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Abstract

The fabrication and construction of curved beams along freeform skins pose many
challenges related to their individual and complex geometry. One strategy to sim-
plify the fabrication process uses elastic deformation to construct curved beams
from flat elements. Controlling the curvature of the design surface and beams
has the additional potential to create repetitive building parts with beneficial beam
orientation.

We aim for strained gridshells built entirely from straight or circular lamellas of
the same radius and with orthogonal nodes. The lamellas are aligned normal to
a reference surface enabling an elastic assembly via their weak axis and a local
transfer of loads via their strong axis.

We show that the corresponding reference surfaces are of constant mean curvature
and that the network of beams bisects principal curvature directions. We introduce
a new discretization of these networks as quadrilateral meshes with spherical vertex
stars and present a computational workflow for the design of such structures.

The geometric advantages of these networks were key for the fabrication and assem-
bly of a prototype structure, the Asymptotic Gridshell. We describe the complete
process from design to construction, presenting further insights on the symbiosis of
geometry, fabrication and load-bearing behavior.

Key words: curved support structures, CMC-surfaces, elastic deformation, developable surfaces,
strained gridshell, asymptotic curves, minimal surfaces, FEM
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Figure 1: The Asymptotic Gridshell was designed for a green courtyard encompassing a
central tree. The strained gridshell was assembled with orthogonal nodes from straight and
flat lamellas, and erected elastically. (Image: Felix Noe)

1 Introduction

Gridshells are highly efficient structures because they carry loads through their
curved shape with very little material. Their construction however, poses great
challenges related to their complex geometry. In a freeform grid every node and
every beam are likely to be different and have to be fabricated individually using
computer aided, 3D manufacturing tools. Controlling the curvature parameters of
design surfaces and beam networks, and using the elastic behavior of material to
shape these grids opens up new strategies for fabrication-aware design.

We study structures that can be constructed with congruent nodes from lamella
that are orientated normal to the underlying reference surface and have straight or
circular development (Figure 1). The slender lamellas allow for an elastic assembly
via their weak axis and a local transfer of loads via their strong axis. The lamella
network can be transformed elastically following a predetermined kinetic behavior.
This enables a simple erection process without formwork. The final grid forms a
doubly-curved network, enabling an efficient, spatial load transfer as a shell structure.
We are interested in the possible shapes, their computational design and solutions
for construction.

Related work. We follow up on recent work by Tang et al. (2016) on curved
support structures from developable strips. A prominent example of this type is
provided by the Eiffel Tower Pavilions (Schiftner et al. (2012), Figure 2). However,
this support structure follows principal curvature lines and does not lead to lamellas
with straight or circular development. The design of strained grid structures with
the use of developable strips has been investigated by Schling and Barthel (2017).

From the construction perspective our approach is inspired by the strained timber
gridshells of Frei Otto (Burkhardt (1978)), namely, the Multihalle in Mannheim, see
Figure 2.
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Figure 2: Curved grid structures: Left: Multihalle Mannheim by Frei Otto, 1975. The
strained timber gridshell is formed from elastically-bent timber laths. Right: The Eiffel
Tower Pavilions by Moatti Rivière Architects. The facade structure follows the principal
curvature directions. The curved steel beams were fabricated from flat strips of steel.

(Images: Rainer Barthel, Michel Denancé)

Overview and contribution. We show that the requirements on lamellas and
nodes lead to special curve networks on surfaces. Circular lamellas of constant
radius and right node angles live on surfaces of constant-mean-curvature (CMC).
Our computations use a novel discrete representation, namely quadrilateral meshes
with spherical vertex stars. They generalize the well-known asymptotic nets with
planar vertex stars (Bobenko and Suris (2008)).

We present a method for the computation of isothermic networks on CMC surfaces.
The diagonals of such a network form curves of constant normal curvature κn

and define the attachment points of lamellas of radius r = 1/κn with 90 degree
intersection angles. This includes the special case of straight lamellas with r = ∞.

The implications of planning and constructing such networks for a load-bearing
gridshell are described in Section 3. Our case study, the Asymptotic Gridshell, was
designed using asymptotic curves (vanishing normal curvature) on a minimal surface
(zero mean curvature) and constructed from straight lamellas and orthogonal nodes.
We discuss the architectural design process of surface and network, introduce a detail
solution for a typical grid-joint, and present the fabrication and erection process.
The load-bearing behavior is analyzed using a novel workflow to simulate residual
stresses.

2 Theory and computation

Let us briefly recall a few facts from differential geometry. It will be helpful to know
about the Darboux frame which is attached to a curve c on a surface S. Let c(s)
be an arc length parametrization of that curve. At each point c(s), the Darboux
frame consists of the unit tangent vector t(s), the unit vector n(s) orthogonal to the
surface S, and the sideways vector u(s) = n(s)× t(s), see Figure 3. As the frame
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Figure 3: A developable strip attached orthogonally to a surface S along c. Its rulings r are
generally not parallel to the normal vector n. This results in curved intersections of strips.

moves along the curve, at any time s the angular velocity vector d is given by

d = τgt−κnu+κgn.

Its coefficients are important quantities of the surface curve c: geodesic curvature
κg, normal curvature κn and geodesic torsion τg. The derivatives of the frame
vectors with respect to s satisfy t′ = d× t, u′ = d×u, n′ = d×n. Inserting the
above expression for d, one finds

κg = t′ ·u, κn = t′ ·n, τg = u′ ·n.

Thus, κg and κn are the tangential and normal components of the curvature vector
t′, and τg is the normal component of u′.

The geometric model of a curved support structure is a network of developable
surface strips which are orthogonal to a reference surface S. Let us consider such a
developable strip D, attached to S along the common curve c. If we want to make
a model from originally straight flat strips, the curve c must map to a straight line
in the planar unfolding of D. This means that c has to have vanishing geodesic
curvature with respect to D. At each point of c, the tangent planes of D and S are
orthogonal. Therefore, c has vanishing normal curvature with respect to S; it is a
so-called asymptotic curve on S.

We will also study models from strips whose flat developments are circular. In order
to achieve a circle of radius r as the image of c in the flat development of D, c must
have constant geodesic curvature 1/r with respect to D and therefore constant
normal curvature 1/r with respect to the reference surface S.

Let us summarize these important facts: A flat circular strip which is subject to
bending and no stretching can be attached orthogonally to a given surface S only
along a curve c of constant normal curvature. In particular, a straight strip can only
be attached orthogonally along an asymptotic curve of S.

The developable surface D which is orthogonal to S along c is in general not formed
by the surface normals along c. The surface D is enveloped by planes orthogonal to
S and tangent to c, but its straight lines (rulings) are in general not orthogonal to S
(Figure 3). As discussed in detail by Tang et al. (2016), the ruling vectors are given
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by r = κgn+τgt and thus agree with the surface normal n for τg = 0, which in most
of our examples is not the case. Related to this fact is the following one: The strips
intersect at a node along a curve n̄ and not in the surface normal (Figure 3, right).
However, this curve n̄ is usually nearly straight and for practical purposes may be
approximated by a straight line. We will also talk about a node angle, which refers
to the one measured directly at the reference surface S. Theoretically, the angle
between the two strips differs slightly along n̄.

To have more repetition in parameters, one may want to achieve the same node
angle for all nodes. To discuss this, we need Euler’s formula for the distribution of
normal curvatures at a surface point:

κn = κ1 cos2
φ +κ2 sin2

φ .

Here, κ1,κ2 are the two principal curvatures and φ is the angle between the first
principal curvature and the direction for which we compute the normal curvature κn.
Directions with the same normal curvature are symmetric with respect to the principal
directions as they are represented by φ and −φ . If we want a constant right node
angle and work with strips of the same radius in the development, the two directions
meeting at a node are given by φ =±π/4 and therefore κn = (κ1 +κ2)/2 = H, H
denoting mean curvature. This means that such a structure can only realize surfaces
S for which the mean curvature equals 1/r. These CMC surfaces are very well
studied in differential geometry. A special case occurs when we use straight strips
(r = ∞), where we obtain H = 0 and thus minimal surfaces.

CMC surfaces are a mathematical representation of inflated membranes, such as
soap bubbles or pneus. Their curvature behavior corresponds to the equilibrium
shape caused by a pressure difference and can form both synclastic and anticlastic
surface regions. Minimal surfaces are a subset of CMC surfaces, in which the
pressure difference is zero. They can be found in nature in the form of soap films,
creating the minimal area within given boundaries.

We have just derived another important fact: Curved support structures from
circular strips of the same radius r and with a right node angle model surfaces
with constant mean curvature H = 1/r; in particular, straight strips yield models
of minimal surfaces. The strips of the support structure are attached along those
curves which bisect the principal directions. These bisecting directions are those
with extremal geodesic torsion.

CMC surfaces, and in particular minimal surfaces, are so-called isothermic surfaces.
They possess a parameterization s(u,v) in which the isoparameter lines are principal
curvature lines and which describes a conformal (angle preserving) mapping from
the (u,v)-parameter plane to the surface. This parameterization maps the bisecting
grid u± v = const. onto those curves along which our strips can be attached. This
fact is used later in our algorithm.

If we require a constant, but not necessarily right node angle 2φ , Euler’s formula
shows that the surface S possesses a linear relation between its principal curvatures,
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Figure 4: Left: Meusnier’s theorem, relating the curvature of a curve c passing through p
to normal curvature at p in direction of c′. Right: Spherical vertex star.

Aκ1+Bκ2 = 1/r, with A= cos2 φ , B= sin2
φ . Structures from straight strips (r =∞)

lead to surfaces with a constant negative ratio of principal curvatures κ1/κ2 =−B/A.
Those have recently been studied by Jimenez et al. (2018).

2.1 Discretization

For digital design of the structures we have in mind, it is very useful to have discrete
models of the network of curves along which the strips are attached. This means
that we have to come up with quad meshes whose mesh polylines discretize the
system of curves of constant normal curvature κn on a smooth surface.

It is useful to know about Meusnier’s formula and its geometric interpretation (see
Figure 4). The formula relates curvature κ of a curve c on a surface to its normal
curvature κn via κn = κ cosψ , where ψ is the angle between the curve’s osculating
plane and the surface normal. Geometrically, this means that the osculating circle
of c (which has radius ρ = 1/κ) lies on a sphere of radius ρn = 1/κn, which is
tangent to the surface. Note that κn only depends on the tangent direction. Hence,
all curves on a surface which pass through a given point p with a fixed tangent
possess osculating circles at p which lie on the corresponding Meusnier sphere. This
knowledge allows us to prove the following fact:

A quad mesh of regular combinatorics for which each vertex and its four connected
neighbors lie on a sphere of constant radius r, discretizes a network of curves of
constant normal curvature 1/r on a smooth surface.

For a proof, we consider a vertex vi, j and its four connected neighbors vi−1, j, vi+1, j,
vi, j−1, and vi, j+1 (see Figure 4). By our assumption, these 5 points lie on a sphere
Si, j of radius r. The three points vi−1, j, vi, j, vi+1, j are consecutive points on a
discrete parameter line and lie on a circle, which is a discrete version of the osculating
circle of that parameter line at vi, j. Of course, this circle lies on Si, j. Likewise,
the three points vi, j−1, vi, j, vi, j+1 define a discrete osculating circle for the other
discrete parameter line, which also lies on Si, j. These osculating circles can be
seen as tangent to an underlying surface and thus we see that the sphere Si, j is
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tangent to that surface and contains the osculating circles. Hence, it is the common
Meusnier sphere to the two parameter lines through vi, j. As all these vertex spheres
have radius r, we have a discretization of the network of curves of constant normal
curvature 1/r.

In order to achieve a right angle in the discrete sense we require that the sum of
opposite angles around vi, j is equal (Figure 4, right). This discrete orthogonality
condition is also used for conical meshes (Liu et al. (2006)). If we apply the right
angle condition in addition to the sphere condition, we obtain a new discretization
of CMC surfaces. Only in the special case of r = ∞, where the spheres degenerate
to planes, do we arrive at a known asymptotic discretization of minimal surfaces.

A careful study of meshes with vertex spheres (not necessarily of constant radius)
and their special cases is left for future research; it is more a topic of discrete
differential geometry rather than architectural geometry.

2.2 Implementation

A key step is the computation of isothermic networks on CMC surfaces. Networks are
represented as quad dominant meshes. An isothermic mesh M on top of a reference
surface S is characterized by (i) edges aligned to principal curvature directions of
S and (ii) quadrilateral faces that are as square as possible. As mentioned above,
such networks always exist on CMC surfaces. The main difference between two such
networks on the same CMC surface is the size of the squares.

Approach. We start from an initial quad mesh whose edges are aligned to principal
curvature directions of a reference CMC surface S. If such a mesh M0 cannot be
created with the help of a known parametrization of S, we use T.MAP (Evolute
GmbH (2018)) to initialize M0.

We iteratively deform M0 to an isothermic mesh by letting it slide along principal
curvature directions of S until all faces are as square as possible; we refer to this
process as straightening. Note that straightening does not provide a solution
to the difficult problem of singularity resolution since it does not change mesh
combinatorics.

The main tool used during straightening is so-called guided projection as intro-
duced by Tang et al. (2014). Guided projection allows us to prescribe a set of
constraints in terms of vertex coordinates, face normals, curvature directions, and
other mesh/surface-related quantities. A solution to this set of constraints yields an
isothermal mesh M1 to which we apply mid-edge subdivision in order to obtain a
mesh M2 whose edges are aligned to directions of constant normal curvature on S
(see Figure 5 for an illustration). If the density of curves is not chosen with care, the
resulting isothermic mesh may only cover part of S as illustrated in the small inset.
In this example we added additional horizontal curves and let the straightening
process distribute them across the surface. As a rule of thumb, it is beneficial to
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M0 M1 M2

Figure 5: From left to right: Principal but not yet isothermic mesh on an unduloid surface.
Straightening deforms the rectangles of M0 into squares of M1. Mid-edge subdivision yields
a mesh M2 with edge polylines aligned to directions of constant normal curvature on the
unduloid.

have a reference surface S larger than the actual structure to give the straightening
process enough room.

We lay out strips orthogonal to S along each polyline of constant normal curvature
of M2. To this end we use the corresponding normals of the reference surface S as
initial rulings. Those strips are not yet developable and are subject to optimization
via guided projection.

Guided projection. In a nutshell, guided projection takes a set of simultaneous
equations and ‘solves’ them by performing Gauss-Newton iterations. The important
observation made by Tang et al. (2014) is that this simple idea performs especially
well if the involved equations are, at most, quadratic in the unknowns. We will not
go into detail of the Gauss-Newton algorithm and refer to Tang et al. (2014). In
the remainder of this section we will talk about the actual equations that we use.

Given a polygonal mesh M, its vertex coordinates vi, i = 1, . . . ,n, define our main set
of variables. All other quantities, such as face normals etc., are derived quantities
that are tied to vertex coordinates via equations. To transform M into a mesh
with planar faces f j, j = 1, . . . ,m, we introduce the vertex normals n j as additional
variables and the equations

1 = nT
j n j

0 = nT
j (vi2−vi1)

where j run over all faces f j of M and the pair (vi1 ,vi2) runs over all edges of f j. A
mesh that satisfies these equations has planar faces f j and corresponding normal
vectors n j. We use these planarity constraints to make a quad strip developable.

Recall that we are not trying to solve a form finding problem: the vertices vi

are constrained to move on S. We can implement this restriction by introducing
equations of the form

0 =
(
mT

i (vi−pi)
)2

+ ε‖vi−pi‖2

where pi is the footpoint of vi on S and mi is the normal of S at pi. This is commonly
referred to as tangent-distance-minimization and restricts the movement of vi to
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Figure 6: From left to right: Base mesh aligned to curves of constant normal curvature.
Initial set of strips, color coded according to developability. Post optimized strips after one
round of subdivision and 20 iterations of guided projection.

the tangent plane of S at pi. Note that pi and mi are not treated as variables –
their values are updated between Gauss-Newton iterations.

With the help of the projection operator we can also achieve alignment of mesh
edges to prescribed directions – in our case directions of principal curvature which
are precomputed on S. We project the midpoint of edge (vi,v j) onto S to obtain
the principal curvature directions d1 and d2. The edge (vi,v j) should be aligned to
one of those directions. The corresponding alignment equation reads

0 = dT
1 (vi−v j)dT

2 (vi−v j) = (vi−v j)
T d1dT

2 (vi−v j).

To obtain a conformal parametrization we use an equation introduced in the context
of circle packings (Schiftner et al. (2009)). For each vertex vi we introduce a scalar
variable li > 0 and the equations

0 = (vi−v j)
T (vi−v j)− (li + l j)

2

where j runs over all neighbors of vertex vi.

Optimizing discrete structures typically requires a fairing term to ensure overall
mesh quality. When dealing with quadrilateral meshes it is sufficient to require that
a generic vertex vi, j (cf. Figure 4) and its four neighbors satisfy

2vi, j = vi−1, j +vi+1, j

2vi, j = vi, j−1 +vi, j+1.

Finally, we may want to optimize a given mesh towards a mesh with spherical vertex
stars as explained above. For each vertex we introduce a radius ri, sphere center ci,
and equation

0 = (vi− ci)
T (vi− ci)− r2

i .

A neighboring vertex v j has to satisfy 0 = (v j− ci)
T (v j− ci)− r2

i .

2.3 Results

We start with a remark on the color coding of strips in this section. To judge
the developability of a quad strip we measure the planarity of individual quads
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Figure 7: Deformation of the unduloid using the spherical vertex star property. The radius
of the red curve was reduced by 10, respectively 20% to drive the deformation. The bottom
row shows a corresponding paper model employing a coarser curve network on the upper
half of the unduloid.

(v1,v2,v3,v4) as the distance of its diagonals. To factor out scaling this number
needs to be normalized. To do this we divide by the mean length of diagonals and
arrive at the following planarity score:

ps(v1,v2,v3,v4) =
2d(v1v3,v2v4)

d(v1,v3)+d(v2,v4)
.

If we imagine a 1×1 m square, a diagonal distance of 1 cm maps to a planarity
score of about 0.007. When applying color, pure red maps to a planarity score of
0.005 or higher.

Starting from an initial quad mesh M aligned to principal curvature directions of a
reference surface S, we used the fairness, alignment, and conformality constraints
while restricting movement to S via the closeness term to turn M into an isothermic
mesh. The diagonals of M define the contact curves along which strips are attached.
Strips are optimized for developability using the planarity constraint while constraining
their lower boundary curves to S and their upper boundaries to a parallel surface at
prescribed distance h.

Unduloid. The unduloid is obtained as a surface of revolution of an elliptic catenary.
Figure 6 shows a network of curves with constant normal curvature, an initial set of
strips using surface normals of a triangle mesh representation as node axis, and a
set of optimized strips.
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Figure 8: From left to right and top to bottom: Ocean reference surface, isothermic mesh,
network of constant normal curvature curves, and the initial set of strips following the
curve network.

We use the spherical vertex star property to explore the deformation behavior of
the curve network. The network of diagonals extracted from the isothermic network
M1 (Figure 5) is a very good starting point to compute a discrete structure that
satisfies this condition. Figure 7 shows the effect of reducing the radius of the red
circle shown in the small inset while preserving edge lengths and the spherical vertex
star condition with a fixed radius for all vertex spheres equal to the inverse of mean
curvature H of the undoloid. The value of H = 1.25 was estimated on a triangle
mesh representation of the unduloid reference surface.

Ocean. Reference surface (H = 0.68), isothermic mesh, curve network, and initial
strips are shown in Figure 8. The set of optimized strips is shown in Figure 9.
Strip quality deteriorates when approaching the boundary. This cannot be fixed
by optimization of strips since rulings are determined by geodesic torsion τg and
normal curvature κn of the guiding curves (which, in our case are uniquely defined
by S and hence cannot be changed individually). As a remedy one needs to explore
nearby reference shapes with a more favorable ratio of τg and κg along the curve
network, or consider twisting lamellas during construction to allow deviation from a
developable strip.

3 The Asymptotic Gridshell

The design and construction of the Asymptotic Gridshell simultaneously serve as
motivation and case study for this paper. The structure illustrates the transfer from
a purely geometrical concept to an architectural project, and presents the benefits
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Figure 9: Strips (of radius 1.47) after 2 rounds of subdivision, each followed by 20 iterations
of guided projection.

and challenges of designing with rigorous geometrical constraints, fabricating and
assembling a strained lamella grid, and analysing its load-bearing behavior.

3.1 Design process

Surface. The initial surface was designed using a fast digital routine for minimal
surface approximation. While the algorithm implements the geometric requirements
of a CMC surface, the designer is responsible for all other requirements like site,
safety and functionality. A key challenge was to find a shape that would benefit
an efficient shell-like load-transfer by approximating qualities of a funicular form.
Manipulating the position and shape of two boundary curves, we created an intricate,
mussel-shaped design with high double curvature and arch-shaped edges. Three
curved horizontal supports nestle well along the complex site boundaries. The
surface creates a circular oculus around an existing tree and opens two archways
that allow circulation throughout the courtyard (Figure 10, left). Once the boundary
curves were defined, the minimal surface was modeled more accurately as NURBS
surface using the Rhino plugin TeDa (Philipp et al. (2016)).

Network and lamellas. The network is designed along the paths of constant
normal curvature (asymptotic curves) bisecting an isothermic principal curvature
network (Section 2.2). This produces an almost square cell layout which is beneficial
both structurally and graphically (Figure 10, right). Furthermore, the diagonal
alignment with the principal curvature directions creates advantages for future
facade solutions with single-curved or planar quadrilateral panels (Liu et al. (2006)).

The lamella geometry was simply defined by the normal vectors n (Figure 3, right).
This creates a well-defined ruled surface strip with straight intersections deviating
from a truly developable surface. As a consequence, the structural strips are twisted
during assembly and experience elastic strain.

The geometry of network and lamellas is dependent on the curvature of the surface.
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Figure 10: Left: The Asymptotic Gridshell was designed to fit an existing green courtyard.
The arch-shaped design fosters the load-bearing behavior of a gridshell. Right: Two planar
surface points create singularities which were iteratively adjusted during the design process
to align in one principal curvature line. (Image: Felix Noe)

A high Gaussian curvature causes a high torsion of the lamellas which is limited by
the elastic capabilities of the material. Planar surface points, on the other hand,
create singularities within the network, and thus have a large impact on the layout
and stability of the grid structure. Both factors were carefully adjusted by controlling
the progression of boundary curves, re-computing the surface and testing the new
network layout.

In the case of the Asymptotic Gridshell, there are two singularities on opposite sides,
east and west of the central oculus. Both singularities are designed as congruent,
regular, hexagonal nodes. They were arranged on the same principal curvature line.
The grid density is determined by the subdivision of this connection axis.

3.2 Construction development

Implications of curvature. The three curvatures (normal curvature, geodesic
curvature and geodesic torsion) within the structure are created either during
fabrication (of circular lamellas) or during assembly (through elastic bending and
twisting). The stresses due to elastic deformation are directly related to the curvature
values. The t, u and n-vector resemble the x, y and z-axis of our lamellas profiles.

Let us first look at the gridshells of Frei Otto which mark the starting point of our
construction development. Otto’s design network is subject to all three curvatures.
The timber lattice had to be constructed from slender, doubly symmetrical profiles
in order to be bent and twisted around all axes. Any shape within the permissible
bending radii can be built from such a grid.

Our curve networks, on the other hand, follow the paths of constant normal curvature.
The grid can be constructed from straight or circular lamellas orientated perpendicular
to the surface. As a consequence, no bending around the local y-axis (sideways
vector) of the profiles is necessary during assembly. The geodesic curvature results in
bending around the z-axis (normal vector), and the geodesic torsion creates twisting
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Figure 11: The structure was tested with two prototypes, one in timber and one in steel,
each with an approx. 4×4 m span. Left: The lamellas of the timber prototype are arranged
on separate levels to allow the use of uninterrupted profiles. Right: The lamellas of the steel
prototype are interlocked in one level. They were first assembled flat and then transformed
into the curved geometry. (Images: Eike Schling)

of the lamellas around their x-axis (tangent vector). When choosing the profile
thickness, the stiffness has to be adjusted to accommodate the maximum twist and
minimal bending radii and keep deformation elastic.

In contrast to the timber gridshells of Frei Otto, the lamella grid is restricted to the
family of shapes described in Section 2. This is due to the restricted deformation
(i.e., high stiffness) in respect to the y-axis (i.e., constant normal curvature).

Post-stiffening strategy. If the elastic deformation of a material is used to
construct a curved geometry, this inevitably poses the question of deflection and
stability under self-weight and external loads. Increasing the bending stiffness is not
an option if all elements are to be bent elastically into a curved geometry. Lienhard
calls this discrepancy a “paradoxon that underlies all bending-active structures”
(Lienhard (2014), p. 141).

These opposing requirements are solved by introducing two parallel layers of lamellas.
Each layer is sufficiently slender to be bent and twisted elastically into its target
geometry. Once the final geometry is installed, the two layers are coupled with shear
blocks in regular intervals to increase the overall stiffness.

This construction technique was tested with two prototypes, one in timber and one
in steel, each with an approx. 4×4 m span (Figure 11). The timber lamellas were
bent individually and connected to a rigid edge-beam. The lamellas are arranged on
two levels to allow for uninterrupted timber profiles. The steel prototype, on the
other hand, was assembled flat (a benefit of straight lamellas) and subsequently
transformed into the spatial geometry. Here the lamellas are slotted and interlocked
at one level.
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Figure 12: The typical grid joint is assembled with two parallel lamellas in each direction.
Two standardized star-shaped washers fix the 90 degree intersection angle and create a
central axis for the carriage bolt. The steel cables are also constructed in pairs and are
fixed by a cross-shaped clamp. (Images: Felix Noe)

Grid joint. All nodes are congruent with an intersection angle of 90 degrees. They
can thus be constructed with repetitive, orthogonal joints (Figure 12). At each
intersection, two pairs of parallel lamellas are interlaced through perpendicular slots.
The slots are twice as wide as the material thickness to allow a rotation of up to
60 degrees during assembly. The lamellas are locked by two star-shaped washers
on top and bottom. A single carriage bolt and nut is used to fix each joint after
they are transformed into the target geometry. An additional cross-shaped clamp
fixes the diagonal cables. The Asymptotic Gridshell was constructed from 100 mm
high and 1.5 mm thick, straight, stainless steel lamellas at parallel offset of 25 mm
following the detailing and construction strategy of the steel prototype.

3.3 Construction process

Fabrication. Designing networks along constant normal curvature lines greatly
simplifies fabrication: All lamellas are fabricated flat as either straight strips (on
minimal surfaces) or circular strips (on any CMC-surface). The edge lengths from
node to node, are the only variable information needed to produce fabrication
drawings. The distances are simply marked along the standardized strips.

The lamellas of the Asymptotic Gridshell were laser-cut straight, which allowed for
minimal offcuts and easy transport. The fabrication of washers and clamps was
incorporated in the same laser-cutting procedure offering a cost-efficient production
of all parts.

Erection process. The lamellas are slotted together to form a flat (for minimal
surfaces) or spherical (for general CMC surfaces) girder (Figure 13). In this state,
the lamellas display no geodesic torsion. The intersection angles are not yet constant.
The joints are flexible and allow for a scissor movement. This lamella grillage can
be deformed within a predefined family of shapes, one of which is the designed
reference surface. It is found by enforcing a constant node angle of 90 degrees.
The deformation behavior follows the same principles as described in Section 2.3
(Figure 7). This kinetic behavior is called a compliant mechanism (Howell (2002)).
It enables an elastic erection process without formwork. Of course, this mechanism
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Figure 13: The straight lamellas are interlocked by hand into flat segments. The segments
are then transformed elastically into their designed shape by fixing each node to 90 degrees.
Nine of these segments were prefabricated off site. (Images: Eike Schling)

Figure 14: Installation on site. The prefabricated segments of up to 400 kg, where
positioned with a crane, temporarily supported, and bolted together by hand. To activate
the structural behavior of a gridshell, the completed grid is braced diagonally and fixed at
supports in vertical and horizontal direction. (Images: Andrea Schmidt)

is subject to gravity and other external loads and needs to be verified by selective
measurements. Its further study is part of future research.

The Asymptotic Gridshell was prefabricated in nine individual segments (Figure 14).
Each grillage was first assembled flat, then placed on a simple, cross-shaped stand
and elastically deformed into its designated anticlastic curvature. Locking each node
at 90 degrees and adding edge supports created rigid segments, which were then
combined on site, like a large 3D puzzle. By fixing the supports and adding diagonal
steel cables, this structure becomes an efficient, load-bearing gridshell.

3.4 The completed pavilion

The Asymptotic Gridshell is the first architectural structure that utilizes the geometric
potentials of a constant normal curvature network on a constant mean curvature
surface (Figure 16). The gridshell spans 9×12 m and covers an area of approx. 90
m2. Its surface weight is approximately 18 kg/m2, a total of 1.6 tons. A decisive
factor for the aesthetical quality of both the shape and the lamella grid are owed to
their formation process, following the curvature constraints of this design method.
The slender lamellas create a gradient graphical effect with virtually full transparency
at a straight view, and an almost opaque appearance at an inclined view (Figure 1).
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3.5 Load-bearing behavior

FEM analysis. The network geometry was modeled in Rhino/Grasshopper and
exported as a discrete model to RFEM (Dlubal Software GmbH (2018)), where
all necessary structural information was added. The geometric values of geodesic
curvature and geodesic torsion were measured individually for each discrete element
along the smooth curves and translated into strain loads in RFEM. This strategy
enabled us to induce the residual stresses without modeling the actual assembly
process (Figure 15). Due to intense twisting of the lamellas, additional normal
stresses according to the effects of helix torsion are to be expected (Lumpe and
Gensichen (2014) p. 118 – 128). These effects are not considered in the FE analysis
which uses beam elements.

Global and local behavior. We observed the hybrid load-bearing behavior of two
competing mechanisms; a grillage and a gridshell. Due to the bending stiffness in
their strong axis, the lamellas are able to act as a beam grillage. This is needed
to account for the local planarity of the asymptotic curves (due to their vanishing
normal curvature) and to stabilize the open edges. At the same time, the lamellas
form a doubly-curved structure. Bracing this quadrilateral network with diagonal
cables and creating fixed supports (in vertical and horizontal direction) activates
behavior of a gridshell. Which of the two mechanism dominates is highly dependent
on the design shape.

The arch-shaped boundaries of the Asymptotic Gridshell promote a shell-like behavior.
Expanding the design spectrum to all CMC surfaces enables us to create synclastic
shapes and further adapt to a funicular form.

Figure 15: The load-bearing structure of the Asymptotic Gridshell. The lamellas are bent
and twisted to form an anticlastic network with two singularities. The diagonal bracing is
arranged at every second node. The horizontal supports adjust to the varying inclination
angle of the edge beam. The diagram shows the surface stresses of the lamella grid resulting
from both the elastic erection process and self-weight. All stresses stay within the elastic
range.
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Figure 16: The Asymptotic Gridshell was completed in October 2017. The structure is 5
m high and spans 9×12 m. It is built entirely from 1.5 mm-thick and 100 mm-wide steel
lamellas. (Image: Felix Noe)

The elastic erection process results in restraint (residual) stresses within the lamellas.
Due to the low profile thickness, the initial bending moments stay low and have
minor effects on the global behavior. However, compression of these curved elements
increases the bending moment in their weak axis. The strategy of doubling and
coupling lamellas is therefore essential to control local buckling.

The optimal orientations for compression and tension elements of a gridshell run
along the principal stress trajectories. However, in our method, we choose to
follow a geometrically optimized orientation along the directions of constant normal
curvature, taking into account an increase of stresses.

4 Conclusion

Combining repetitive curvature parameters with an elastic construction holds great
potentials for the fabrication, assembly and load-bearing behaviour of strained
gridshells.

The technical requirements (straight or circular lamellas, congruent nodes) translate
nicely into differential geometric characterizations of the curve networks and reference
surfaces realizable with this approach. They even motivated the development of
novel discrete structures (quad meshes with spherical vertex stars) which deserve
interest from a purely geometric perspective.

The geometric properties greatly simplify the construction process: The lamellas
have a beneficial orientation orthogonal to the design surface. They can be fabricated
flat and straight or with a constant radius. All joints are identical and orthogonal.
The elastic erection process takes advantage of a compliant mechanism, determining
the design shape without formwork.
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The elastic behavior, however, poses the challenge to avoid deflections and instability
under self-weight and external loads. This paradoxon of bending-active structures
was addressed within the design and construction process.

Even though our structures can only assume CMC surfaces, a substantial freedom
in the design process remains with the potential to adjust to architectural and
structural requirements.

Future Research. Meshes with spherical vertex stars are a novel surface discretiza-
tion which opens up new avenues of research in discrete differential geometry.

Our study also opens up two promising research fields that combine the disciplines
of mathematics, architecture and engineering: (i) the investigation of the kinetic
behaviour of elastic grids (compliant mechanisms) and the dependency of geom-
etry and mechanics therein, (ii) the optimization of surfaces for both geometric
requirements (like constant mean curvature) and structural performance (for shell
structures).

Finally, we aim to develop further construction techniques and facade solutions for
strained gridshells built from straight and circular lamellas.
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