workflow. The user makes edits on
a quadrilateral base mesh and gets immediate feedback on the deformed
shape and maximal stress of the glass panels. When needed, an optimization
procedure interactively refines the surface to minimize safety and fairness
criteria. If desired, any target reference surface may be used to initialize the
process.

et al. 2020]. An overview of graphics-related applications of deep
learning can be found in Mitra et al. [2019]. In the context of compu-
tational fabrication, data-driven approaches were used, for example,
for interactively interpolating the shape and performance of pa-
rameterized CAD models [Schulz et al. 2017] or learning the flow
for interactive aerodynamic design [Umetani and Bickel 2018]. Al-
though these methods are based on an explicit interpolation scheme
of close neighbors in the database ([Schulz et al. 2017]) or Gaussian
processes regression ([Umetani and Bickel 2018]), in our work, we
demonstrate and evaluate the potential of predicting the behavior
and solving the inverse problem of designing a cold bent glass façade
using neural networks. This entails the additional challenge of deal-
ing with multistable equilibrium configurations that, to the best
of our knowledge, has not been addressed before in a data-driven
computational design problem.

3 OVERVIEW
We propose a method for the interactive design of freeform sur-
faces composed of cold bent glass panels that can be seamlessly
integrated in a typical architectural design pipeline. Figure 4 shows
an overview of the design process. The user makes edits on a base
quad mesh that is automatically completed by our system to a mesh
with curved Bézier boundaries. Our data-driven model then inter-
actively provides the deformed shape of the cold bent glass panels
in the form of Bézier patches conforming to the patch boundaries
and the resulting maximal stress. This form-finding process helps
the designer make the necessary decisions to avoid panel failure. At
any point during the design session, the user can choose to run our
simulation-based optimization method to automatically compute a
suitable panelization while retaining some desirable features such
as surface smoothness and closeness to the reference design.

In Section 4, we show how the base mesh controlled by the user
is extended through special cubic Bézier curves to the set of patch
boundaries. Each patch is delimited by planar boundary curves
of minimum strain energy. These special Bézier patch boundaries
are convenient for modeling glass panels because they facilitate
the construction of supporting frames while providing a smooth
approximation to the desired design.

Bézier boundaries do not convey any information on the de-
formed or undeformed configuration of the panel. Our method uses
simulation to compute both configurations of the panel such that
certain conditions are met, which are derived from manufacturing
constraints. First, current panel assembly does not guarantee 𝐶1

continuity at the boundary between neighbor panels because it is
very hard to enforce normals along the frame in practice. Second,
glass panels have a low tensile strength and are prone to breaking
during the installation process in the presence of large tangential
forces. Following these criteria, we let the panel be defined by the
boundary curve of the frame and compute both the deformed and
undeformed shapes of the panel such that the resulting total strain
energy is minimal. In this way, we ensure our panelization has at
least 𝐶0 continuity and that the assembly of the panels requires
minimal work, thus reducing the chances of breakage. In Section 5,
we describe in detail the physical model and the computation of
minimal energy panels.

Panel shape optimization provides uswith amapping between our
design space of Bézier boundary curves and theoretically realizable
cold bent panels, in both undeformed and deformed configurations.
Our material model also accurately estimates the maximum stress
endured by the glass. The user is free to interactively edit the base
mesh while receiving immediate feedback on the maximum stress,
but this neither ensures the panels will not break, nor does it foster
the approximation of a target reference surface. To achieve this goal,
we solve a design optimization problem: Bézier boundary curves are
iteratively changed to minimize closeness to an input target surface
(and other surface quality criteria) while keeping the maximum
stress of each panel within a non-breaking range. In Section 7, we
describe in detail our formulation of the design optimization.
However, accurately computing the minimal energy panels is

computationally very challenging, which makes physical simula-
tion infeasible for being directly used within the design optimization
loop. Furthermore, the mechanical behavior of glass panels under
compression often leads to multiple stable minimal energy config-
urations depending on the initial solution. This complicates the
optimization even more: not only does the problem turn into a
combinatorial one, but there is no algorithmic procedure that can ef-
ficiently count and generate all existing static equilibria given some
boundary curve. We address this challenge by building a data-driven
model of the physical simulation. First, we densely sample the space
of the Bézier planar boundary curves and compute the correspond-
ing minimal energy glass panels together with an estimation of the
maximum stress. Then, we train a Mixture Density Network (MDN)
to predict the resulting deformed shape and maximum stress given
the boundary of the panel. The MDN explicitly models multistability
and also allows us to discover alternative stable equilibria that can
be used to enrich the training set. In Section 6, we elaborate on
the characteristics of our regression network and our sampling and
training method. The trained regression network can finally be used
to solve the inverse design optimization problem. Once the user is
satisfied with the design, our shape optimization procedure gener-
ates the rest planar panels, which are ready to be cut and assembled
into a beautiful glass façade.
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4 GEOMETRY REPRESENTATION
A panelization of an architectural surface is built upon a quadran-
gular base mesh M = (𝑉 , 𝐸, 𝐹 ), where the vertices 𝑉 determine the
panel corner points and each quad face in 𝐹 is filled by one curved
panel. In practice, the user interacts with the design tool by making
edits to M through any parametric mesh design method, in our
case a Catmull-Clark subdivision from a coarser mesh (see Figure 1
and the supplementary video). This helps achieve fair base meshes
and gives a reasonable control for edits. However, any other mesh
design scheme could be potentially used.
Each edge in 𝐸 is then automatically replaced by a planar cubic

Bézier curve defining the boundaries of the panel, and the inner
control points are predicted using our regression model. In this
section, we describe the details for getting from M to the union
of curved panels. Moreover, we show how to express the panels
with a minimal number of parameters, which are later used for the
data-driven model.

4.1 Panel parameterization
Wemodel each glass panel as a bicubic Bézier patch S : [0, 1]2 → R3,
which is defined by 16 control points c𝑖 𝑗 , where 𝑖 , 𝑗 ∈ {0, 1, 2, 3}. The
corner points c00, c03, c33, c30 are vertices in M.

4.1.1 Panel boundary. Each edge 𝑒 ofM is associated with a patch
boundary curve C𝑒 . To describe its construction, we focus on a
single edge 𝑒 with vertices v1, v2, and we denote the unit vectors of
the half-edges originating at v𝑖 by e𝑖 (see Figure 5). We opted for
planar boundary curves representing panel’s edges; thus, we first
define the plane Π𝑒 that contains C𝑒 . We do this by prescribing a
unit vector s𝑒 ∈ R3 that lies in Π𝑒 and is orthogonal to 𝑒 . Note that
this parameterization is non-injective (vector −s𝑒 represents the
same plane Π𝑒 ), but its ambiguity can be resolved using the compact
representation in Section 4.2. The two inner control points of the
cubic curve C𝑒 lie on the tangents at its end points. Tangents are
defined via the angles 𝜃𝑖 they form with the edge. Hence, the unit
tangent vectors are

t𝑖 = e𝑖 cos𝜃𝑖 + s𝑒 sin𝜃𝑖 ,

In view of our aim to get panels that arise from the flat ones through
bending, we further limit the cubic boundary curves to those with
a minimal (linearized) bending energy, as described in [Yong and
Cheng 2004]. For them, the two inner control points are given by
v𝑖 +𝑚𝑖 t𝑖 , 𝑖 = 1, 2, with

𝑚1 =
(v2 − v1) · [2t1 − (t1 · t2)t2]

4 −
(
t1 · t2

)2 ,

and𝑚2 is obtained analogously by switching indices 1 and 2.
The boundary of S is thus fully parameterized by the 4 corner

vertices c𝑖 𝑗 , 𝑖, 𝑗 ∈ {0, 3}, the 4 edge vectors s𝑒 , and the 8 tangent
angles 𝜃 (2 per edge). This parameterization of the panels is used in
the regression model and the design tool implementation described
in Sections 6 and 7, respectively.

4.1.2 Panel interior. The interior control points c𝑖 𝑗 , 𝑖, 𝑗 ∈ {1, 2}
express the shape of a panel enclosed by a given boundary. We
found that within the admissible ranges of the boundary parameters,
any optimal glass panel (see a detailed description in Section 5) can

v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1

v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2
v1+𝑚1t1v1+𝑚1t1v1+𝑚1t1v1+𝑚1t1v1+𝑚1t1v1+𝑚1t1v1+𝑚1t1v1+𝑚1t1v1+𝑚1t1v1+𝑚1t1v1+𝑚1t1v1+𝑚1t1v1+𝑚1t1v1+𝑚1t1v1+𝑚1t1v1+𝑚1t1v1+𝑚1t1

v2+𝑚2t2v2+𝑚2t2v2+𝑚2t2v2+𝑚2t2v2+𝑚2t2v2+𝑚2t2v2+𝑚2t2v2+𝑚2t2v2+𝑚2t2v2+𝑚2t2v2+𝑚2t2v2+𝑚2t2v2+𝑚2t2v2+𝑚2t2v2+𝑚2t2v2+𝑚2t2v2+𝑚2t2
s𝑒s𝑒s𝑒s𝑒s𝑒s𝑒s𝑒s𝑒s𝑒s𝑒s𝑒s𝑒s𝑒s𝑒s𝑒s𝑒s𝑒

Π𝑒Π𝑒Π𝑒Π𝑒Π𝑒Π𝑒Π𝑒Π𝑒Π𝑒Π𝑒Π𝑒Π𝑒Π𝑒Π𝑒Π𝑒Π𝑒Π𝑒
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Fig. 5. Parameterization of a panel boundary curve from a pair of tangent
directions t1, t2 corresponding to dual halfedges. The final boundary curve
(red) is computed by minimizing a linearized bending energy.

be very closely approximated by fitting the internal nodes of the
Bézier patch. Moreover, we need to regularize the fitting, because
for a given Bézier patch, it is possible to slide the inner control
points along its surface while the resulting geometry stays nearly
unchanged.

We denote the vertices of the target panel shape x𝑖 and the corre-
sponding vertex normals n𝑖 . For every x𝑖 , we find the closest points
y𝑖 on the Bézier surface and fix their coordinates in the parameter
domain. The fitting is then formulated as follows:

min
c𝑖 𝑗

(y𝑖 (c𝑖 𝑗 ) − x𝑖
)
· n𝑖

2
𝐴𝑖 +𝑤B

∑︁
𝑘

𝐸2
𝑘
(c𝑖 𝑗 ), 𝑖, 𝑗 ∈ {1, 2},

where 𝐴𝑖 are Voronoi cell areas per panel vertex, 𝐸𝑘 are the lengths
of all control mesh edges incident to the internal nodes, and𝑤B is
the regularizer weight that we set to 10−5. To achieve independence
of rigid transformations, we express the inner control points in an
orthonormal coordinate frame adapted to the boundary. The frame
has its origin at the barycenter of the four corner points. Using the
two unit diagonal vectors

g0 =
c33 − c00
∥c33 − c00∥

, g1 =
c30 − c03
∥c30 − c03∥

,

the 𝑥-axis and 𝑦-axis are parallel to the diagonal bisectors, g1 ± g0,
and the 𝑧-axis is parallel to b = g0 × g1, which we call the face
normal.

4.2 Compact representation
The panel boundary is used as an input to a neural network to
predict the shape and stress of the minimal energy glass panel(s)
conformal to that boundary. Thus, it is beneficial to reduce the input
to the essential parameters, eliminating rigid transformations of the
boundary geometry.
We consider d ∈ R6 to be the vector of the six pairwise squared

distances of vertices c𝑖 𝑗 , 𝑖, 𝑗 ∈ {0, 3}. Given d, we can recover two
valid mirror-symmetric embeddings of the 4 corner points. Assum-
ing that the order of the vertices is always such that

det(c03 − c00, c30 − c00, c33 − c00) ≥ 0

holds, the embedding is unique up to rigid transformations. We
assume such a vertex ordering from now on. The plane Π𝑒 for each
edge is then characterized by its oriented angle 𝛾𝑒 with the face
normal b. Finally, we define p ∈ R18 as the concatenation of the
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distance vector d, the 4 edge plane inclinations 𝛾𝑒 , and the 8 tangent
angles 𝜃 (2 per edge). The vector p is used as an input to the neural
network defined in Section 6.

5 PANEL SHAPE OPTIMIZATION
Ourmethod leveragesmechanical simulation to create a large dataset
of minimal energy panels that conform to cubic Bézier bound-
aries. Given some boundary curves, we are interested in finding
deformed glass configurations that are as developable as possible.
Non-developable panels result in high tangential forces that com-
plicate the installation of the panel and increase the chances of
breakage. By finding the pair of deformed and undeformed shapes
of the panel that minimize the strain energy subject to a fixed frame,
we ensure the work required for its installation is minimal, helping
to reduce the tangential force exerted at the boundary. This dataset
is used to train and test a model that predicts the deformed state
and maximum stress of such panels, which is suitable for rapid
failure detection and inverse design. In this section, we describe the
simulation method used for the computation of the deformed and
undeformed states of a minimal energy glass panel.

5.1 Continuous formulation
We aim to define a mechanical model that is sufficiently precise
to accurately predict glass stresses under small strains, but still
suitable for the fast simulation of a very large number of deforma-
tion samples. Consequently, we make some reasonable simplifying
assumptions in a similar way to Gingold et al. [2004]. We geomet-
rically represent a glass panel as a planar mid-surface extruded in
two opposite normal directions by a magnitude ℎ/2, where the total
thickness ℎ is much smaller than the minimal radius of curvature of
the reference boundary frame. We assume the lines normal to the
mid-surface always remain straight and do not undergo any stretch-
ing or compression. Under a linearity assumption, the following
expression for the volumetrically defined Green’s strain tensor E
with offset 𝑧 in the normal direction can be derived:

E(x, x̄, 𝑧) = Ē(x, x̄) + 𝑧Ê(x, x̄). (1)

Here, x and x̄ are, respectively, the deformed and undeformed con-
figurations of the mid-surface, and Ê is the quadratic bending strain,
equivalent to the shape operator of the deformed mid-surface. The
membrane strain Ē = 0.5(F𝑇 F − I) is the in-plane Green’s strain
tensor defined in terms of the deformation gradient F. We refer to
Gingold et al. [2004] for a detailed explanation of the continuous
formulation. We will focus on our discrete formulation, which has
been previously considered by Weischedel [2012].

5.2 Discrete formulation
We discretize glass panels using a triangulated surface mesh with
𝑁 nodes and𝑀 edges. We separately consider the membrane and
bending strains from Equation (1) and define two corresponding
mid-surface energy densities integrated over the panel thickness.

5.2.1 Membrane energy density. To discretize membrane strain,
we assume piecewise constant strains over FEM elements. In this

0 MPa > 65

Fig. 6. A comparison between the stress distribution produced with the
typical shape operator used in, e.g., [Pfaff et al. 2014] (left), and ours, as
suggested in [Grinspun et al. 2006] (right). The latter is much smoother and
results in a more reliable estimation of the maximal stress.

context, in-plane Green’s strain is computed as follows:

Ē =
1

16𝐴2

3∑︁
𝑖

𝑠𝑖 (t𝑗 ⊗ t𝑘 + t𝑘 ⊗ t𝑗 ), (2)

where 𝐴 is the triangle area, 𝑠𝑖 = 𝑙2𝑖 − 𝑙2
𝑖
(𝑖’th edge strain), t𝑗 and t𝑘

are the two other edge vectors rotated by −𝜋/2. For computing the
corresponding membrane energy density integrated over the panel
thickness, we adopt the Saint Venant-Kirchhoff model:

�̄� = ℎ

(𝜆
2
(
Tr Ē

)2 + 𝜇 Tr
(
Ē2) ), (3)

where 𝜆 and 𝜇 are, respectively, first and second Lamé parameters.

5.2.2 Bending energy density. The bending strain is directly de-
fined as the geometric shape operator of the continuous surface.
We compute a discrete approximation of the shape operator using
the triangle-based discretization suggested in Grinspun et al. [2006],
which faithfully estimates bending strain regardless of the irregu-
larity of the underlying triangle mesh. In addition to mesh nodes,
this metric considers additional DoFs per edge by defining the devi-
ation of the mid-edge normals from the adjacent triangle-averaged
direction:

Ê =

3∑︁
𝑖

𝜃𝑖/2 + 𝜙𝑖
𝐴𝑙𝑖

(t𝑖 ⊗ t𝑖 ). (4)

Here, 𝜃𝑖 is a dihedral angle associated with the edge 𝑖 and 𝜙𝑖 is the
deviation of the mid-edge normal toward the neighbor triangles
normals. Overall, the discrete deformed state of the glass panel
is defined with a vector x ∈ R3𝑁+𝑀 . We denote the correspond-
ing undeformed configuration x̄. The bending energy density inte-
grated over the panel thickness is then defined by the Koiter’s shell
model [1966]:

�̂� =
𝜇ℎ3

12

( 𝜆

𝜆 + 2𝜇
(
Tr Ê

)2 + Tr
(
Ê2) ) . (5)

Contrary to the simpler thin shell bending models commonly used
in computer graphics [Pfaff et al. 2014], the discrete shape opera-
tor suggested in [Grinspun et al. 2006] more faithfully captures
principal strain curves and outputs smoother stress distributions
(Figure 6). In the next section, we will describe how we find the
minimal energy configuration corresponding to some given Bézier
boundaries.
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5.3 Minimal energy panels
Given a parametric design of a façade composed of a quadrangular
mesh with Bézier curves at the edges, we aim to find a suitable pan-
elization using cold bent glass. Although deforming a glass panel to
conform to cubic boundaries is feasible, the fragility of this material
imposes non-trivial constraints on the maximum amount of stress
tolerated by the panels. Thus, we designed a method to compute the
glass panel design with the lowest possible strain energy that still
will fit our installation constraints. Note that in practice, the existing
assembly methods do not preserve normals across neighboring pan-
els; thus, we restrict our problem to guarantee only 𝐶0 continuity.
By computing the fabricable panel with the lowest possible total
strain energy, we minimize the net work required to install the panel
and notably reduce the local tangential stress suffered by the glass.

Overall, our pipeline takes as an input the 16 control points of the
Bézier boundaries and automatically computes both the deformed
x and undeformed x̄ configurations of a planar glass panel that
conforms to the boundary and has minimal energy. This is done in
two steps.

5.3.1 Initialization. At first, we generate a regular mesh that uni-
formly discretizes the parameter domain of the surface (a unit
square) and lift the vertices to an initial Bézier patch defined by the
boundaries. In our pipeline, such a patch can be obtained in two
ways:

• Generated by our prediction model, when shape optimization
is used to enrich the database or to compute the undeformed
shape of the final design panels.

• Initialized as a surface patch with zero twist vectors at the
corners (a quad control mesh has parallelograms as corner
faces) when shape optimization is used to build the initial
database.

The lifted mesh is conformally flattened with minimal distortion.
We uniformly resample the boundary of this mesh targeting a total
number of edges 𝑀b and triangulate the interior using Delaunay
triangulation with the bounded maximal triangle area. Finally, the
vertices of this mesh are mapped back to the parameter domain
and lifted to the initial Bézier patch. As a result, we obtain an ini-
tial configuration for a deformed glass panel conforming to Bézier
boundaries and its corresponding undeformed configuration.

5.3.2 Minimization. The initial solution is not in static equilibrium
and has arbitrarily high stresses. We compute the minimal energy
configuration by minimizing the discrete strain energies defined in
Equations 3 and 5 over deformed x and undeformed x̄ configurations.

Fig. 7. Comparison between two alternative stable equilibria for a given
Bézier boundary. The two resulting panels produce radically different Gauss
maps (right), leading to very distinguishable reflection effects.

We refer to the vector of all the deformed nodes at the boundary
and the internal nodes as b and i, respectively. To reduce the com-
plexity of the problem and keep a high-quality triangulation of the
undeformed configuration, we assume internal nodes at the rest
configuration ī are computed through Laplacian smoothing of the
boundary vertices ī = Lb̄. Then, the aforementioned minimization
problem results in the following:

min
i,𝜙,b̄

𝑊 (x, 𝜙, b̄) + 𝑅(b̄), (6)

where𝑊 is the sum of all strain energy terms, 𝜙 are the mid-edge
normal deviations, and 𝑅 is a regularization term removing the
null space due to the translation and rotation of the undeformed
configuration. In particular, it is formulated as a soft constraint: the
centroid of the boundary nodes is fixed to the origin, and one of the
nodes has a fixed angle with the x-axis. Note that we only consider
undeformed boundary nodes b̄ as DoFs of the optimization; after
each solver iteration, we project the internal nodes’ coordinates ī
through Laplacian smoothing. In addition, the boundary nodes of
the deformed configuration remain fixed and conforming to Bézier
boundaries.
As can be seen in Figure 7, minimizing Equation 6 does not al-

ways produce a unique solution. For a given boundary, glass panels
can potentially adopt multiple stable equilibria corresponding to
locally optimal shapes that depend on the initialization of the prob-
lem. Although for some boundary curves there is a clearly preferred
shape that is more energetically stable than the rest, in other cases,
several stable equilibria are valid solutions that might be practi-
cally used in a feasible panelization. Furthermore, the maximum
stress levels differ a lot between stable configurations. Multistability
imposes two challenges for building a data-driven model of glass
panel mechanics. First, we do not know in advance the number of
local minima that exist for a given boundary nor how energetically
stable these configurations are in practice; second, we do not know
how to initialize the minimization problem to obtain such solutions.
Both challenges motivated the use of a MDN as a regressor for the
shape and corresponding stress of the glass panels. In Section 6, we
describe our regression model and the methodology we followed to
enrich the database by discovering new stable equilibria through
an iterative process.

5.4 Failure criterion
To estimate whether the panel is going to break, we compute the
maximal engineering stress across all the elements of the discretiza-
tion. We estimate the stress of an element by computing the first
Piola-Kirchhoff stress tensor P = FS. Here, F is the deformation
gradient of the element, and S is the corresponding second Piola-
Kirchhoff stress tensor. In a similar fashion to Pfaff et al. [2014],
we compute the total stress of a panel using our estimation of the
combined bending and membrane strain introduced in Equation 1:

S
(
E(Ē, Ê, 𝑧)

)
= 𝜆 Tr(E)I + 2𝜇E. (7)

The maximal engineering stress is then evaluated as the maxi-
mum absolute singular value of P across all elements. That is, for
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each element, we compute S
(
E(Ē, Ê,±ℎ/2)

)
, where the bending con-

tribution to the stress is at its maximum, and pick the highest ab-
solute singular value. The global maximal stress value is generally
at most 𝐶0-continuous with respect to the panel boundary curves,
which makes its direct usage in a continuous optimization undesired.
Instead, we compute an 𝐿𝑝 -norm of maximal principal stress per
element. In practice, we found that 𝑝 = 12 suffices. We denote the
resulting value 𝜎 and refer to it as the “maximal stress” for brevity.
Taking our assumptions, it is important to note that neither the

overall shape nor the maximal stress value changes for a given panel
under uniform scaling. This implies that only the ratio of the thin
shell dimensions and the panel thickness matters. For simplicity,
we choose 1 mm as our canonical thickness for the simulations
and scale the obtained results accordingly for every other target
thickness.

6 DATA-DRIVEN MODEL
We require a model that can efficiently predict the shape and stress
of the minimum-energy panels for a given boundary. The simulation
described in Section 5 calculates these quantities, but is too slow
to incorporate in an interactive design tool. Our data-driven model
aims to predict the deformed shape and corresponding maximum
stress of the panels more efficiently. Moreover, we use it to calculate
the derivatives with respect to the input boundary, which is required
for gradient-based design optimization.

Therefore, we use a statistical model that maps panel boundaries
to the shapes and stresses of minimal-energy conforming cold bent
glass surfaces. Section 6.1 describes the model and training process.
The training requires a large dataset of boundaries and the resulting
panel shapes and stresses; in Section 6.2, we describe the space of
boundaries we sample from and how the shape optimization and
stress computation of Section 5 is applied to them. To improve the
results further, we augment the dataset to better cover the regions of
the input space where the predictions do not match the training data
because of multistability of the glass panels (Section 6.3) and retrain
the model on this enriched dataset. We will release our dataset and
pretrained model publicly.

6.1 Multi-modal regression model
Our prediction model takes as an input a vector p ∈ R18 repre-
senting a panel boundary. As noted in Section 5.3, several different
surfaces may conform to a given boundary, corresponding to differ-
ent local minima of the strain energy. Therefore, predicting a single
output yields poor results, typically the average over possible shapes.
Instead, we use a mixture density network (MDN)—a neural network
model with an explicitly multi-modal output distribution [Bishop
2006]. For a given boundary, each mode of this distribution should
correspond to a different conforming surface.

Whereas training a neural network to minimize the mean squared
error is equivalent to maximizing the data likelihood under a Gauss-
ian output distribution, an MDN instead maximizes the likelihood
under a Gaussian mixture model (GMM) parameterized by the net-
work. Therefore, it must output the means and variances of a fixed
number 𝐾 of mixture components, as well as a vector �̂� of compo-
nent probabilities. In the rest of the paper, all variables with hats
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Fig. 8. Architecture of our data-driven model. The input is a panel boundary
p; the model predicts means 𝜻𝑘 , variances 𝝃𝑘 , and component weights �̂�
for a two-component Gaussian mixture over the shape and stress of the
minimal-energy surface. The numbers in dense layers indicate the number
of output units.

denote predictions from our data-driven model, as opposed to values
from the physical simulation. In our model, each component is a (12
+ 1)-dimensional Gaussian with diagonal covariance, corresponding
to the four interior control points of the shape, c𝑖 𝑗 ∈ R3, 𝑖, 𝑗 ∈ {1, 2},
and stress, 𝜎 , of one possible conforming surface. We denote the
mean of the concatenated shape and stress of the 𝑘th mixture com-
ponent by 𝜻𝑘 and the variance by 𝝃𝑘 ; both are output by the neural
network and hence depend on the input boundary p and network
weights w.

6.1.1 Model architecture. We use a densely connected model with
six layers of 512 exponential linear units (ELU) [Clevert et al. 2015],
with residual connections [He et al. 2016] and layer-normalization [Ba
et al. 2016] at each hidden layer (Figure 8). We trained tens of models
using combinations of these hyperparameters’ values and selected
the one that performed the best on the held-out validation set. In
simulation, we observed that a given boundary could potentially
admit more than two stable states. However, these cases were ex-
tremely rare; therefore, we set 𝐾 = 2. This suffices for capturing the
vast majority of stable states observed in our dataset, resulting in a
low validation error. Hence, the output layer has 54 units, with no
activation for the means 𝜻𝑘 , exponential activation for the variances
𝝃𝑘 , and a softmax taken over the mixing probabilities �̂� .

6.1.2 Model training. Themodel is trained tominimize the negative
log-likelihood of a training set T under the GMM:

L (T; w) = −
∑︁

(p,𝜻 )∈T
log


𝐾∑︁
𝑘=1

𝜋𝑘 (p; w) N
(
𝜻
�� 𝜻𝑘 (p; w), 𝝃𝑘 (p; w)

)
(8)

where 𝜻 is a true output for panel p, i.e. the concatenation of shape
and stress from one simulation run, and N represents a diago-
nal Gaussian density. We also add an L2 regularization term with
strength 10−4 on the weights w, to discourage over-fitting.
We use the stochastic gradient method Adam [Kingma and Ba

2014] to minimize the above loss function with respect to the net-
work weights w. We use a batch size of 2048, learning rate of 10−4,
and early stopping on a validation set with patience of 400 epochs.
We select the best model in terms of the validation loss obtained
during the training process. A single epoch takes approximately
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30 seconds on a single NVIDIA Titan X graphics card, and in total,
training takes around 20 hours.

6.1.3 Model output. For brevity, in the remainder of the paper, for
a given panel boundary p and for a possible state 𝑘 ∈ {1, 2}, we
write:

• Ŝ𝑘p : [0, 1]2 → R3 for the Bézier surface patch that is defined
by the boundary p and the predicted interior control nodes
from the mean of the 𝑘th component (i.e., the leading 12
elements of 𝜻𝑘 ).

• �̂�𝑘p for the stress value (i.e., the last element of 𝜻𝑘 ).
• 𝜋𝑘p for the 𝑘th component probability 𝜋𝑘 (p; w).

Furthermore, we write Ŝp and �̂�p (i.e., without the 𝑘 superscript)
to refer to the best prediction for boundary p, which is determined
by two factors:

(1) if any of the component probabilities 𝜋𝑘p is greater than
95%, we discard the alternative and define the corresponding
shape/stress prediction as best, or

(2) otherwise, we consider both components as valid, and the
best one is determined depending on the application, either
as the lower stress, the smoother shape, or the closer shape
to a reference surface.

We discard components with 𝜋𝑘p < 0.05 since the modes with a near-
zero probability imply a low level of confidence in the corresponding
prediction.

6.2 Dataset construction
To train our prediction model, we require a dataset of boundaries
that is representative of our target application. These are then paired
with the shapes and stresses of the conforming surfaces with min-
imal energy. Recall from Section 4 that a panel boundary may be
parameterized invariantly to rigid transformations by corner pair-
wise squared-distances 𝒅, edge-plane inclinations 𝜸 , and halfedge
tangent directions 𝜽 . We generate boundaries by sampling these
parameters from the ranges and distributions described in Appen-
dix A. Note that the physical model for the deformed shape and
stress is invariant under the scaling of all geometric magnitudes;
we choose our sampling ranges so that it would be possible to scale
the results to panel length-to-thickness ratios commonly used in
cold bent glass façades (e.g., 150–600). By applying the shape op-
timization described in Section 5 to these boundaries, we obtain
fine discrete meshes representing the deformed cold bent panels.
We obtain a Bézier representation of such panels by keeping the
sampled boundaries and fitting interior control points to match
the simulated surface using the method described in Section 4.1.2.
Plus, in our representation, any non-flat panel geometry can be
equivalently represented in four alternative ways, depending on
vertex indexing, and can be mirrored. Therefore, we transform each
simulated panel into eight samples by permuting the vertex indexes
and adding their mirror-symmetric representations.
In total, we simulated approximately 1.5 million panels, which

corresponds to 12 million samples after vertex permutations and
adding mirror-symmetric panels. We reserved 10% of these samples
as a validation set for tuning the optimization hyperparameters

and network architecture. To acquire such large amounts of data
requiring massive computations, we employed cloud computing.

6.3 Dataset enrichment
When a given boundary has multiple conforming panels, the physi-
cal simulation returns only one of these determined by the twist-
free Bézier patch initialization. Conversely, our data-driven model
always predicts𝐾 = 2 states, though one may have a very small mix-
ture weight 𝜋𝑘 , indicating it is unlikely to be a valid optimal panel.
We observed that after training, the model often predicts shapes
for boundaries in its training set that differ from those returned
by the simulation—however, re-simulating these boundaries with
a different initialization recovers a solution close to that predicted
by the data-driven model. This observation suggests a method to
extend the dataset with new samples to improve prediction error.

Specifically, we use the prediction from the model as an initializa-
tion for the simulator, which is then likely to converge to a stable
surface that was not reached from the default initialization. The
resulting surface can be added to the training set, so after retrain-
ing, the model will give an even more accurate prediction in the
same region of parameter space. We apply the data-driven model
to every panel in the training set, and collect the predicted shapes
𝑆𝑘p , 𝑘 ∈ {1, 2}, where 𝜋𝑘 > 5%. For each of these, we calculate the
maximum deviation of the internal control nodes along any dimen-
sion, from the true shape in the training set. We then retain the 200k
panels (∼15% of the original training set) for which this deviation is
the largest. For each such boundary, we re-run the simulation, using
the predicted shape 𝑆𝑘p as the initialization. Finally, we select all
panels which have at least 2 mm difference along any dimension of
any internal control node compared to the panel obtained originally
and add these to the training set. The resulting, enriched training
set is used to retrain the model.

7 INTERACTIVE DESIGN
In this section, we show how we arrive at a practical interactive
design tool for freeform surface panelization using cold bent glass
panels. We aim to produce a tool compatible with the standard
design workflow of an architectural designer. At every moment
during the editing process, the user gets immediate feedback on
the physical properties of the panelization (i.e., shape and stress
predictions for the panels). Upon request, an automated process
running at interactive rates uses an optimization to “guide” the
design. Figures 1 and 9 show two different doubly curved glass
surfaces that have been interactively designed from scratch using
our tool. Although it is generally desired to create designs free from
breaking panels, in a real project, one might like to assume the
cost of hot-bending a small proportion of the panels. Therefore,
there is a practical trade-off between the smoothness and aesthetics
of a design and its manufacturability. We consider this option by
explicitly weighting various design criteria in the formulation of
our inverse design problem.

7.1 Optimization formulation
Depending on the specific application domain, the desired properties
might vary. This translates into the minimization of a composite
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0 MPa > 65

b

a

Fig. 9. An initial design includes panels exceeding stress limits (left, a). It is optimized for stress-reduction (left, b) and rendered (center). Right: a different
façade designed with our tool.

target functional E:

E = 𝑤𝜎E𝜎 +𝑤sEs +𝑤fEf +𝑤pEp +𝑤cEc . (9)

Overall, the total energy E depends on the vertex positions v ∈ 𝑉 ,
the edge plane vectors s𝑒 defining the plane Π𝑒 associated with 𝑒 ,
the tangent angles 𝜃𝑖 , and some auxiliary variables associated with
inequality constraints. Each weighted contribution to E represents
a desired property of the final design, which we discuss in detail in
the following sections.

7.1.1 Panel stress E𝜎 . The most important property is the manu-
facturability of the final design. Failure in a specific type of glass
is modeled by estimating the maximal stress present in the glass
panel and comparing it to the maximum allowed stress value.

The MDN from Section 6 acts as a stress estimator. We constrain
the predicted stress value �̂�p for a given boundary p to be less than
a stress bound 𝜎max. We assign 𝜎max to a value lower than the stress
value at which failure occurs, taking into account a safety factor and
the estimator error. The inequality constraints �̂�p ≤ 𝜎max are con-
verted to equality constraints by introducing an auxiliary variable
𝑢p ∈ R per panel boundary p, and formulating the manufacturability
energy as

E𝜎 =
∑︁

p
(�̂�p − 𝜎max + 𝑢2

p)2 . (10)

Figure 13 shows the effect of limiting the maximum stress of the
design for a section of the façade of the Lilium Tower.

7.1.2 Smoothness Es. Here, we collect some terms in the final objec-
tive function that aim in variousways to obtain as smooth as possible
panelizations. As shown in Figure 11, this is essential for achiev-
ing the stunning look of curved glass façades because it greatly
affects the reflection pattern. The smoothness term is the sum of
two individual functionals, i.e. Es = E1 + E2.

Kink angle smoothing E1. It is generally not possible to get smooth
connections along the common boundary curves of panels, but we
can try to minimize the kink angle. For each pair of faces 𝑓𝑖 , 𝑓𝑗
sharing a common edge 𝑒 , we consider their respective predicted
panels Ŝ𝑖 , Ŝ𝑗 and minimize the angle between their surface normals
n𝑖 , n𝑗 evaluated at the parameter 𝑡 = 0.5 of the shared curve

E1 = 0.1
∑︁
𝑒∈𝐸𝐼

(1 − n𝑖 · n𝑗 )2, (11)

0 MPa > 65

a b

Fig. 10. Optimization of the NHHQ skyscraper design (Zaha Hadid Archi-
tects). We first optimize for smoothness of the overall design, and then
optimize selected high stress areas for stress reduction. (a) Stress on panels
computed on the original shape and panel layout. Red panels exceed the
threshold of 65 MPa. (b) Stress on panels after optimization. The inset shows
an area with clearly visible shape change. We decrease the number of panels
exceeding 65 MPa from 1517 to 874.

where 𝐸𝐼 is the set of interior edges of M, and 0.1 is a suitable
importance weight within the smoothness term. Note that Ŝ𝑖 , Ŝ𝑗
are shape predictions for the respective boundary curves of the two
faces 𝑓𝑖 , 𝑓𝑗 . Thus, optimization involves computing the Jacobian of
the MDN output w.r.t. the input boundaries. Figure 12 shows the
effect of including the kink smoothing term in the design of the
NHHQ façade.

Fig. 11. Effect of optimization on visual smoothness. On the left, a selection
of cold bent panels computed on a given layout. On the right, the same
panels after optimization of the layout for the kink angle and bending stress
reduction.
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0◦ kink > 35◦

a b

Fig. 12. Comparison of the kink angle between panels in the NHHQ model,
before (a) and after (b) running our design optimization algorithm. As a
result, the mean kink angle is lowered from 3.7◦ to 2.7◦, while the maximum
is reduced from 60.9◦ to 36.0◦.

Curve network smoothing E2. Each edge in the dominant mesh poly-
lines of M determines a cubic patch boundary curve, and the se-
quence of these curves should also be as smooth as possible. At each
connection of two edges, the corresponding tangents should agree,
and thus, the inwards directed unit tangent vectors satisfy t𝑖 = −t𝑗 ,
or equivalently t𝑖 · t𝑗 + 1 = 0. This tangent continuity constraint
explains the first part in the smoothness term

E2 =
∑︁

(t𝑖 · t𝑗 + 1)2 +
∑︁ [

s𝑒 · (n𝑖 + n𝑖+1)
]2
. (12)

The second part concerns the planes Π𝑒 . We consider an edge 𝑒 with
endpoints v𝑖 , v𝑖+1. The discrete osculating plane at v𝑖 is spanned by
(v𝑖−1, v𝑖 , v𝑖+1) and has a unit normal n𝑖 . Likewise, (v𝑖 , v𝑖+1, v𝑖+2)
defines a discrete osculating planewith normal n𝑖+1 at v𝑖+1. Wewant
Π𝑒 to be the bisecting plane between these two, i.e. s𝑒 · (n𝑖+n𝑖+1) = 0.
Of course, the sums are taken over all occurrences of the described
situations.

Finally, in practice, a few other parts are added to the smoothness
term Es, which concern special cases. At combinatorially singular
vertices ofM, we constrain the tangent vectors to lie in a tangent
plane. Plus, there are various symmetry considerations that are used
at the boundary, but those could easily be replaced by other terms
with a similar effect.

7.1.3 Mesh fairness Ef. So far, we have dealt with the smoothness of
the panelization to a given meshM. Because we also allow the mesh
M to change during the design, we need to care about its fairness.
This is done in the standard way using second-order differences of
consecutive vertices along dominant mesh polylines,

Ef =
∑︁

(v𝑖−1 − 2v𝑖 + v𝑖+1)2 . (13)

7.1.4 Proximity to reference mesh Ep. When designing a paneliza-
tion for a given reference geometry, it is not sufficient to have the
mesh M. One will usually have a finer mesh Mref describing the
reference geometry (Figure 4). To let M change but stay close to
the reference surface, we need a term that allows for the gliding of
M alongMref. This is done in a familiar way: to let a vertex vi stay
close toMref, we consider its closest point v∗

𝑖
onMref and the unit

surface normal n∗
𝑖
at v∗

𝑖
. In the next iteration, vi shall stay close to

0 MPa > 65

a b c

Fig. 13. Optimization of the Lilium Tower (model by Zaha Hadid Architects)
for different target properties. (a) Stress values for the initial panel layout.
(b) Optimizing the design only for stress reduction and proximity to the
original design leads to more panels within the stress threshold, but also
to a non-smooth curve network. (c) Allowing the design to deviate from
the input and including fairness, produces a smoother result with reduced
stress. Number of panels exceeding 65 MPa is, respectively, 293, 131, and
225.

the tangent plane at v∗
𝑖
, which is expressed via

Ep =
∑︁

v𝑖 ∈𝑉

[
(vi − v∗𝑖 ) · n∗𝑖

]2
. (14)

7.1.5 Design space constraints Ec. Since we want the neural net-
work to produce reliable estimates, we need to ensure the panel
boundary curves remain within the range used for training (Sec-
tion 6.2). This is achieved as the sum of two constraint function-
als Ec = E3 + E4. First, we constrain the tangent angles to |𝜃𝑖 | =
∠(t𝑖 , e𝑖 ) ≤ 4.9◦ for all angles 𝜃𝑖 of halfedges e𝑖 with tangent vectors
t𝑖 . We again convert the inequality constraints to equality con-
straints by introducing auxiliary variables 𝑢𝑖 ,

E3 =
∑︁

(𝜃2
𝑖 − (4.9◦)2 + 𝑢2

𝑖 )
2 . (15)

Second, we are working under the assumption that the vectors s𝑒
are unitary and orthogonal to their respective edges 𝑒 , which results
in

E4 =
∑︁
𝑒

[(s𝑒 · e)2 + (s2
𝑒 − 1)2] . (16)

7.2 Optimization solution
The minimization of E results in a nonlinear least-squares problem
that we solve using a standard Gauss-Newton method. The deriva-
tives are computed analytically, and, since each distinct term of E
has local support, the linear system to be solved at each iteration is
sparse. We employ Levenberg-Marquardt regularization and sparse
Cholesky factorization using the TAUCS library [Toledo 2003].

7.2.1 Initialization. The edge plane vector s𝑒 of an edge 𝑒 is ini-
tialized so that Π𝑒 is the bisecting plane of two discrete osculating
planes, as in the explanation for Equation (12). The angles 𝜃𝑖 are
initialized so that they are at most 5◦ and so that the tangents lie as
close as possible to the estimated tangent planes of the reference
geometry. After initializing all other variables and computing an
estimated stress value per face panel, the auxiliary variables are
initialized such that they add up to the inequality constraint bound
or zero otherwise (i.e., the inequality constraint is not satisfied). The
shape Sp of each panel is initialized with the MDN prediction using
the initial boundary parameters p. In case there are two possible
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shapes, we use the one that provides the best solution considering
application-dependent criteria (e.g., stress reduction). When looking
for the smoothest fit, we pick the one minimizing

∑(1 − n𝑖 · n𝑒 )2,
i.e., a measure of angle deviation between each edge normal (sum
of two adjacent face normals orthonormalized to e) and the surface
normal n𝑖 evaluated at the parameter 𝑡 = 0.5 of the edge curve.

7.2.2 Optimization weights. The weights associated with the target
functional E act as handles for the designer to guide the output
of the optimization toward the desired result. We do not opt for a
fixed weight configuration because the ideal balance is not uniquely
defined, but is instead governed by project-dependent factors such
as budget and design ambition.

In all our experiments, we found it sufficient to assign the weights
either to zero or to the values 10{−2,−1,0} . Figure 13 shows one ex-
ample of the different effects possible when changing the property
importance. In practice, and as a rule of thumb for a standard opti-
mization where we prioritize stress reduction and smooth panels
(in that order), we use weight values𝑤𝜎 = 1,𝑤s = 𝑤c = 10−2, and
𝑤p = 𝑤 𝑓 = 10−1. We also reduce the fairness importance at the 𝑖-th
optimization iteration by scaling its weight by 0.9𝑖 .

8 RESULTS

8.1 Experimental validation
We experimentally validated our simulation results and design work-
flow. For practical reasons, the experiments were done at a small
scale using borosilicate thin glass of about 180 × 130 mm2 and
0.35 mm thickness.
For the validation of the simulation results (see Figure 15), high

precision frames were machined from cast aluminum. The glass
panel is pressed down on a 2 mm wide smooth support frame by a
dense array of stainless steel finger springs which are cushioned by
0.5 mm polytetrafluoroethylene (PTFE). The support frame matches
a thin boundary strip of the simulated glass panel. To test the ac-
curacy of the predicted shape, we selected and 3D-scanned a panel
with a high estimated maximal stress (98 MPa), which is beyond our
safety limit but still manufacturable (see Figure 15). The obtained

Fig. 14. Realization of a doubly curved surface using 3x3 cold bent panels.

surface was registered to the output of our shape optimization rou-
tine, and we observed a worst-case deviation of 0.12 mm. Note that
we registered an offset surface from the optimal mid-surface to
account for the glass thickness.
The frames for the design model created with our tool are illus-

trated in Figure 14 and were built from laser cut and welded 1.2 mm
thick stainless steel sheet metal. The glass, which is cushioned by
tape, is pressed down on to the frame by L-shaped stainless steel
fixtures spot welded to the frame. The presented design model is
negatively curved and consists of nine individual panels, each about
200 × 170 mm2 in size. The expected stress levels range from 20 to
62 MPa. As predicted, all panels are fabricable and intact.
During bending, our panels usually do not need to go through

more extreme deformations than the final one, meaning that we
do not expect higher stresses while bending. Because normally
panels have a dominant bending direction, we observed that it
is possible to “roll” the glass onto the frame accordingly during
assembly. Clamping the glass to the frame fixes the normals at the
boundary, which makes one of the alternative shapes preferable.

8.2 Validation of data-driven model
Our data-driven model (Section 6) must reproduce the output of the
physical simulation model efficiently and accurately. To evaluate its
accuracy, we generate a test set of 10K panel boundaries and use the
data-driven model to predict the conforming surfaces. We consider
only admissible surfaces, i.e. those with a predicted probability of at
least 5%. The surface predictions are used to initialize our physical
shape optimization routine to obtain the true shape and stress values
for a comparison. In the resulting test set, the mean maximal stress
value is 83 MPa, and the standard deviation is 52 MPa with 57% of
panels having a maximal stress value above the threshold.

We evaluate the shape prediction on panels with maximal stress
below 65 MPa, which results in a mean average error (MAE) of
∼0.5 mm. Note that this is significantly less than the assumed 1 mm
thickness of the glass. We evaluate stress on panels whose true
maximal stress is in the range 50–65MPa (our region of interest); our
predictions have MAE of ∼2.9 MPa. Moreover, the 67th percentile
error is 2.5 MPa, and the 88th percentile error is 5 MPa. In addition,
we evaluate how often our model correctly predicts whether or not
the actual maximal stress value (in contrast to the 𝐿𝑝 -norm) exceeds
the 65 MPa threshold. From our test set, we obtained below 1% of
false negatives (when the model incorrectly predicts the panel is
feasible) and 15% of false positives.

8.3 Applications
From a manufacturing point of view, the simplest solution to clad
architectural surfaces is the use of planar panels. However, this
simplification sacrifices the visual smoothness of the surface. More-
over, planar panels impose a restriction on the panels layout, and
in negatively curved areas, there is often no other choice than to
follow the principal curvature directions of the surface. On the other
hand, a panelization with doubly curved panels is often prohibitive
because of the high production cost of custom molds. Cold bent
glass can be then a suitable solution. In Figure 3, we compare the
visual appearance of the smoothest possible panelization achievable
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0 mm 0.12

Fig. 15. A doubly curved panel of a thickness of 0.35 mm with off-plane corner deviation of 6.9 mm. A white coating has been applied to it for 3D-scanning.
Right: deviation from the simulation by at most 0.12 mm.

with planar panels with a cold bent one, while in Figure 16, we show
a panelization layout that is mostly feasible with cold bent glass,
but not with planar panels. In the following, we illustrate how users
can employ our workflow for architectural panelization and design.

8.3.1 Façade panelization. In this case, the input is a quadrilateral
mesh that encodes both the design shape and the panel layout.
Once the edges of the input mesh are smoothed via cubic Bézier
curves, we can predict the panels’ shapes and stresses. Those panels
exceeding the failure criterion shall be realized with custom molds.
At this point, the user can optimize the shape for the reduction of
stress and kinks between panels, and tune the weights described
in Section 7.2 for choosing an appropriate compromise between
fidelity with the original shape, number of custom molds needed,
and visual smoothness (see Figures 10, 12, and 13). To show cold bent
glass’ capabilities in façade panelization, we tested this workflow
on the challenging NHHQ and Lilium Tower models by Zaha Hadid
Architects, which were never realized. The initial quadrangulations
for these two designs are planar quad meshes which were created
by the architect. The results are shown in Figure 17.

8.3.2 Façade design. Besides the panelization of a given shape, our
workflow is verywell suited as an interactive design tool. In this case,
the user can interactively modify the quad mesh that represents
the panel layout and gets immediate feedback on which panels
can be produced with cold bent glass, while exploring different

0 MPa > 65

a b

Fig. 16. Bent glass capabilities. (a) A quadrilateral mesh where the red faces
exceed a deviation of a planarity of 0.02 (measured as the distance between
the diagonals divided by average edge length) and, therefore, not suitable
for a flat glass panelization. (b) A cold bent panelization with corresponding
face stresses. The stress values for the six central panels have been computed
via simulation because they were outside theMDN input domain. According
to a stress limit of 65 MPa, most of the panels optimized are feasible. The
resulting cold bent panelization is shown in Figure 17.

designs. Initial values are computed as in 7.2.1 and we use the mesh
vertex normals for the estimated tangent planes at the vertices.
The estimation times are compatible with an interactive design
session. Once the user is satisfied with a first approximate result, the
panelization can be further optimized, as described in Section 8.3.1,
to improve the smoothness and reduce panel stresses. In this step,
we can further reduce the number of panels that are not feasible for
cold bending. Figures 1, 9, and 16 show some sample architectures
designed with this procedure. Furthermore, the accompanying video
demonstrates the interactive feedback capabilities of our system
for efficient form finding and exploration of the constrained design
space while keeping the designer in the loop.
All interactive design sessions were performed on an Intel®

Core™ i7-6700HQCPU at 2.60GHz andNVIDIAGeForce GTX 960M.
The MDN is implemented in TensorFlow 2.1 and is run on the GPU.
For 1K panels, the prediction time is 0.1 seconds while the opti-
mization averages 3 seconds per iteration. We usually deal with less
panels because we target the selected high-stress areas of the overall
design. A total of 10–20 iterations are enough for the desired results.
In comparison, our shape optimization, as described in Section 5,
implemented in C++ and using the IPopt optimization library with
code-generated derivatives takes around 35 seconds on average for
a single panel with ∼ 103 elements. Note that this routine is not fully
optimized for speed because it is not required during the interactive
phase but mainly used for acquiring training data.

9 DISCUSSION AND CONCLUSION
Wehave introduced an interactive, data-driven approach formaterial-
aware form finding of cold bent glass façades. It can be seamlessly
integrated into a typical architectural design pipeline, allows non-
expert users to interactively edit a parametric surface while pro-
viding real-time feedback on the deformed shape and maximum
stress of cold bent glass panels, and it can automatically optimize
façades for fairness criteria while maximal stresses are kept within
glass limits. Our method is based on a deep neural network archi-
tecture and multi-modal regression model. By coupling geometric
design and fabrication-aware design, we believe our system will
provide a novel and practical workflow, allowing to efficiently find a
compromise between economic, aesthetic, and engineering aspects.

Identifying such a compromise usually involves multiple compet-
ing design goals. Although we have demonstrated the applicability
of our system for several design criteria, it would be interesting
to extend the design workflow by adding capabilities, for example,
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Fig. 17. Dominant cold bent glass realizations of the NHHQ model (left). The Lilium Tower (center) after optimization for smoothness and stress reduction.
The surface from Figure 16 as an architectural design (right). Panels exceeding the maximum stress (check Figures 10, 13, 16) are realized with hot bending.

for strictly local edits, marking some panels as a priori hot bent
or specifying kink edges. Because of our differentiable network ar-
chitecture, in theory, it should be trivial to incorporate additional
criteria into our optimization target functional or even employ a
different numerical optimization algorithm if desired.
Similar to all data-driven techniques, we should only expect ac-

curate predictions from our network if similar training data was
available. Surprisingly, we noted that we were able to discover stable
states that we initially did not find with the traditional optimization
approach, and used these to enrich our database. Each boundary
in the training set is associated with a single stable surface output
by the simulator. Nevertheless, the network may correctly predict
the existence of a second stable state for that boundary, because its
predictions implicitly incorporate information from similar panels
in the training set, where the second state is seen. However, we can-
not guarantee that our database contains all relevant stable states
and that all of them will be predicted. Identifying all stable states
and optimally sampling the database using this information would
be an interesting avenue for future work. For fabrication, in our
experiments, reproducing the desired particular state was trivial
and emerged when intuitively attaching the glass to the frame.

In the presence of more than one potential state, our system cur-
rently selects in each iteration per panel the state that best fits our
application-dependent criteria. An alternative would be to compute
a global, combinatorial optimal solution among all potential states.
However, because of the combinatorial complexity, this would result
in a much harder and probably computationally intractable opti-
mization problem. We also considered solving the combinatorial
problem by using a continuous relaxation but ultimately did not find
evidence in our experiments that would indicate the need for such
an approach as we observed stable convergence to satisfactory re-
sults. However, identifying the global minimum would nevertheless
be an interesting research challenge.

By design, our workflow is not limited to a particular shell model,
and in theory, more advanced and extensively experimentally vali-
dated engineering models could be used if needed. We believe the
benefit of our learning-based approach would even be more evident
with more complex mechanical models, because they are computa-
tionally significantly more expensive. Our workflow could serve as
an inspiration for many other material-aware design problems. For
future work, it would be exciting to explore extensions to different

materials, for instance metal, wood, or programmable matter that
can respond to external stimuli, such as shape memory polymers or
thermo-reactive materials.
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that it represents a valid quad, we start with two adjacent edge
lengths 𝑙1, 𝑙2, an angle 𝛼 between them, and a displacement a of the
remaining vertex from the point that would form a parallelogram.
We sample each of these parameters as follows:

• 𝑙1, 𝑙2 ∼ Uniform[0.15, 0.60]; this corresponds to 15–60 cm for
a 1 mm thick panel,

• 𝛼 ∼ Uniform[60◦, 120◦],
• a is given by sampling a point on the unit sphere, then scaling
it by a factor drawn from Uniform[0,min{𝑙1, 𝑙2}/4],

• 𝛾𝑖 ∼ Uniform[−90◦, 90◦],
• 𝜃𝑖 is given by arccos of a value sampled fromUniform[cos 5◦, 1],
negated with probability 1/2, so 𝜃𝑖 ∈ [−5◦, 5◦].

Note that our model for the deformed shape and stress is invariant
under scaling of all geometric magnitudes. Our sampling ranges
are chosen to allow scaling the results to thickness/curvature ratios
commonly used in cold bent glass façades.

ACM Trans. Graph., Vol. 39, No. 6, Article 208. Publication date: December 2020.


	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Geometry representation
	4.1 Panel parameterization
	4.2 Compact representation

	5 Panel shape optimization
	5.1 Continuous formulation
	5.2 Discrete formulation
	5.3 Minimal energy panels
	5.4 Failure criterion

	6 Data-driven model
	6.1 Multi-modal regression model
	6.2 Dataset construction
	6.3 Dataset enrichment

	7 Interactive design
	7.1 Optimization formulation
	7.2 Optimization solution

	8 Results
	8.1 Experimental validation
	8.2 Validation of data-driven model
	8.3 Applications

	9 Discussion and Conclusion
	Acknowledgments
	References
	A Sampling panel boundaries

