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Abstract. Cone-nets are conjugate nets on a surface such that along each individual curve of
one family of parameter curves there is a cone in tangential contact with the surface. The corre-

sponding conjugate curve network is projectively invariant and is characterized by the existence of
particular transformations. We study properties of that transformation theory and illustrate how

several known surface classes appear within our framework. We present cone-nets in the classical

smooth setting of differential geometry as well as in the context of a consistent discretization
with counterparts to all relevant statements and notions of the smooth setting. We direct spe-

cial emphasis towards smooth and discrete tractrix surfaces which are characterized as principal

cone-nets with constant geodesic curvature along one family of parameter curves.

1. Introduction and Preliminaries

1.1. Introduction. Consider a surface and an arbitrary curve on that surface which is not an
asymptotic curve. The set of all tangent planes along that surface envelops a generic developable
surface. The focus of our paper lies in the investigation of surface parametrizations such that the
enveloping developables of one family of parameter curves are not generic developable surfaces but
merely cones. Therefore we use the name cone-nets for our parametrizations. Note that our cone-
nets are not to be confused with the so called conical nets which are discrete nets with planar faces
such that at each vertex the adjacent faces around that vertex are in tangential contact with a cone
of revolution [17].

The study of our cone-nets has been motivated by the fabrication idea of cladding surfaces
with developable strips. The aspects of cladding surfaces with general developable surfaces – not
necessarily just cones – have also been investigated in the context of approximating surfaces, for
example in [26, 27] in a non-parametrized way, or in the theory of curved crease paper folding (see,
e.g., [15]).

Moreover, strip-models of surfaces have been investigated in different contexts. For example strip-
models have been used to develop a better understanding of classical smooth differential geometry by
replacing smooth surfaces with discrete surfaces. R. Sauer has systematically started to study these
discrete counterparts to gain a better understanding of the classical smooth setting [22, 23, 24]. By
introducing this methodology he laid the ground for the now highly active research field of discrete
differential geometry (see, e.g., [2]) to which the second part of the present paper can be counted.
In particular R. Sauer’s investigation of surfaces of revolution [22, 23] which he approximated
by a collection of cones of revolution can be seen as a first example of a much bigger class of
surfaces which are now called semi-discrete surfaces. These surfaces have a smooth and a discrete
coordinate direction and are therefore particularly interesting in the context of cladding surfaces
from developable strips with the view towards applications [17] but have also led to a new concept in
differential geometry [20]. The results of the present paper could be transferred to the semi-discrete
setting, but we will refrain from that as our focus lies on the smooth and the purely discrete setting.
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Cone-nets form a particular subclass of surface parametrizations namely so called conjugate
nets. Conjugate nets have extensively been studied in the nineteenth and twentieth century [10].
Within that class of nets the Kœnigs nets (see, e.g., [2]) form a subclass which are characterized
by the existence of transformations. We develop a similar characterization of our cone-nets by the
existence of so called conical Combescure transformations.

Our cone-nets include and generalize some known surface parametrizations. For example cladding
surfaces with strips of just cylinders (instead of cones in our case) has been studied in [5, 6]. They
are considering foliations of surfaces with “planar geodesics” whereas our cone-nets parametrize
“spherical curves of constant geodesic curvature”. Another example are the discrete canal surfaces
in [11] which appear as a special case of our definition of discrete canal surfaces. One further
example are the multi-Q-nets [1] which appear in our context as so called double cone-nets. The
projective dual of our cone-nets, i.e., networks on surfaces with planar cuves have been studied with
a view towards applications in [14].

Our paper consists of two corresponding sections where we develop the smooth theory in Section 2
which we then discretize in Section 3 by following discretization principles as understood in [2].

1.2. Preliminaries. An important role in our paper play developable surfaces. A surface is called
developable if it is (locally) isometric to the plane, or equivalently, if the Gauss curvature vanishes
identically (see e.g., [9]). Developable surfaces devide into three categories: cylinders, cones, and
tangent surface.

Developable surfaces are ruled surfaces and can therefore be parameterized in the form

d(s, t) = c(t) + se(t),

where c : R ⊃ I → R3 is called directrix and e : R ⊃ I → R3 \ {0} is the ruling direction.
The rulings of a tangent surface are the tangent lines of a space curve. This curve is called the

curve of regression and consists of the singular points of the tangent surface.
The tangent planes along each ruling of a developable surface are identical. In other words, the

direction of the normals of d do not depend on s. Consequently, ds × dt = e× (ct + set) points in
the same direction independently of s if and only if

(1) det(e, et, ct) = 0.

We say that the developable surface is enveloped by its tangent planes. And also vice versa any
generic (and smooth enough) one-parameter family of planes envelopes a developable surface [9].

The envelope of the tangent planes along a curve on a surface is the developable surface which
is enveloped by the tangent planes along that curve. That envelope degenerates if the curve is an
asymptotic curve on the surface.

The focus of our investigation lies primarily in local properties of sufficiently smooth curves and
surfaces. We can always assume our surfaces to be parameterized by f : R2 ⊃ U → R3.

We will be working a lot with so called conjugate nets which form a particular class of nets
in projective differential geometry but can easily be described in terms of classical differential
geometry.

Definition 1. A parameterization f : R2 ⊃ U → R3 is called conjugate or a conjugate net if in
each point the mixed partial derivative is parallel to the tangent plane (or vanishes), i.e., there exist
a, b : U → R such that fuv = afu + bfv.

Conjugate nets are also characterized by the following well known lemma where we consider the
envelope of the tangent planes along the u-parameter curves (i.e., isolines with fixed parameter v)
of a smooth net f(u, v).
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Figure 1. Left: A surface f and a tangential cone T with cone tip r. We can interpret the point r as a point
light and T as the light cone consisting of rays connecting the point light with the silhouette. In each point of the

silhouette its tangent line and the corresponding ruling of T are conjugate tangents. Center: A parabola r is the

base curve of a general tractrix with initial point γ(u0). If γ describes a curve, we obtain a generalized tractrix
surface, see Example 9 and Section 2.5.1. Right: A tractrix surface generated by dragging a spherical curve γ along

a space curve.

Lemma 2. For any fixed v the ruled surface parameterized by (see Figure 1 left)

(s, u) 7→ T (s, u, v) := f(u, v) + sfv(u, v)

is developable if and only if f is a conjugate net.

Proof. Developability of T is equivalent to the vanishing determinant (cf. Equation (1))

det(fv, fuv, fu) = 0,

which is equivalent to f being conjugate. �

We will denote the one-parameter family of envelopes of tangent planes by T (s, u, v).

2. Smooth Cone-Nets

In this section we will define cone-nets which constitute a class of nets, i.e., surface parameter-
izations, with a one-parameter family of cones in tangential contact with the curves of one family
of parameter curves. This class of nets is very rich and exists on every surface at least locally. We
will give examples, develop a transformation theory for such nets and classify special cases.

2.1. Smooth cone-nets. We start with the definition of cone-nets and illustrate how they are
characterized among conjugate nets.

Definition 3. We call a net, i.e., a parameterization of a surface, cone-net if all envelopes of
tangent planes along all u-parameter curves (or all v-parameter curves) are cones or cylinders. The
net is called a proper cone-net if all envelopes of tangent planes along all u-parameter curves (or
all v-parameter curves) are cones with a proper cone tip.

If not stated otherwise, we will always assume that the tangential cones are in contact with the
surface along the u-parameter curves of cone-nets.

In projective geometry cones and cylinders are indistinguishable and since projective transfor-
mations keep tangential contact between surfaces we obtain that cone-nets are invariant under
projective transformations.
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Lemma 4. A conjugate net with fuv = afu + bfv is a cone-net, with tangential cones along u-
parameter curves, if and only if ab = au and a cone-net, with tangential cylinders along u-parameter
curves, if and only if a = 0.

Proof. We start with the cylinders. A cylinder is tangent to a u-parameter curve of a conjugate net
if and only if the partial derivatives fv are parallel along that curve. This is the case if and only if

0 = ∂u
fv
‖fv‖

=
‖fv‖fuv − fv∂u‖fv‖

‖fv‖2
,

which is equivalent to fuv = bfv, i.e., if and only if a = 0.
Let us now assume that the envelope of tangent planes is not a cylinder, i.e., a 6= 0. The curve

of regression r consists of the singular points of that envelope T . It is characterized by those
parameters s where Tu × Ts = 0. Hence, from

0 = Tu × Ts = (fu + sfuv)× fv = fu × fv + safu × fv
we get s = − 1

a and consequently r(u, v) = T (− 1
a(u,v) , u, v) = f(u, v) − 1

a(u,v)fv(u, v) as curve of

regression for each fixed v.
However, the envelope of the tangent planes for any fixed v is not just an arbitrary tangent

surface. It is a cone which means that the curve of regression degenerates to a point – it does not
depend on u. Therefore, it is a cone if ru = 0, hence,

0 = ru =
(au
a2
− b

a

)
fv

and consequently ab = au. �

From this proof we conclude that the curve of tips of the enveloping cones is parameterized by

(2) r(v) := f − fv
a
.

Any surface can be parameterized, at least locally, by a cone-net. A possible generation of such
a net can be explained with a simple geometric construction which, for a special case, was already
known to Böklen [4]. Consider a point light in space (the point can also be a point at infinity)
which sheds light onto the surface (cf. Figure 1 left). The light cone consisting of rays connecting
the point light with the silhouette is a tangential cone in our sense. Moving the point light along
a curve yields a one-parameter family of silhouettes which form u-parameter curves of a cone-net.
Böklen [4, 10. on p. 69] describes the construction of that special case where the curve of point
lights is a straight line.

2.2. Examples of cone-nets. There are some well known and commonly used surface parame-
terizations which are also cone-nets.

Example 5. The typical parameterizations of surfaces of revolution with meridian curves and
parallel circles are cone-nets in both directions. The tangential cones along the parallel circles are
rotationally symmetric and have their cone tips on the axis of revolution. The tangential cones
along all meridian curves are cylinders.

Example 6. Canal surfaces are surfaces enveloped by a one-parameter family of spheres. These
spheres are in tangential contact with the canal surface along a circle which constitute one family
of curvature lines. Along these circles we have cones of revolution in tangential contact with the
canal surface along these circles. Therefore, curvature line parameterizations (or principal nets) of
canal surfaces are cone-nets. Surfaces of revolution, Dupin cyclides, and tubular surfaces (canal



SMOOTH AND DISCRETE CONE-NETS 5

Figure 2. Left: A discrete T-surface. All faces are trapezoids. The horizontal edges of each vertical strip in the

image are parallel to each other and must therefore lie on a cylinder. Right: A projective transformation of the
T-surface on the left. The tangential cylinders of the T-surface have been mapped to tangential cones which have

their cone tips on a straight line.

surface with constant radius spheres) are special canal surfaces. We will revisit canal surfaces in
the context of principal nets in Section 2.5.2.

Example 7. Translational surfaces f are generated as the sum of two curves g and h:

f(u, v) := g(u) + h(v).

There are cylinders in tangential contact along both parameter curves. Translational surfaces are
therefore cone-nets. Any projective transformation of a translational surface generates a double
cone-net (see also Section 2.4) whose curves of cone tips lie in a plane which is the image of the
plane at infinity.

Example 8. Any suitable smooth enough family of planes intersects a quadric in a smooth family
of conics. The envelope of tangent planes along such a conic is a cone whose vertex is the projective
pole of the plane with respect to the quadric. These poles form the curve r of cone tips. The
directions of the rulings of the cones are conjugate to the tangents of the conics.

Example 9. A tractrix curve is the locus of the endpoint of a stick dragging behind while the other
end moves along a straight line. A generalization of that idea is moving one end along an arbitrary
space curve r instead of a straight line, see Figure 1 (center). With this method we can obtain a -
what we call - generalized tractrix surface if we drag each point of a space curve γ (Figure 1 right)
along another space curve r. In this way each parameter line is a generalized tractrix curve. We
will revisit (generalized) tractrix surfaces in Section 2.5.1.

As a special case the curve γ can lie in its initial position on a sphere with center on the base
curve r. We refer to them as tractrix surfaces since all “sticks” are of the same length. In that case
the foliation of parameter curves that is traced out by draging γ consists of curves with constant
geodesic curvature. The net of parameter curves on a tractrix surface generated this way generalizes
the nets from [5, 6]. They are considering foliations of surfaces with planar geodesics. So the analogy
is “planar geodesics” vs. “spherical curves of constant geodesic curvature”.

Example 10. T-surfaces are conjugate nets with planar coordinate curves such that the two
families of planes that carry the curves intersect each other orthogonally (see, e.g., [24, 25, 13]).
Up to a Euclidean motion every T-surface f can be constructed by a one-parameter family of
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two-dimensional affine transformations αv and a curve c(u) = (x(u), 0, z(u)) in the xz-plane such
that

f(u, v) =

(
αv
(
x(u)
0

)
z(u)

)
,

i.e., every vertical profile curve of f is constructed from c by a non-uniform scaling (just in x-
direction) and a rotation around a z-parallel axis. See Figure 2 (left) for a discrete T-surface.

Special sub-classes of T-surfaces are surfaces of revolution and translational surfaces. The tangent
planes along a vertical profile curve of a T-surface envelope a cylinder with horizontal rulings.
Projective transformations of T-surfaces are cone-nets with all cone tips on a straight line which is
the image of the line at infinity (see Figure 2 right).

2.3. Transformation of cone-nets. A classical topic in differential geometry is the transforma-
tion of surfaces [2, 10]. A particular focus lies on the transformation of conjugate nets. In this
section we introduce a transformation for cone-nets. Thereby, a cone-net is transformed to a par-
allel cone-net in the following sense.

Definition 11. Two nets f, f∗ : R2 ⊃ U → R3 are said to be parallel or related by a Combescure
transformation, if at each point corresponding partial derivative vectors are parallel, i.e., fu ‖ f∗u
and fv ‖ f∗v . The net f∗ is called Combescure transform of f and vice versa.

Theorem 12. Let f : U → R3 be a conjugate net with fuv = afu + bfv, for some a, b : U → R,
where a 6= 0. Furthermore, let λ : U → R be a function only depending on v, i.e., λu = 0. Then
for all such λ there exists a Combesure transform f∗ with

f∗u = λfu and f∗v =
(
λ+

λv
a

)
fv

if and only if f is a proper cone-net. Furthermore, f∗ is a proper cone-net as well and has the
following form up to translation

f∗ = λf −
∫
λv

(
f − fv

a

)
dv = λf −

∫
λvr dv.

Proof. The net f∗ exists if and only if the integrability condition (f∗u)v = (f∗v )u holds. We have

(f∗u)v = (f∗v )u

⇔ λvfu + λfuv =
(
λu +

λuva− λvau
a2

)
fv +

(
λ+

λv
a

)
fuv

⇔ λvfu + λ(afu + bfv) = −λvau
a2

fv +
(
λ+

λv
a

)
(afu + bfv)

⇔
(λvau
a2
− λvb

a

)
fv = 0,

because λu = λuv = 0. Since the last equation must hold for any λ, it is equivalent to ab = au.
Consequently, the existence of f∗ is equivalent to f being a cone-net.

After setting a∗ := λv+aλ
λ and b∗ := λau

λv+aλ
we obtain f∗uv = a∗f∗u + b∗f∗v . To show that f∗ is also

a cone-net we must verify that b∗ =
a∗u
a∗ . We have

a∗u
a∗

=
[(λuv + auλ+ aλu)λ− (λv + aλ)λu]λ

λ2(λv + aλ)
=

λau
λv + aλ

= b∗.
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To obtain the expression for f∗ we have to integrate f∗u = λfu and f∗v =
(
λ+ λv

a

)
fv. Since λ does

not depend on u, integration of f∗u by u yields

f∗ = λf + c(v)

with some function c(v). Differentiating this equation by v yields

f∗v = λvf + λfv + cv.

Comparing this with the definition of f∗v implies

c(v) = −
∫
λv

(
f − fv

a

)
dv = −

∫
λvr dv,

which is indeed independent of u and yields the integral representation of f∗. �

Definition 13. We call the Combescure transformations from Theorem 12 which map cone-nets
to cone-nets conical Combescure transformations or CCT for short. For a given cone-net f and a
non-zero function λ we denote the conical Combescure transform by Cλ(f).

Lemma 14. The set of transformations {Cλ | λ non-zero function} is a commutative group with
respect to composition. The inverse of Cλ is given by C 1

λ
and the neutral element is the identity

map C1.

Proof. The group operation is the composition of maps, hence, we have to show

Cµ(Cλ(f)) = Cλµ(f)

for all non-zero functions λ, µ. Since a Combescure transformation determines the transformed
surface only up to a translation, we consider the derivatives:

Cµ(Cλ(f))u = λµfu = Cλµ(f)u

Cµ(Cλ(f))v =
(
µ+

µv
a∗

)
f∗v =

(
µ+

µv
λv+aλ
λ

)(
λ+

λv
a

)
fv

=
(
λµ+

(λµ)v
a

)
fv = Cλµ(f)v,

which is what we wanted to show. �

From Equation (2) we know that the tips of the enveloping cones lie on the curve r(v) = f − fv
a .

The curve of the tips of a CCT of f can be computed from r and λ.

Lemma 15. After a CCT the curve of tips of the one-parameter family of enveloping cones becomes
up to translation

(3) r∗(v) :=

∫
λrv dv.

The line segments, connecting the enveloped surface f with the curve r are scaled by λ, i.e.,

r∗(v)− f∗(u, v) = λ(v) · (r(v)− f(u, v)).
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Proof. By the same argument as in the proof of Lemma 4 the curve of the cone tips corresponding
to f∗ is given by

r∗(v) = f∗ − f∗v
a∗

= λf −
∫
λv

(
f − fv

a

)
dv − λ

λv + aλ

(
λ+

λv
a

)
fv

= λ
(
f − fv

a

)
−
∫
λv

(
f − fv

a

)
dv = λr −

∫
λvr dv =

∫
λrv dv.

For the line segments generating the cones we obtain

f∗ − r∗ =
f∗v
a∗

=
λ

λv + aλ

(
λ+

λv
a

)
fv = λ

fv
a

= λ(f − r),

which concludes the proof. �

Corollary 16. Conical Combescure transformations have the following properties:

(i) Corresponding u-parameter curves of a cone-net f and its CCT f∗ are related by a homo-
thety.

(ii) For constant λ ∈ R \ {0} the corresponding CCT acts on the net as similarity with scaling
factor λ, i.e., Cλ(f) = λf up to translation.

(iii) CCTs are preserving angles between parameter curves at corresponding points (since all
Combescure tranformations preserve parallelity between tangents in corresponding points).

(iv) If f is a principal net (i.e., conjugate and orthogonal), than for any λ the corresponding
CCT f∗ is also a principal net.

Even though cone-nets are projectively invariant, CCTs do not commute with projective trans-
formations. However, affine transformations do commute with CCTs. Let α be an affine transfor-
mation, then the following diagram commutes:

f f∗

α(f) α(f∗)

Cλ

α α

Cλ

The reason why projective transformations do not commute with CCTs is that in contrast to
affine transformations the change of direction of straight lines depends on its location in space.
Consider, for example, a projective transformation κ that maps a plane ε to infinity. We can choose
f with a curve of proper cone tips r in R3 which does not intersect ε, but such that the curve of
cone tips r∗ of Cλ(f) does intersect ε. Then κ ◦ f only contains proper cones whereas κ ◦ Cλ(f)
contains tangential cylinders which we can not get rid of by any CCT.

2.4. Double cone-nets. Cone-nets are not symmetric in its definition. The two parameter curves
are treated differently. The existence of a tangential cone is assumed only for one family (usually
along u-parameter curves). However, it poses an interesting question which nets are cone-nets in
both directions.

Definition 17. We call a net a double cone-net, if all envelopes of tangent planes along both families
of parameter curves are cones or cylinders.

With Lemma 4, a conjugate net f : U → R3 is a double cone-net if and only if the functions a, b
defined by

fuv = afu + bfv
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satisfy

bv = au = ab.(4)

In the following theorem we will show that double cone-nets are so called Kœnigs nets which
constitute themselves a special subclass of conjugate nets.

Definition 18. A net f : U → R3 is called a Kœnigs net if there exists z : U → R+ such that (see,
e.g., [2]):

fuv = (log z)vfu + (log z)ufv.

It is immediately clear from this definition that Kœnigs nets are conjugate nets.

Theorem 19. Let U ⊂ R2 be a simply connected domain and let f : U → R3 be a conjugate net
which is a cone-net w.r.t. the u-parameter curves. Then the net f is a double cone-net if and only
if f is a Kœnigs net.

Proof. Let us assume f is a Kœnigs net and a cone-net w.r.t. the u-parameter curves. From the
Kœnigs net property we get

fuv = (log z)vfu + (log z)ufv,

for some z : U → R+. By setting a := (log z)v and b := (log z)u the theorem of Schwarz implies
au = bv. Since f is a cone-net w.r.t. the u-parameter curves and by Lemma 4, we further have

ab = au = bv

which implies that f is a double cone-net (cf. Equation (4)).
Now, let us assume that f is a double cone-net. Therefore, a, b satisfy

ab = au = bv.

Let us define a vector field c : U → R2 by setting c := (b, a). On the simply connected domain U ,
the vector field c has a potential p : U → R with grad p = (pu, pv) = c if and only if the rotation of
c is zero. This is the case for double cone-nets since

rot(c) =
∂c2
∂u
− ∂c1
∂v

= au − bv = ab− ab = 0.

By setting z := exp(p) we obtain

(log z)v = pv = a

(log z)u = pu = b

which implies that f is a Kœnigs net. �

2.5. Principal cone-nets. In this section we will characterize which principal nets are cone-nets
and how they can be constructed and what their CCTs are. Furthermore, we will show that the
property of a net being a principle cone-net is Möbius invariant.

To this end, let f : U → R3 be a principal net and let X := fu
‖fu‖ , Y := fv

‖fv‖ , N := X × Y be a

moving frame adapted to f . The derivatives of the surface and its frame are given by:

(5)

fu = αX fv = βY

Xu = κY + cN Xv = ηY

Yu = −κX Yv = −ηX + dN

Nu = −cX Nv = −dY
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for some smooth functions α, β, c, d, κ, η. The structure equations of the framed surface read:

αv = −βκ structure equation 1(6)

βu = αη structure equation 2(7)

κv − ηu = cd Gauss equation(8)

κd = cv Gauss-Codazzi equation 1(9)

ηc = du Gauss-Codazzi equation 2(10)

The symmetry equation is always satisfied for conjugate nets. By the fundamental theorem of
parameterized surfaces, any set of functions α, β, κ, η, c, d, that satisfies the structure equations
(6)-(10), determines a principal net and the surface is unique up to rigid motions.

The geodesic curvature of a curve on a surface measures the curvature of the curve projected
into the tangent plane. We obtain the geodesic curvature for the u-parameter curves by

kug =
〈fu × fuu, N〉
‖fu‖3

(5)
=

κ

α
and analogously kvg =

η

β
,

for the v-parameter curves. The principal curvatures are given by κ1 := − c
α and κ2 := − d

β .

With respect to the frame, the mixed derivative of the surface f is given by

fuv = αvX + αηY = −βκX + βuY.

Hence, the functions a and b, defined by fuv = afu + bfv, can be expressed as

a =
αv
α

=
−βκ
α

, b =
αη

β
=
βu
β
.(11)

Lemma 20. Let f be a principal net. Then the following conditions are equivalent:

(i) The net f is a cone-net.
(ii) The geodesic curvature of the u-parameter curves (or v-parameter curves) is constant for

each curve.
(iii) The u-parameter curves (or v-parameter curves) are spherical or planar and these spheres

or planes intersect the surface orthogonally.

Proof. (i) ⇒ (ii): If the net is a cone-net along the u-parameter curves, then Lemma 4 implies
au = ab. Differentiating Equation (11) yields

au =
(−βκ

α

)
u

= −βu
κ

α
− β

(κ
α

)
u

= ab− β(kug )u,

which implies that the geodesic curvature is constant.
(ii) ⇒ (iii): If the constant geodesic curvature of a u-parameter curve of a principle cone-net is

non-zero, then the function

(12) r(v) := f − fv
a

= f +
α

κ
Y = f +

1

kug
Y,

is independent of u, i.e.

ru = fu +
α

κ
Yu

(5)
= αX − α

κ
κX = 0.

Hence the u-curve is contained in a sphere S(v) (see below). If the geodesic curvature vanishes,
i.e., kug = 0, then κ = 0 and Equation (5) implies Yu = 0. Therefore, the v-derivative vectors along
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any such u-parameter curve have the same direction fv(u, v) = β(u, v)Y (v), and define a cylinder.
In this case, the u-curve is contained in a plane S(v). Consequently, we set

S(v) :=

{
{x ∈ R3 | ‖x− r(v)‖2 = (kug )−2} if kug 6= 0,

{x ∈ R3 | 〈x− f(u0, v), Y (v)〉 = 0} for some u0 if kug = 0.

(iii) ⇒ (i): If a u-parameter curve lies on a sphere which intersects f orthogonally, then the
tangents of the v-parameter curves along this u-parameter curve must pass through the center of
the sphere (since fu ⊥ fv for principal nets). The argument for u-parameter curves being planar
works analogously. �

Definition 21. We call the spheres or planes S(v) geodesic curvature spheres.

Remark 22 (Cauchy data for principle cone-nets). The v-parameter curves of a principle cone-net
f are orthogonal trajectories of the geodesic curvature spheres S(v). In particular, any principle
cone-net is uniquely determined by its geodesic curvature spheres S(v) and a spherical curve γ(u) ∈
S(v0).

Lemma 23. The property of a net being a principle cone-net is invariant under Möbius transfor-
mations.

Proof. Möbius transformations map principle nets to principle nets (see, e.g., [2]). Further, Möbius
transformations map spheres and planes to spheres or planes. Lemma 20 implies that principle
nets are cone-nets if and only if they have one family of spherical parameter curves whose spheres
intersect the surface orthogonally. Consequently, Möbius transformations map principle cone-nets
to principle cone-nets. �

2.5.1. Tractrix surfaces. Given a curve γ : R ⊃ I → R3 and a space curve r : R ⊃ J → R3, we can
define a surface f : U → R3 with U = I × J by solving an initial value problem for every fixed u:

f(u, v0) = γ(u) v0 ∈ J,
fv(u, v)

‖fv(u, v)‖
=

f(u, v)− r(v)

‖f(u, v)− r(v)‖
.

If the curve r(v) is a straight line, then the solution for any u of the above differential equation is
the well known tractrix. If furthermore, the initial curve is a circle in a plane orthogonal to that
straight line, then the surface is the pseudosphere. For arbitrary curves γ and r we call the resulting
surface a generalized tractrix surface. If γ is a curve on a sphere with its center on the base curve
r, we call it simply tractrix surface since all v-parameter lines are tractrices with the same “stick”
length. The following lemma is an immediate consequence of the definition.

Lemma 24. Every tractrix surface consists of orthogonal trajectories of a one-parameter family of
spheres with constant radii.

Lemma 25. Let f : U → R3 be a principal cone-net. Then a CCT with parameter λ maps f to a
principal cone-net f∗. The geodesic curvatures of the u-parameter curves of the related surfaces f
and f∗ satisfy

|ku ∗g | =
|kug |
|λ|

.
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Proof. Let f : U → R3 be a principal cone-net and f∗ its conical Combescure transform, i.e.,

f∗u = λfu = λαX = α∗X∗ and f∗v =
(
λ+

λv
a

)
fv =

(
λ+

λv
a

)
βY = β∗Y ∗.

Since the tangents of the two nets are parallel at corresponding points, the frame X∗, Y ∗, N∗ of
f∗ is parallel to the frame of f . Since the functions η, κ, c and d only depend on the frame, they
do not change under the CCT up to a possible sign change. Therefore, f∗ is a principle net if and
only if f is a principal net (which we already saw in Corollary 16(iv)) and the absolute value of the
geodesic curvature of the u-parameter curves is given by

|ku ∗g | =
∣∣∣κ∗
α∗

∣∣∣ =
∣∣∣ κ
λα

∣∣∣ =
∣∣∣kug
λ

∣∣∣.
which is what we wanted to show. �

Corollary 26. A net is a principal cone-net with non-vanishing geodesic curvature if and only if
it is a CCT of a tractrix surface.

2.5.2. Canal surfaces. Canal surfaces are surfaces enveloped by a one-parameter family of spheres

{x ∈ R3 | ‖x−m(v)‖2 = R2(v)}.

These spheres are in tangential contact with the canal surface along circles which constitute one
family of curvature lines. These so called generating circles are given by the intersection of the
above spheres with the planes

{x ∈ R3 | 〈x−m(v),−mv(v)〉 = Rv(v)R(v)}.

Hence the centers of the circles and their radii are given by

c(v) := m(v)− Rv(v)R(v)

‖mv(v)‖2
mv(v), ρ(v) :=

R(v)

‖mv(v)‖
√
‖mv(v)‖2 −Rv(v)2.

Along these circles there are cones of revolution in tangential contact with the surface . The curve
of cone tips can be computed by using simple trigonometry (see Figure 3)

r(v) = m(v)− R(v)

Rv(v)
mv(v).

The principle curvature of the circular curvature lines is given by κ1 = − c
α = R(v)−1. It is well

known that a surface is a canal surface if and only if one of the principle curvatures is constant
along its curvature line. Surfaces of revolution, Dupin cyclides, and tubular surfaces (canal surface
with constant radius spheres) are special canal surfaces.

Theorem 27. A principal cone-net f : U → R3 is a canal surface if and only if its Gauss map
N : U → S2 is a cone-net.

Proof. We compute the mixed derivative of the Gauss map, using the frame equations (5)-(10):

Nuv = −cvX − cηY =
cv
c
Nu +

cη

d
Nv =

κd

c
Nu +

du
d
Nv,

therefore,

Nuv = ãNu + b̃Nv, where ã :=
κd

c
=
cv
c

and b̃ :=
cη

d
=
du
d
.
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rrd ccd

f

fd

N=Nd

m

Figure 3. A sphere and its tangential cone of a canal surface f and its offset surface fd = f + d ·N .

The Gauss map is a cone-net if and only if ãu = ãb̃. We have

ãu =
κud+ κdu

c
− κdcu

c2
= ã

(κu
κ
− cu

c

)
+ ãb̃.

Therefore, the Gauss map is a cone-net if and only if κu
κ = cu

c . Since we assumed that f is a
principle cone-net, the geodesic curvature of the u-parameter curves is constant:(κ

α

)
u

= 0⇐⇒
(κu
κ

=
αu
α

or κ = 0
)
.

Hence the principle curvature κ1 = c
α is constant along the u-parameter curves and f is a canal

surface if and only if N is a cone-net. �

Lemma 28. The Gaussian image of any principal net of a canal surface is its CCT for λ = κ1 =
− c
α , which is the principle curvature of the generating circles. Further, any CCT of a canal surface

is again a canal surface.

Proof. For any principle net the formula of Rodrigues (see, e.g., [9]) implies that the partial deriva-
tives of the Gauss map and the surface are parallel, i.e.,

Nu = κ1fu = − c
α
fu, Nv = κ2fv = − d

β
fv.

If f is a canal surface, one of the principle curvatures is constant along its curvature line. We
assume 0 = (κ1)u = −( cα )u. Under the CCT with function κ1 the u-derivative changes according
to

Cκ1(f)u = − c
α
fu = κ1fu = Nu.

For a principle cone-net we further have a = αv
α (see Equation (11)). For the v-derivative we obtain

Cκ1
(f)v =

(
κ1 +

(κ1)v
a

)
fv =

(
− c

α
+
(
− cv
α

+
αvc

α2

) α
αv

)
fv = − cv

αv
fv

(6)(9)
= − d

β
fv = Nv,

and therefore Cκ1
(f) = N .

For the second part of the proof note that parallel related surfaces have the same Gauss map.
Therefore, the Gauss map of every CCT of a canal surface is a cone-net and the transformed surface
is a canal surface. �
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The offset surface fd := f + dN , for d ∈ R of a canal surface is a canal surface itself where the
corresponding spheres have the same centers as for f but radii R(v) + d (see Figure 3). Since any
surface and its offset surfaces have the same normals, we can use Lemma 28 to obtain the following
corollary.

Corollary 29. Let f be a canal surface and κ1(v) the principle curvature of the generating circles.
The offset fd is up to translation a CCT of f for λ = 1 + d κ1

Darboux proved in [8] that a principle net, whose coordinate curves have constant geodesic
curvature, is Möbius equivalent to a surface of revolution, cone or cylinder. With Lemma 20 this
implies the following theorem of which an independent proof in our framework can be found in the
appendix.

Theorem 30 (Darboux [8]). Every double principal cone-net is Möbius equivalent to a surface of
revolution, cone or cylinder.

An immediate consequence of Theorem 30 is Vessiot’s Theorem.

Theorem 31 (Vessiot [28]). Away from umbilical points every isothermic canal surface is locally
Möbius equivalent to a surface of revolution, cone or cylinder.

Proof. Away from umbilical points canal surfaces admit a cone-net parameterization. If this net is
isothermic, i.e., a principle Kœnigs net, it is a double cone-net and we can apply Theorem 30 which
concludes the proof. �

3. Discrete Cone-Nets

In this section we discretize our smooth theory of cone-nets. We follow discretization principles
as understood in [2]. It turns out that all relevant theorems from Section 2 can be discretized.

It is important to point out a possible confusion between notions. So called (discrete) conical
nets have been introduced and investigated in [17, 2]. However, they refer to a discretization of
curvature line parameterizations (which belongs to Laguerre geometry). There, all faces around a
vertex are in tangential contact with a cone of revolution. In contrast to that in our case the cones
are in tangential contact with the surface along entire parameter curves.

3.1. Discrete cone-nets. In this section, we discretize the smooth theory of Section 2. The
discrete analogue of a parameterized surface is a quadrilateral net

f : U ⊂ Z2 −→ R3

(i, j) 7−→ fij .

Its discrete derivatives will be described by its edge vectors with difference operators

δifij = fi+1,j − fij and δjfij = fi,j+1 − fij , for all (i, j) ∈ U.

Definition 32. A quadrilateral net is called conjugate if all quadrilaterals qij are planar (see,
e.g., [2]).

In complete analogy to the smooth case, conjugate nets are characterized by the property that
the mixed derivative lies in the span of the partial derivatives (cf. [2]):

Lemma 33. A quadrilateral net is conjugate if and only if there exist functions a, b : U → R such
that

δiδjfij = aijδifij + bijδjfij .
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Figure 4. Left: A discrete cone-net. Right: Laplace points of a conjugate net.

Since δiδjfij = δifi,j+1 − δifij = δjfi+1,j − δjfij , we immediately obtain

δjfi+1,j = aijδifij + (bij + 1)δjfij(13)

δifi,j+1 = (aij + 1)δifij + bijδjfij(14)

which we will use later. We will denote the quadrilaterals by

(15) qij := (fij , fi+1,j , fi+1,j+1, fi,j+1),

and for every j we define the horizontal strip Bj := {qij | (i, j) ∈ U} and for every i the vertical
strip Bi := {qij | (i, j) ∈ U}, see Figure 4 (left). Let Lij denote the straight line that contains the
edge fijfi,j+1, i.e.,

Lij = fij + Rδjfij .

If all lines Lij are concurrent for all i and a fixed j, they generate a (discrete) cone (i.e., a pyramid)
Tj . The parameter curves i 7→ fij =: γj(i) lie on the cones Tj and Tj−1. The cone tip of the cone
Tj is denoted by rj .

Definition 34. A discrete conjugate net f : U ⊂ Z2 → R3 is called a cone-net if all horizontal or
all vertical strips are contained in a discrete cone or cylinder. The net is called a proper cone-net
if each horizontal or each vertical strip is contained in a proper cone with a proper cone tip. See
Figure 4 (left) for an illustration.

If not stated otherwise, we will always assume, that the horizontal strips Bj of a discrete cone-net
are contained in a cone. The following lemma is a discrete analogue of Lemma 4.

Lemma 35. A conjugate net f : U ⊂ Z2 → R3 is a cone-net with discrete cones along horizontal
strips if and only if the functions a, b : U → R defined in Lemma 33 satisfy

bij =
aij − ai−1,j
ai−1,j

=
aij
ai−1,j

− 1,
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and a cone-net with discrete cylinders along horizontal strips if and only if aij = 0. If the surface
is a cone-net, then the tips of the cones are given by

(16) rj = fij −
1

ai−1,j
δjfij = fij −

bij + 1

aij
δjfij .

Proof. Note that the horizontal strip Bj lies on a cylinder if and only if the edge vectors δjfij are
parallel for all i. Equation (13) implies that this is the case if and only if aij = 0 for all i.

Suppose now the horizontal strips lie on proper cones. Consider the lines Lij . The surface is
conjugate if and only if Lij and Li+1,j intersect each other in a point rij for all (i, j) ∈ U . We
compute this intersection point rij using Equation (13)

fij + tδjfij = fi+1,j + sδjfi+1,j

⇔ −δifij + tδjfij = s(aijδifij + (bij + 1)δjfij)

⇔ 0 = (1 + saij)δifij + (s(bij + 1)− t)δjfij

⇔ s = − 1

aij
and t = −bij + 1

aij
.

The intersection point rij is therefore given by:

rij = fij −
bij + 1

aij
δjfij = fi+1,j −

1

aij
δjfi+1,j .

The surface is a cone-net if rij is independent of i, i.e., rij = ri+1,j for all i. Consequently, in
that case we have

fi+1,j −
1

aij
δjfi+1,j = rij = ri+1,j = fi+1,j −

bi+1,j + 1

ai+1,j
δjfi+1,j ,

and therefore

bi+1,j =
ai+1,j

aij
− 1 for all i,

which concludes the proof. �

Remark 36. For a quadrilateral qij = (fij , fi+1,j , fi+1,j+1, fi,j+1) of a conjugate net f , the Laplace
points are defined as the intersection points of opposite edges (see Figure 4 right), i.e.,

L1
ij := (fij ∨ fi+1,j) ∩ (fi,j+1 ∨ fi+1,j+1), L2

ij := (fij ∨ fi,j+1) ∩ (fi+1,j ∨ fi+1,j+1).

The Laplace points define (possibly degenerate) conjugate nets themselves which are called the
Laplace transforms of f (see, e.g., [2]). Since opposite edges might be parallel, these nets are
not necessarily contained in R3 but in the projective space P(R3), i.e., Lk : Z2 → P(R3). Note that
the net f is a cone-net if and only if one Laplace transform degenerates to a polygon.

3.2. Transformation of discrete cone-nets. Several aspects of the classical theory on trans-
formations of surfaces have been discretized (see e.g., [3]). Hereby, the transformation of discrete
conjugate nets plays a prominent role. We add to that theory the characterization of discrete cone-
nets via a discrete transformation theory. Our transformations of discrete nets behave analogously
to their smooth counterparts.

Definition 37. Two discrete conjugate nets f, f∗ : Z2 ⊃ U → R3 are said to be parallel or related
by a Combescure transformation, if for all (i, j) ∈ U corresponding edge vectors are parallel, i.e.,
δifij ‖ δif∗ij and δjfij ‖ δjf∗ij . Each of them is called Combescure transform of the other. A
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Figure 5. Left and center: A pair of discrete conical Combescure transforms. A discrete tractrix surface (left) has

been transformed with a negative valued function λ to a cone-net (center) which is not a tractrix surface anymore.
Both nets are principal nets. Right: A Kœnigs nets with one family of strips being cylinders but which are not

double cone-nets.

Combescure transformation is called a cone-net, if the transformation of a discrete cone-net is a
cone-net.

The following theorem about discrete cone-nets preserving Combescure transformations is a
discrete analogue of Theorem 12 (see also Figure 5 left and center).

Theorem 38. Let U = {0, . . . ,m} × {0, . . . , n} ⊂ Z2 and let f : U → R3 be a discrete conjugate
net with δiδjfij = aijδifij + bijδjfij where aij 6= 0. Furthermore, let λ : U → R be a function only
depending on j, i.e., δiλij = 0. We will write λj instead of λij.

Then f is a cone-net if and only if for every such function λ there exists a Combescure transform
f∗ : U → R3 of f with:

δif
∗
ij = λjδifij , δjf

∗
ij =

(
λj+1 +

λj+1 − λj
ai−1,j

)
δjfij .(17)

If the net f is a cone-net, the Combescure transform f∗ is a cone-net as well and its vertices are
parameterized by

(18) f∗ij = λjfij −
j−1∑
k=0

(λk+1 − λk)rk,

where rj are the tips of the cones of the original cone-net f .

Proof. By Lemma 35 the net f is a cone-net if and only if bij =
aij

ai−1,j
− 1 for all (i, j) ∈ U . The

set of edge vectors δif
∗
ij , δjf

∗
ij can be integrated to a net f∗ : U → R3 if and only if the boundary

edges of every quadrilateral sum up to zero. Using Equations (13) and (14) we compute the sum
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of the boundary edges of the quadrilateral q∗ij :

δif
∗
ij + δjf

∗
i+1,j − δif∗i,j+1 − δjf∗ij

= λjδifij +
(
λj+1 +

λj+1 − λj
aij

)
δjfi+1,j − λj+1δifi,j+1 −

(
λj+1 +

λj+1 − λj
ai−1,j

)
δjfij

=
(
λj +

(
λj+1 +

λj+1 − λj
aij

)
aij − λj+1(aij + 1)

)
δifij

+
((
λj+1 +

λj+1 − λj
aij

)
(bij + 1)− λj+1bij −

(
λj+1 +

λj+1 − λj
ai−1,j

))
δjfij

= (λj+1 − λj)
(bij + 1

aij
− 1

ai−1,j

)
δjfij .

The edge cycle is closed and f∗ well defined for every choice of λ if and only if bij =
aij

ai−1,j
− 1. To

prove that f∗ is a cone-net as well consider the functions

a∗ij =
λj+1(aij + 1)− λj

λj
, b∗ij =

λj+1(aij + 1)− λj
λj+1(ai−1,j + 1)− λj

− 1.

They satisfy δiδjf
∗
ij = a∗ijδif

∗
ij + b∗ijδjf

∗
ij and b∗ij =

a∗ij
a∗i−1,j

− 1 which implies (by Lemma 35) that f∗

is a cone-net.
To prove that the transformed net is parameterized by Equation (18) we show that the edges of

the parameterization are given by Equation (17). We get:

δif
∗
ij = f∗i+1,j − f∗ij = λjfi+1,j −

j−1∑
k=0

(λk+1 − λk)rk − λjfij +

j−1∑
k=0

(λk+1 − λk)rk = λjδifij

δjf
∗
ij = λj+1fi,j+1 −

j∑
k=0

(λk+1 − λk)rk − λjfij +

j−1∑
k=0

(λk+1 − λk)rk

= (λj+1 − λj)fi,j+1 + λjδjfij − (λj+1 − λj)rj
(16)
= (λj+1 − λj)fi,j+1 + λjδjfij − (λj+1 − λj)

(
fij −

bij + 1

aij
δjfij

)
=
(

(λj+1 − λj)
(

1 +
bij + 1

aij

)
+ λj

)
δjfij =

(
λj+1 +

λj+1 − λj
ai−1,j

)
δjfij ,

which concludes the proof. �

Corollary 39. A CCT with discrete function λ scales the polygons (fij)i by the factor λj.

3.3. Discrete double cone-nets. In analogy to Section 2.4 we will investigate discrete nets which
are cone-nets in both parameter directions.

Definition 40. A discrete conjugate net f : U ⊂ Z2 → R3 is called a double cone-net if all
horizontal and all vertical strips are contained in discrete cones or cylinders.

Double cone-nets are related to so called Kœnigs nets. The following characterization of a discrete
Kœnigs net can be found in [3]. Since all faces of a discrete conjugate net are planar quadrilaterals,
the diagonals of a quadrilateral qij intersect in a point mij (see Figure 6 left).
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Figure 6. Left: Illustration for the proof of Theorem 42: we apply Desargues’ theorem four times. Top-Right:
Desargue’s theorem.

Definition 41. A conjugate net f : U → R3 is called a (discrete) Kœnigs net if the three lines

(19) mijmi−1,j mi+1,j−1mi−1,j−1 fi+1,jfi−1,j

are concurrent.

By swapping i and j we obtain a condition which is equivalent to the above Kœnigs condition,
namely the three straight lines mijmi+1,j−1, mi−1,jmi−1,j−1, fi,j+1fi,j−1 meeting in a point. This
equivalence is a simple consequence of Desargue’s theorem. Desargues’ theorem (see Figure 6
right) says that two triangles ∆(a | b | c),∆(a′ | b′ | c′) are centrally perspective (i.e., the three
lines aa′, bb′, cc′ are concurrent) if and only if they are axially perspective (i.e., the three points
(ab ∩ a′b′), (bc ∩ b′c′), (ca ∩ c′a′) are collinear).

We will apply Desargues’ theorem a couple of times to show the following two theorems which
discretize Theorem 19.

Theorem 42. Every double cone-net is a Kœnigs net.

Proof. It is sufficient to consider a 2×2-subpatch of the net (see Figure 6 left). We have to show that
the three lines from Eqn. (19) are concurrent. To do so we will apply Desargues’ theorem four times:[
∆(fi+1,j | fi,j−1 | fi−1,j)
∆(fi+1,j−1 | fij | fi−1,j−1)

]
centr. perspective =⇒ the two lines fi+1,jfi−1,j , fi+1,j−1fi−1,j−1

meet the line mi+1,j−1mi−1,j−1 in a point zi[
∆(fi+1,j | fij | fi−1,j)
∆(fi+1,j−1 | fi,j−1 | fi−1,j−1)

]
centr. perspective =⇒ the line ri−1ri also passes through zi
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∆(fi+1,j | fij | fi−1,j)
∆(fi+1,j+1 | fi,j+1 | fi−1,j+1)

]
centr. perspective =⇒ the line fi+1,j+1fi−1,j+1

also passes through zi[
∆(fi+1,j | fi,j+1 | fi−1,j)
∆(fi+1,j+1 | fij | fi−1,j+1)

]
centr. perspective =⇒ the line mijmi−1,j , also passes through zi

Consequently, the three lines from Eqn. (19) are concurrent. �

The converse result holds only in a slightly modified version as we must assume at least one
vertical strip to be contained in a cone. There exist Kœnigs nets with horizontal strips being cones
but which are not double cone-nets. For such an example see Figure 5 (right).

Theorem 43. A Kœnigs cone-net with horizontal strips being cones is a double cone-net if and
only if at least one vertical strip is contained in a cone.

Proof. It is sufficient to consider a 2 × 2-subpatch of the net (see Figure 7). We assume the two
horizontal strips Bj and Bj−1 to be cones with centers rj and rj−1 and the “left” vertical strip
Bi−1 to be a cone with center ri−1. Furthermore, we assume the net to be a Kœnigs net.

It is our goal to prove the cone-net-property of the “right” vertical strip Bi. For that we apply
Desargues’ theorem six times (see Figure 7 for a reference of notation):[
∆(mij | fi+1,j | fi+1,j+1)
∆(mi−1,j | fi−1,j | fi−1,j+1)

]
axially perspective =⇒ zi, fi+1,j+1, fi−1,j+1 collinear[

∆(mi,j−1 | fi+1,j−1 | fi+1,j)
∆(mi−1,j−1 | fi−1,j−1 | fi−1,j)

]
axially perspective =⇒ zi, fi+1,j−1, fi−1,j−1 collinear[

∆(mi−1,j | fi−1,j+1 | fi,j+1)
∆(mi−1,j−1 | fi−1,j−1 | fi,j−1)

]
axially perspective =⇒ yj , fi−1,j+1, fi−1,j−1 collinear[

∆(rj | fi,j+1 | fi−1,j+1)
∆(rj−1 | fi,j−1 | fi−1,j−1)

]
axially perspective =⇒ yj , rj , rj−1 collinear[

∆(rj | fi+1,j+1 | fi−1,j+1)
∆(rj−1 | fi+1,j−1 | fi−1,j−1)

]
axially perspective =⇒ yj , fi+1,j+1, fi+1,j−1 collinear[

∆(fij | fi+1,j+1 | fi+1,j−1)
∆(fi+1,j | fi,j+1 | fi,j−1)

]
axially perspective =⇒ centr. perspective with center ri

Therefore, the “right” vertical strip Bi is a cone. �

Remark 44. An alternative proof of the last theorem in a projective setup using Laplace invariants
follows ideas presented in [2]. The Laplace invariants are given as cross-ratios of four collinear
points (for the definition of the Laplace points Lk see Remark 36):

hij := cr(fij ,L1
ij ,L1

i,j−1, fi+1,j), kij := cr(fij ,L2
ij ,L2

i−1,j , fi,j+1).

The net is a cone-net if one of the families of Laplace points degenerates to a polygon, i.e., L1
ij =

L1
i,j−1 for all j, or equivalently, if one of the Laplace invariants has constant value 1, i.e., hij = 1.

The cross-ratio is well defined for projective lines and invariant under projective transformations.
Therefore, this definition for cone-nets works as well for nets in P(R3). For more information on
projective differential geometry and Laplace invariants see [16].
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Figure 7. Left: Illustration for the proof of Theorem 43: we apply Desargues’ theorem six times.

Also Kœnigs nets can be characterized in terms of Laplace invariants. For a discrete Kœnigs net
the Laplace invariants satisfy

hijhi−1,j = kijki,j−1,(20)

for all i, j which can be found for instance in [2]. If a Kœnigs net is a cone-net in the horizontal
direction, i.e., hij = 1 and has also one vertical cone-strip (e.g., k0,j = 1), then Equation (20)
implies that the net is a double cone-net.

Remark 45 (Cauchy data for double cone-nets). Any double cone-net over a rectangular domain
is uniquely determined by any two cone-strips Bi0 and Bj0 .

Double cone-nets have also been investigated in the framework of so called multi-nets [1].

Definition 46. A discrete conjugate net f : Z2 ⊃ U → R3, is called a multi Q-net, if for every
i0 6= i1 and j0 6= j1 the quadrilateral (fi0,j0 , fi1,j0 , fi1,j1 , fi0,j1) is planar. The net f is called multi-
circular if the quadrilaterals (fi0,j0 , fi1,j0 , fi1,j1 , fi0,j1) have circumcircles (see also Lemma 70).

Bobenko et al. [1, Th. 2.4] show that a net is a double cone-net if and only if it is a multi Q-net.
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Figure 8. Left: Power of a point x with respect to a circle C with center c and radius ρ. Center: The three radical

axes of any pair of three circles (C and circumcircles of qij and qi+1,j) meet in a point. Right: An embedded
concyclic quadrilateral and a non-embedded concyclic quadrilateral.

3.4. Discrete principal cone-nets. A common discretization of principal nets are nets with Z2

combinatorics such that every face has a circumcircle [2]. The following definition is not to be
confused with so called conical nets in [17, 2] which also discretize principal nets.

Definition 47. A discrete principal cone-net is a discrete cone-net with concyclic faces, i.e.,
fij , fi+1,j , fi+1,j+1, fi,j+1 is a concyclic quadrilateral for all i, j with circumcirle Cij , and the edges
fij ∨ fi,j+1 pass through a common point rj , for all i. If no point rj is a point at infinity, we call
the principle cone-net proper.

Corollary 48. Discrete conical Combescure transformations map principal cone-nets to principal
cone-nets.

Proof. Let f be a discrete cone-net and f∗ a CCT of f . Since corresponding edge vectors of f and
f∗ are parallel, the quadrilaterals qij of f have circumcirlces if and only if the quadrilaterals q∗ij of
f∗ have circumcirlces. �

In our investigation we will take advantage of the concept of the power of a point with respect
to a circle (Figure 8 left). Let C be a circle with center c and radius ρ, and let x be a point in the
plane carrying that circle. Further, let l be a line through x intersecting the circle C in two points
q1, q2. The (oriented) power of the point x with respect to the circle C is given by (see., e.g., [7])

p := 〈x− q1, x− q2〉.

The power is independent of the choice of the line l which implies

p = (‖c− x‖+ ρ)(‖c− x‖ − ρ).

Note that the power is positive if x lies outside C and negative if x lies inside. The radical axis of
two circles in a plane is the straight line of points with equal power to both circles. If two circles
are intersecting, then the radical axis is given by the line through the intersection points. The three
radical lines of three circles are either parallel if the three corresponding centers lie on a straight line
or otherwise they meet in a point, the so called radical center (see, e.g., [7] and Figure 8 center).



SMOOTH AND DISCRETE CONE-NETS 23

Definition 49. For a discrete principle net, we define the geodesic curvature κgij of a quadrilateral

qij in a strip Bj via the power of the Laplace point L2
ij with respect to the circumcircle Cij :

|κgij | := |pij |
− 1

2 := |〈L2
ij − fij ,L2

ij − fi,j+1〉|−
1
2 = |〈L2

ij − fi+1,j ,L2
ij − fi+1,j+1〉|−

1
2 .

The sign of the geodesic curvature is defined by considering the order of the points. The curvature
is positive if fi,j+1 is between fij and L2

ij and negative if fij is between fi,j+1 and L2
ij .

Remark 50. Note, that the powers of both Laplace points L1
ij ,L2

ij with respect to the circumcircle
of the corresponding quadrilateral is positive if and only if the quadrilateral is embedded, cf. Figure 8
right (i.e., fij , fi,j+1, fi+1,j+1, fi,j+1 lie on the convex hull of the quadrilateral in cyclic order).

Lemma 51. A discrete principle net is a cone-net, if and only if all horizontal or vertical strips
have constant geodesic curvature.

Proof. Assume the horizontal strips Bj have constant geodesic curvature and consider two neigh-
boring quadrilaterals qij , qi+1,j with circumcircles Cij , Ci+1,j . Since the quadrilaterals have the
same geodesic curvature, we have

〈L2
ij − fi+1,j ,L2

ij − fi+1,j+1〉−
1
2 = 〈L2

ij − fij ,L2
ij − fi,j+1〉−

1
2

= κgij = κgi+1,j = 〈L2
i+1,j − fi+1,j ,L2

i+1,j − fi+1,j+1〉−
1
2 .

Therefore, the Laplace points agree, i.e., L2
ij = L2

i+1,j . Induction on i implies that the strip Bj is
a cone.

Now, we assume that the strips Bj are cones. The cone tip rj = L2
ij has the same power with

respect to all circumcircles Cij of the strip Bj :

pj = 〈rj − fij , rj − fi,j+1〉 = 〈rj − fi+1,j , rj − fi+1,j+1〉.

Therefore, the geodesic curvature κgij = p
− 1

2
j is constant for all quadrilaterals of the strip Bj . �

Note that for a principle cone-net, the cone tip rj is the radical center for any three circumcircles
of the strip Bj which leads to the following definition.

Definition 52. We call the sphere with center rj and radius 1/κgij geodesic curvature sphere and

denote it by Sgj .

Lemma 53. Let f be a discrete principle cone-net and f∗ its CCT with respect to λ, then the
geodesic curvature of the cone-strips Bj change according to

|κg ∗ij | =
|κgij |

|λjλj+1|1/2
.

Proof. The CCT scales the boundary polygons of the cone-strip Bj by λj resp. λj+1, (see Corol-
lary 39). Since corresponding edge vectors of f and f∗ are parallel, the distance between the
polygons and the cone tip rj get scaled by the same factor. Therefore

‖r∗j − f∗ij‖ = |λj | ‖rj − fij‖
⇒ |p∗j | = ‖r∗j − f∗ij‖ ‖r∗j − f∗i,j+1‖ = |λjλj+1| ‖rj − fij‖ ‖rj − fi,j+1‖

⇒ |κg ∗ij | =
1

|λjλj+1|1/2
|κgij |. �
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Lemma 54. Let f be a principle cone-net and let j be fixed. Then the inversion at the geodesic
curvature spheres Sgj preserves the circumcircles {Cij}i and maps the boundary polygons (fij)i and

(fi,j+1)i of the strip Bj onto each other. In particular, Sgj intersects the circumcircles {Cij}i and

the edges {fij ∨ fi,j+1}i orthogonally.

Proof. Since all faces of the strip are concyclic, the oriented power of rj with respect to the two
corresponding vertices on these edges is constant

〈fij − rj , fi,j+1 − rj〉 = pj = const for all i,

and therefore

〈fij − rj , fi,j+1 − rj〉(fi,j+1 − rj) = pj(fi,j+1 − rj).

From the identity
fi,j+1−rj
‖fi,j+1−rj‖ =

fij−rj
‖fij−rj‖

〈fi,j+1−rj ,fij−rj〉
‖fi,j+1−rj‖‖fij−rj‖ we conclude

(21) fi,j+1 = pj
fij − rj
‖fij − rj‖2

+ rj .

This equation represents an inversion in the geodesic curvature spheres Sgj with center rj and radius√
pj .

Since the lines {Lij}i meet in the center of the sphere Sgj , they intersect Sgj orthogonally and the

lines are mapped to themselves under the inversion above. Therefore, the quadrilaterals {qij}i and
their circumcircles are preserved by the inversion. This is the case if and only if the circumcircles
{Cij}i intersect the sphere Sgj orthogonally. �

Since Möbius transformations map spheres to spheres and preserve angles, we obtain the following
corollary.

Corollary 55. A Möbius transformation applied to the vertices of a discrete principal cone-net is
a discrete principal cone-net.

Note that the new cone tips are in general not obtained by the Möbius transformation applied
to the old cone tips. They are the centers of the new geodesic curvature spheres.

Remark 56 (Cauchy data for principle cone-nets). Suppose we are given a principle cone-net with
horizontal cone-strips Bj and constant geodesic curvature spheres Sgj . Then the coordinate polygons

(fij)j are orthogonal trajectories of the geodesic curvature spheres Sgj . In particular, the surface f

is uniquely determined by an initial polygon (fi,0)i and the family of geodesic curvature spheres Sgj .

Lemma 57. Any four points fij , fi,j+1, fi+k,j , fi+k,j+1 of a cone-strip of a principle cone-net are
concyclic (see Figure 8 center). Further, the cone tip rj has the same power with respect to this
circle as to any circumcircle of the strip.

Proof. Consider the circle C through the three points fij , fi,j+1, fi+k,j . The power of the cone tip
rj with respect to the circle C is the same with respect to any circumcircle of the strip. Therefore,
the line through rj and fi+k,j intersects C in the point fi+k,j+1. �

3.4.1. Discrete tractrix surfaces I. There are several discretizations of a tractrix curve (see, e.g., [18]
where discretizations of the hyperbolic cosine are constructed from several discretizations of a
tractrix). The following is based on a Darboux transformation for discrete curves [12].
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Figure 9. Left: Discrete tractrix construction (cf. Definition 58) with base curve xj and tractrix tj . Center: The

base curve xi, its Darboux transform di, and the tractrix ti. Right: Illustration for the proof of Lemma 60: If two

points ki, ki+1 are at the same distance to xj , then the next vertices k̃i, k̃i+1 in the respective tractrices are concyclic

with ki, ki+1.

Definition 58. Let xj , dj ∈ R3 be two polygons such that ‖δjxj‖ = ‖δjdj‖, ‖xj − dj‖ = const
and the quadrilateral xj , xj+1, dj+1, dj lies in a plane but does not form a parallelogram. Then the
polygons xj and dj are Darboux transforms of each other and tj := 1

2 (xj + dj) is called discrete
tractrix with base polygon xj or dj (see Figure 9 left and center).

We will define discrete tractrix surfaces in close analogy to Section 2.5.1.

Definition 59. Let xj , ki ∈ R3 be two polygons and let us consider through each vertex of ki the
discrete tractrix with base curve xj . Then the discrete net formed by these tractrices is called a
generalized discrete tractrix surface. If the vertices of the initial polygon ki lie on a sphere around
the first point of the base curve, we call the net discrete tractrix surface.

Lemma 60. The generalized discrete tractrix surface is a discrete conjugate net (i.e., a net with
planar faces).

Proof. Since tj is the midpoint of xjdj and tj+1 is the midpoint of xj+1dj+1, the connecting line
tjtj+1 passes through rj which is the midpoint of xjxj+1 (Figure 9 left). This property does not
depend on the initial vertex position of tj . Therefore, the quadrilateral generated by this tractrix

construction through ki and ki+1 generates a quadrilateral ki, ki+1, k̃i+1, k̃i with edges kik̃i and

kik̃i passing through a common point rj (see Figure 9 right). This quadrilateral must therefore be
planar. Consequently, all quadrilaterals of the net are planar. �

All (generalized) tractrix surfaces are cone-nets with discrete cones along horizontal strips and
with cone tips rj .

Lemma 61. Any tractrix surface is a discrete principal net with concyclic faces, i.e., if the initial
polygon ki in the construction lies on a sphere with center xj then the quadrilaterals of the net have
circumcircles.

Proof. This follows from elementary geometric properties of the power of a point with respect to a
circle. We have (see Figure 9 right)

〈rj − ki, rj − k̃i〉 = −〈rj − si, rj − k̃i〉 =: pj
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Figure 10. Three discretized tractrices. A (fully) discrete tractrix with planar quadrilateral faces (left), two semi-

discrete tractrices of the types f : Z× R→ R3 and f : R× Z→ R3, i.e., smooth and discrete directions are reversed
(center and right).

and

〈rj − ki+1, rj − k̃i+1〉 = −〈rj − si+1, rj − k̃i+1〉 = pj ,

which both equal pj since the power pj of the point rj with respect to the circumcircle of si, si+1, k̃i, k̃i+1

does not depend on the secant. Therefore, we obtain

〈rj − ki, rj − k̃i〉 = 〈rj − ki+1, rj − k̃i+1〉,

which is only possible if the four points ki, ki+1, k̃i+1, k̃i lie on a circle. �

In analogy to Corollary 26 we can show the following two theorems.

Theorem 62. Any CCT of a discrete tractrix surface is a proper discrete principal cone-net.

Proof. Let f be a discrete tractrix surface. Theorem 38 implies that any CCT of a discrete tractrix
surface is a discrete cone-net. The transformed net is also a principal net since all edge-wise parallel
quadrilaterals of a concyclic quadrilateral are concyclic. �

Theorem 63. Any proper discrete principal cone-net with spherical parameter polygons (fij)i is a
CCT of a discrete tractrix surface.

Proof. Let f be a discrete principal cone-net with spherical parameter polygons (fij)i. Furthermore,

let Sfj be the sphere with radius Rj containing the polygon (fij)i. The CCT with λj = 1
Rj

transforms f into a net h := C 1
Rj

(f) where every polygon (hij)i is obtained by a scaling of (fij)i

with factor 1
Rj

(up to translation). The corresponding spheres Shj which contain (hij)i are obtained

from Shj by scaling with the same factor 1
Rj

and are therefore unit spheres. Let rhj denote the cone

tips of h. The inversion in the geodesic curvature sphere of h centered at cone tips rhj maps Shj to

Shj+1. Since the two spheres are unit spheres, rhj must be the midpoint of the two centers of the
spheres. The construction from the spherical polygon (hij)i to the polygon (hi,j+1) corresponds to
the tractrix construction (see Figure 9 right). Consequently, h is a tractrix surface. And f = CRj (h)
which concludes the proof. �

3.4.2. Discrete tractrix surfaces II. We obtain another discretization of a tractrix surface by dis-
cretizing the characterizing property of Lemma 24. A tractrix surface is parametrized by a family of
orthogonal trajectories of a one-parameter family of spheres with constant radii. Lemma 54 readily
provides us with the discrete trajectory construction.
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Figure 11. Top-left: A discrete canal surfaces as in Definition 66. The “zig-zaggy” parameterlines are spherical and

have constant curvature circles (red). Bottom-left: The vertices that define the curvature circles of the discrete canal
surface (top-left) constitute a discrete canal surface by themselves but with concyclic parameter polygons. Right: A

discrete canal surface with concyclic parameter polygons as in [11].

Definition 64. Let fi,0 be a polygon and Sgj be a sequence of geodesic curvature spheres of constant
radii. Then the successive inversion of the initial polygon in the geodesic curvature spheres generates
a discrete tractrix-II surface.

Two endpoints fi,0, fi+1,0 of an edge together with their reflections fi,1, fi+1,1 in the first geodesic
curvature sphere generate a concyclic quadrilateral. The straight lines fi,0 ∨ fi,1 and fi+1,0 ∨ fi+1,1

pass through the center of the geodesic curvature sphere. Therefore, the tractrix-II surface f is a
principal cone-net.

Consequently, all results obtained so far for discrete principal cone-nets hold for this type of
tractrix-II surface. The main difference to the previous definition of tractrix surfaces is that the
discrete parameter curves (fij)i do not necessarily lie on a sphere.

We therefore obtain a theorem in analogy to Theorem 63 but without the requirement of spherical
parameter polygons.

Theorem 65. Any proper discrete principal cone-net is a CCT of a discrete tractrix-II surface.

Proof. The radius of the geodesic curvature sphere of a proper discrete principal cone-net is 1/|κgij |.
Therefore, Lemma 53 yields the radii of the transformed geodesic curvature spheres after a CCT
with function λ.

Consequently, λ can be chosen in such a way that |κg ∗ij | is constant for all j which implies that
f∗ is a tractrix-II surface. �

3.4.3. Discrete canal surfaces. Stripmodels from annulus-shaped strips of surfaces of revolution
have been studied, e.g., in [22, 23]. These are (semi-)discretizations of a particular class of canal
surfaces. Discrete canal surfaces have recently been revisited in [11]. In the present subsection
we will give a novel and more flexible definition of canal surfaces that includes the discrete canal
surfaces from [11]. Our definition is based on the notion of a Möbius invariant definition of a
curvature circle for discrete curves [19].

The following notions are explained in more detail in [19]. Let us identify R3 with the imaginary
part ImH of the quaternions H. Then four points a, b, c, d have the cross-ratio cr(a, b, c, d) :=
(a− b)(b− c)−1(c− d)(d− a)−1. A new point is computed by

p(a, b, c, d) :=
(
(b− a)(c− a)−1

√
cr(c, a, b, d) + 1

)−1(
(b− a)(c− a)−1

√
cr(c, a, b, d)c+ b

)
.
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It turns out [19, Cor. 4] that p(a, b, c, d) always lies on the circumsphere of a, b, c, d and that the four
points p(a, b, c, d), p(b, c, d, a), p(c, d, a, b), p(d, a, b, c) always lie on a circle [19, Th. 1]. If a, b, c, d are
four successive points of a discrete curve then this circle can be interpreted as a curvature circle for
the discrete curve at edge bc [19, Th. 4]. If a, b, c, d lie on a circle then this circle is identical to the
curvature circle [19, Cor. 1].

Since the curvature lines of a smooth canal surface are circles and since a curve with a constant
curvature circle must be a circle, we impose in the following definition on our discrete parameter
curves in circular direction to have a constant curvature circle.

Definition 66. A discrete canal surface is a principal cone-net f with spherical parameter curves
(fij)i with constant curvature circles. We call the reciprocals of the radii of the spheres discrete
principal curvatures (in circle direction) κ1(j).

Note that discrete parameter curves in circular directions of canal surfaces in our definition are
not necessarily concyclic even though the curvature circle is constant along the curve. However,
since the curvature circle of a concyclic polygon equals the circumcircle, the canal surfaces from [11]
constitute a subclass of ours as there concyclic parameter curves are required.

In analogy to Theorem 27 discrete canal surfaces are characterized by their Gauss image. The
discrete Gauss image of a net f is (in our setting) a net which is edge-wise parallel to f with vertices
on a sphere (cf. [2]).

Theorem 67. A discrete principal cone-net is a canal surface if and only if its Gauss image is a
canal surface.

Proof. Lemma 54 implies that the polygons (fij)i and (fi,j+1)i are mapped onto each other by
inversion in the geodesic curvature sphere Sgj with center rj . Therefore, the sphere containing

(fi,j+1)i can be mapped to the sphere S containing (fij)i by a homothety. Applying this homothety
to the entire net yields a net with two co-spherical parameter polygons on S. In this way we
generated the Gauss image of the first strip Bj since all edges are parallel to the corresponding
edges of the original net.

We can continue by mapping the next parameter curve (fi,j+2)i to S with another homothety.
In this way by continuing we obtain the Gauss image.

Since corresponding parameter curves of f and its Gauss image only differ by a homothety (which
is a Möbius transformation) either both have a constant curvature circle or none. �

Definition 68. A (vertex) offset fd of a discrete principal net f has the same combinatorics as
f such that corresponding edges are parallel and the distance between corresponding vertices is
constant.

For nets over a simply connected domain the existence of a vertex offset net is equivalent to the
existence of an edgewise parallel net (fd − f)/d inscribed into the unit sphere [21] which is the
discrete Gauss image. Note that the set of edgewise parallel nets is a vector space with vertex-wise
addition and scalar multiplication.

Theorem 69. Let f be a discrete canal surface and κ1(j) the discrete principle curvature of the
discrete circular parameter curves. The offset fd is up to translation a CCT of f for λj = 1+d κ1(j).

Proof. By the proof of Theorem 67 the Gauss image n exists and corresponding i-parameter curves
are related by a homothety. The scaling factor from (fij)i to its Gauss image (nij)i is κ1(j).
Consequently,

fd = f + dn implies (fij)
d
i = (fij)i + d (nij)i = (fij)i + d κ1(j)(fij)i = (1 + d κ1(j))(fij)i,
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which concludes the proof. �

Lemma 70. Any double principle cone-net f : Z2 → R3 is a multi-circular net (cf. Definition 46).

Proof. Bobenko et al. [1, Th. 2.4] show that any double cone-net is a multi-cone-net.
Moreover, Lemma 57 implies that any strip Bj is a multi-circular strip in itself.
Consequently, the strip (fi0,j , fi1,j , fi1,j+1, fi0,j+1)j is a circular cone-strip and by Lemma 57 a

multi-circular strip. Hence, the quadrilateral (fi0,j0 , fi1,j0 , fi1,j1 , fi0,j1) is concyclic and therefore
the net is multi-circular. �

In analogy to Theorem 30 we obtain:

Theorem 71. Every discrete double principal cone-net is Möbius equivalent to a surface of revo-
lution, cone or cylinder.

Proof. Lemma 70 implies that the net is multi-circular. Bobenko et al. [1, Th. 7.7] show that
multi-circular nets are Möbius equivalent to surfaces of revolution, cones or cylinders. �

4. Appendix

Proof of Theorem 30. We prove the statement by analyzing three cases. Before we start with that
we compute the derivatives of the curves traced out by the cone tips.

Let f : U → R3 be a double principal cone-net. Theorem 19 implies that f is a Kœnigs net and
orthogonal Kœnigs nets are isothermic. After a possible reparameterization (u 7→ ũ(u), v 7→ ṽ(v)),
we can assume that the parameterization is conformal, i.e., α = ‖fu‖ = ‖fv‖ = β. Then we have

βv
β

=
αv
α

(6)
=
−βκ
α

= −κ, αu
α

=
βu
β

(7)
=
αη

β
= η.(22)

For coordinate curves with non-vanishing geodesic curvature we denote the tips of the cones
along the u-parameter curves by r(v) and the tips of the cones tangent to the v-parameter curves
by s(u). Using Equation (2) and the frame Equations (5) we compute the curve of cone tips

r(v)
(12)
= f(u, v) +

α

κ
Y (u, v) and analogously s(u) = f(u, v)− α

η
X(u, v),

and their derivatives:

rv(v)
(5)
= −ηα

κ
X +

(
α+

(α
κ

)
v

)
Y +

dα

κ
N

(22)
=

α

κ

(
− ηX − κv

κ
Y + dN

)
su(u)

(5)
=
(
α−

(α
η

)
u

)
X − κα

η
Y − cα

η
N

(22)
=

α

η

(ηu
η
X − κY +−cN

)
.(23)

After this preparatory work we start to analyze three cases depending on the values of the
geodesic curvature of the parameter lines. First, note that the (generalized) spheres of the family
S(u) with centers s(u) and radii |kvg |−1 intersect the (generalized) spheres of the family S(v) with

centers r(v) and radii |kug |−1 orthogonally since f(u, v)− s(u) ⊥ f(u, v)− r(v).
—Case 1: All parameter curves are geodesics. Consequently, η = κ = 0. From the Gauss

Equation (8), we obtain 0 = κv − ηu = cd. If c = 0, we further have Xv = Xu = Yu = 0 (cf. (5)),
hence the u-curves are straight lines and the surface is a cylinder over the v-curves. The case d = 0
works analogously.

—Case 2: The u-curves are geodesics and there exist v-curves that are not geodesics. Con-
sequently, κ = 0. Due to Lemma 20 and its proof the geodesics are contained in the planes
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Figure 12. Two families of orthogonally intersecting spheres. The centers of one of the families lie on the z-axis

and the centers of the other family in the xy-plane. Left: The sphere with radius
√
q centered at the origin gets

intersected orthogonal by all spheres S(u) while all the spheres S(v) intersect that sphere in the same circle lying in

the xy-plane. Right: The sphere with radius
√
|q| centered at the origin, gets intersected orthogonally by all spheres

S(v) while all the spheres S(u) contain the north and south pole of the that sphere.

S(v) = {x ∈ R3|〈x− f(u, v), Y (v)〉} which intersect the spheres S(u) orthogonally. Therefore, S(v)
contains the centers of S(u).

All planes S(v) are orthogonal to any sphere S(u) hence they all pass through their centers s(u).
Let us choose an arbitrary sphere S(u0). Consequently, all planes S(v) pass through s(u0). Now,
either all these planes only share one point, s(u0), or they share a straight line passing through
s(u0).

In the first case the spheres S(u) are concentric which implies su(u) = 0 and Equation (23)
yields ηu = c = 0. This implies Xu = 0 (cf. (5)) and the u-curves are straight lines that meet in
the common center of the spheres. The surface is therefore a cone.

In the second case the centers of S(u) lie on a straight line s(u). From κ = 0 we obtain that Y
is orthogonal to su(u) (see Eqn. (23)). This implies that the v-curves lie in planes orthogonal to
su(u) and the surface is a surface of revolution.

—Case 3: Both families of parameter curves contain curves with non-vanishing geodesic cur-
vature. The Gauss Equation (8) implies that the tangent vectors of the curves of cone tips are
orthogonal at every point

〈rv(v), su(u)〉 =
α

κ

α

η
(−ηu + κv − cd) = 0.

Note that neither rv(v) nor su(u) can be zero because if one family of spheres is concentric, then the
other family has to consist of planes containing the center. This would contradict the assumption,
that both families of parameter curves contain curves with non-vanishing geodesic curvature. Hence,
one of the curves is a straight line and the other one lies in a plane orthogonal to this line. W.l.o.g.,
we assume that r(v) is contained in the z-axis and that s(u) is contained in the xy-plane. We
choose a sphere S(u0) with radius R(u0) = (κu0

g )−1 and center s(u0) in the xy-plane. For every
sphere S(v) we denote the distance of its center r(v) to the center s(u0) by D(v) (see Figure 12).
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Pythagoras’ theorem implies

‖s(u0)‖2 + ‖r(v)‖2 = D(v)2 = R2(v) +R(u0)2

⇔ R2(v)− ‖r(v)‖2 = ‖s(u0)‖2 −R(u0)2 =: q,

for some q ∈ R. If q > 0 (Figure 12 left), the last equation implies that all spheres S(v) intersect the
xy-plane in the same circle {(x, y, 0) ∈ R3 | x2 + y2 = q}. After applying a Möbius transformation
that maps this circle to a straight line the spheres S(v) become planes that intersect in that line
and we are in the same situation as considered in Case 2. If q < 0 (Figure 12 right), all the spheres
S(v) intersect the sphere K := {(x, y, z) ∈ R3 | x2 + y2 + z2 = −q} orthogonally and the spheres
S(u) intersect the z-axis in the points (0, 0,±q). The inversion in the sphere with center (0, 0,−q)
and radius

√
−2q, maps the sphere K to the xy-plane and the z-axis to itself. Since the spheres

S(v) intersect K and the z-axis orthogonally, their images under the inversion are spheres centered
at the origin. The spheres S(u) get mapped to planes containing the origin because they contain
the points (0, 0,±q). Hence, we are again in the same situation as discussed in Case 2. If q = 0,
all spheres contain the origin. An inversion at any sphere with the origin as center maps all the
spheres to planes. This situation was considered in Case 1. �
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[24] Robert Sauer and Heinrich Graf. Über Flächenverbiegung in Analogie zur Verknickung offener Facettenflache.

Math. Ann., 105(1):499–535, 1931.

[25] Kiumars Sharifmoghaddam, Georg Nawratil, Arvin Rasoulzadeh, and Jonas Tervooren. Using flexible trapezoidal
quad-surfaces for transformable design. In A. Behnejad, G. Parke, and O. Samavati, editors, Inspiring the Next

Generation, page 12. University of Surrey, 2021.

[26] Oded Stein, Eitan Grinspun, and Keenan Crane. Developability of triangle meshes. ACM Trans. Graph., 37(4),
2018.

[27] Chengcheng Tang, Pengbo Bo, Johannes Wallner, and Helmut Pottmann. Interactive design of developable

surfaces. ACM Trans. Graph., 35(2), jan 2016.
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