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Fig. 1. Left: Given a cutting tool (bottom framed) and a reference free-form surface (light), the tool is conceptualized as a moving torus and its highly-accurate
positions (top framed) as well as the milling paths (black) are computed by our optimization-based framework to result in an accurate, collision-free milling
process. Middle: The final machined workpiece whose physical realization was achieved by 5-axis CNC machining (bottom framed). The milling strip density
is intentionally set coarse to visually distinguish the neighboring strips. Right: The tool spinning with high-speed and two paths of high-quality surface finish.

CNC machining is the leading subtractive manufacturing technology. Al-

though it is in use since decades, it is far from fully solved and still a rich

source for challenging problems in geometric computing. We demonstrate

this at hand of 5-axis machining of freeform surfaces, where the degrees of

freedom in selecting and moving the cutting tool allow one to adapt the tool

motion optimally to the surface to be produced. We aim at a high-quality

surface finish, thereby reducing the need for hard-to-control post-machining

processes such as grinding and polishing. Our work is based on a careful

geometric analysis of curvature-adapted machining via so-called second

order line contact between tool and target surface. On the geometric side,

this leads to a new continuous transition between “dual” classical results

in surface theory concerning osculating circles of surface curves and oscu-

lating cones of tangentially circumscribed developable surfaces. Practically,
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it serves as an effective basis for tool motion planning. Unlike previous

approaches to curvature-adapted machining, we solve locally optimal tool

positioning and motion planning within a single optimization framework

and achieve curvature adaptation even for convex surfaces. This is possible

with a toroidal cutter that contains a negatively curved cutting area. The

effectiveness of our approach is verified at hand of digital models, simula-

tions and machined parts, including a comparison to results generated with

commercial software.
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1 INTRODUCTION
Geometric modeling has been motivated by industrial needs at

the advent of computer-aided manufacturing, aiming at increased

productivity via a completely digital workflow from design to pro-

duction. Nowadays, the possibilities for digital shape design are

almost unlimited, but there is still room for improvement in the area

of geometric computing for manufacturing.
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One of the most important fabrication techniques is Computer
numerically controlled (CNC) machining, where a piece of raw mate-

rial is cut into a final desired shape by a controlled material removal

process. Material is cut away by a moving tool (see Fig. 1 and Fig. 2,

top row) that spins with high speed around its axis. CNC machining

(aka milling) is the leading subtractive manufacturing technology

and a key part in the production of molds, usually from metal, but

it can also be used on materials such as wood, plastic, ceramic and

composites.

Remarkably, CNC machining has received much less interest

within Computer Graphics than the more recent additive manufac-

turing technologies. However, as we will show, there is a variety of

methods from classical geometry, geometric modeling and optimiza-

tion, which can be effectively used for advances in CNC machining.

The initial stage of CNC machining, called roughing, starts with
a solid material block from which most of redundant material is

removed. This proceeds in parallel layers, leading to staircase effects

near freeform surfaces. Roughing may be followed by semi-finishing
where the most prominent staircase effects are removed. We are in-

terested in the final finishing stage, which has the goal of producing

nearly perfectly smooth surfaces.

Our focus is on path planning for curvature adapted CNC machin-
ing of freeform surfaces. The main idea here is to move the cutting

tool such that it optimally adapts to the local geometry of the sur-

face to be produced, thereby achieving a high quality surface finish.

This concept has been first proposed by G. Jensen [1993] under the

name curvature matched machining. Unfortunately, in its original

formulation, it removes too much material. Subsequently published

improvements partially fixed this problem by a careful analysis of

the contact situation between tool and target surface. However, to

the best of our knowledge, the integration into an algorithm for tool

motion planning is still far from what is achievable with properly

designed algorithms that exploit the available degrees of freedom.

The difficulties in curvature adapted CNC-machining lie in the

interdependence of the individual tasks to be solved. These include

the optimized selection of a cutting tool 𝑇 , the computation of

collision-free positions of 𝑇 which adapt well to the target surface

𝑆 , and the integration of optimized tool positions into tool motions

which lead to a high quality surface finish.

(a) (b)

𝑟 𝑚

(c) (d)

Fig. 2. Cutting tools. Various types of real cutting tools (top) and their
geometric simplification as rotational solids (bottom): (a) Cylindrical face
mill. (b) Toroidal cutter with small recess. (c) Toroidal cutter with significant
recess and the possibility to mill with the negatively curved part (green). (d)
Ball-end cutter.

1.1 Overview and contributions
• The best possible tool positions are close to those which pro-

vide so-called second order line contact. Hence, we carefully study

second order line contact between the most common tools and a

given surface (Sec. 2).

• We study criteria for local collision avoidance (Sec. 2.2). Here

we include the so far apparently neglected use of the negatively

curved part of a torus cutter (Fig. 2(c)) to machine a convex surface.

This removes a previous limitation of curvature adapted machining.

• In Sec. 3, we discuss the variety of good tool positions and

tool motion directions at a given contact point.

• Restricting to only those positions which are free of colli-

sions (Sec. 4) and using a well selected tool (Sec. 5), we formulate

the integration of tool positions into tool motions as a geometric

optimization problem (Sec. 6).

• Our path planning algorithm aims at short production times

through a small number of paths and achieves a high quality surface

finish through adaption to the surface geometry. This is demon-

strated at hand of machined parts in Sec. 7, where we also compare

with results achieved with commercially available CAM software.

1.2 Related Work
CNC machining techniques can be categorized in several ways. The

most common classification criteria are: (i) The degrees of freedom
of the milling machine: 3-axis and 5-axis machines are the most

frequently used [Jensen et al. 2008]. (ii) The shape of themilling tool
(see also Fig. 2): flat-end [Fan and Ball 2014; Li and Jerard 1994], ball-

end [Ikua et al. 2001], toroidal (aka bull-nose) [Campa et al. 2007;

Roth et al. 2001], and general [Engin and Altintas 2001; Machchhar

et al. 2017] cutting tools. (iii) The type of contact between the milling

tool and the reference surface: single- (multi-) point milling in the

case where the tool touches the surface at a single (several) point(s),

and flank milling where the tool is in contact with the target surface

along a curve (see e.g. [Calleja et al. 2018; Harik et al. 2013; Zhu et al.

2010]). Our research belongs to 5-axis point milling with toroidal

tools, including special and limit cases, but it easily extends to tools

composed of toroidal ones. For an introduction into the central

concepts and algorithms for CNC machining we point the readers

also to the monograph [Choi and Jerard 1998], and for machining

of freeform surfaces to the proceedings [Olling et al. 1999] and the

survey article [Lasemi et al. 2010].

Compared to flank milling, single-point contact approaches offer

more freedom in adapting the tool to the surface [Warkentin et al.

2000]. However, the approximation quality is usually high only

in the very neighborhood of the contact point, resulting in a vast

number of milling paths to achieve a highly-accurate finish. This

motivated research on curvature matched machining which uses

curvature analysis to compute tool positions that are in optimized

contact with the reference surface. That shall reduce the number of

milling paths necessary for achieving a high quality surface finish

[Cao et al. 2007; Jensen et al. 2008, 2002; Kim et al. 2015; Wang et al.

1993a,b; Yoon et al. 2003].

The problem of curvature matched positioning of a toroidal cutter

can be reformulated via the offsetting argument to a problem of

higher order contact between a circle (medial circle of the torus)
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and an offset surface of the target geometry [Cao et al. 2007]. Unfor-

tunately, such a configuration implies local penetration (gouging).

Even though third order contact is possible (and avoids local pen-

etration), it does not offer sufficient degrees of freedom for tool

motion planning [Wang et al. 1993a]. However, it can be used to

initiate algorithms searching for double-tangential contact between

the tool and the reference surface [Kim et al. 2015]. In most curva-

ture adaptation methods, the contact curves are computed first (see

next paragraph) and afterwards the positions of the tool are com-

puted [Cao et al. 2007]. We believe that this machining paradigm

should be changed, and the milling paths and tool orientations shall

be simultaneously computed in an optimized way.

Path planning often refers to the computation of those curves

along which the tool will be in contact with the target surface.

These cutter contact curves are roughly equidistant and chosen

so that the maximum deviations between adjacent paths (scallop

heights) are below a given threshold or even nearly constant. This

task is greatly simplified for a ball cutter. That type of path planning

has recently been addressed by [Zhao et al. 2018]. Based on an

accessibility analysis, the object to be machined is decomposed into

patches. These patches are then filled with spiral-like curves whose

layout is tuned to achieve nearly constant scallop heights. The use

of a ball cutter simplifies tool positioning and accessibility analysis,

but does not allow for curvature adaptation. We also point to [Zou

et al. 2014], which uses a ball cutter, but shares a similarity with

our approach, since the authors formulate path planning as a global

optimization problem with paths represented as level sets of a scalar

function defined on the target surface. However, our problem is

harder since we align the paths with good directions resulting from

curvature adaptation and also consider collision detection already

in the path-planning stage.

Recently, subtractive manufacturing received attention also in the

graphics community. [Mahdavi-Amiri et al. 2020] decompose a 3D

object into patches that are carvable with a single continuous path

using 3-axis CNC machining. [Rivers et al. 2012] deals with accurate

tool positioning and introduces a semi-automatic path-planning

strategy where the user selects several tool positions that are subse-

quently optimized to interactively minimize the tool-surface error.

For soft materials, such as foam, hot-wire cutting is the dominant

subtractive fabrication technique. A unified pipeline for hot-wire

cutting of free-form objects using a dynamic elastic rod is presented

in [Duenser et al. 2020].

There are many other important issues related to path-planning

for CNC machining such as velocity and acceleration control [Beu-

daert et al. 2012; De Lacalle et al. 2006; Sorby et al. 2000], feed rate dis-

tribution into tangential and axial directions [Beudaert et al. 2012],

motion smoothness [Pechard et al. 2009], or vibrations [De Lacalle

et al. 2006]. Even though our machining experiments are physically

validated, our main objectives are geometric aspects of highly accu-

rate path-planning and we refer the reader, e.g., to [Altintas 2012]

for more details on physical aspects of CNC machining. Another

topic related much closer to Computer Graphics are problems of

accessibility and collision avoidance. As we are not contributing to

this topic, we just refer to the survey [Tang 2014].

2 GEOMETRY

2.1 Basic geometric model
We address the task of manufacturing a part from a solid block of

material by successive material removal. As mentioned above, we

focus on finishing and thus can assume that most material has been

removed already. However, one has the staircase effects which are

typical for the result of the initial major material removal phase.

Those staircases shall be removed with the additional aim of pro-

ducing a high quality surface finish. This means that we want to

get very close to the ideal target surface 𝑆 , which we assume to

be smooth. In practice, 𝑆 may be given as a spline surface. If that

is not the case, we can work with triangle meshes 𝑆 as well, but

would finally compute local spline approximations for enhanced

smoothness.

2.1.1 Cutting tool. The cutting tool itself is complicated (see Fig. 2),

but under fast rotation about its axis𝐴 it generates a rotational solid

T . We assume that its profile consists of straight lines and circles,

since this is true for almost all available tools. The active part of the

profile, i.e., the one which is designed for cutting, is either a circle

or a straight line segment. Under rotation about 𝐴 it generates a

rotational surface𝑇 whichwe call tool or cutter henceforth. However,
even when talking about a surface, we always have to keep in mind

that the actual tool is a solid T . A circular profile 𝑐𝑝 of radius 𝑟 leads

to a part of a torus or sphere as a tool surface 𝑇 . The center of 𝑐𝑝
shall lie at distance𝑚 from 𝐴; under rotation about 𝐴 it generates

the medial circle 𝑐𝑚 of radius𝑚. For𝑚 = 0, the cutter 𝑇 becomes

part of a sphere; see Fig. 2(d). Such a ball cutter is the least useful

tool for curvature adapted machining since one cannot improve the

local contact by changing the axis direction. The case of 𝑟 = 0 is

also considered here and called cutting circle (Fig. 2(a)), but we note

that in practice 𝑟 will be just very small. We also include 𝑟 = ∞,

i.e., machining with the developable flank surface of a conical or

cylindrical cutter 𝑇 .

2.1.2 Tool motion. When we talk about path planning we actually

mean tool motion planning. Although in practice both the tool and

the part to be produced may move, the essential information lies in

the relative motion of 𝑇 with respect to 𝑆 . We plan this motion 𝑇 /𝑆 ,
neglecting the fast rotation of the tool about its axis 𝐴; its action

has already been considered through the simplification of the tool

to a rotational solid.

As our focus is on surface quality, we want to adapt the cutter

motion optimally to the curvature behavior of the boundary surface

𝑆 of S. We assume a CNC machine with at least 5 axes. For our

purposes this implies that the tool axis directions relative to the

part are variable. Although possible in our algorithm, we impose

no constraints on axis directions that are realizable with the CNC

machine.

The target surface 𝑆 bounds a solid S which is the final part to

be produced. 𝑆 shall be oriented by a unit normal vector field n
which points towards the outside 𝑆+ of the solid S, i.e., the side

from which the surface shall be machined. The material in S has to

remain; cutting into the interior of S is called overcutting, and it is

a more severe problem than undercutting that leaves some residual

material and corresponds to a (typically tiny) gap between 𝑇 and
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𝑐𝑖 𝑐𝑖+1

𝐸𝑖 𝐸𝑖+1

𝑠𝑖

Fig. 3. Tool envelopes. Three paths of
a milling tool through a material block
are shown. The neighboring envelopes of
the tool’s motion, 𝐸𝑖 and 𝐸𝑖+1, intersect
in a curve, 𝑠𝑖 , where the milling error is
typicallymaximum. This phenomenon is
called scalloping and the distance error
of 𝑠𝑖 from the desired surface 𝑆 is known
as scallop heights.

S. During the machining process, the tool 𝑇 accesses 𝑆 from the

positive side 𝑆+ and moves under a sequence of continuous one-

parameter motions along 𝑆 , thereby always being tangent to 𝑆 along

cutter contact curves (milling paths) 𝑐𝑖 , 𝑖 = 1, . . . , 𝑛.

During themotion of𝑇 along a contact curve 𝑐𝑖 , the tool envelopes

a surface 𝐸𝑖 (machined surface), which ideally is fitting very well

to 𝑆 in a sufficiently broad surface strip around 𝑐𝑖 . Neighboring

contact curves 𝑐𝑖 , 𝑐𝑖+1 generate envelopes whose intersection curve

𝑠𝑖 = 𝐸𝑖 ∩ 𝐸𝑖+1 will in general exhibit tangent discontinuities and

contain the largest deviations between target 𝑆 and the produced

surface 𝑆𝑝 , see Fig. 3. These so-called scallop heights shall be as small

as possible in order to obtain a good surface finish of 𝑆𝑝 . In that

case, it will require minimal post-processing through grinding and

polishing processes which are not easily controlled.

We exploit the available degrees of freedom in tool motion plan-

ning and adapt the tool positions to the local shape of 𝑆 . However,

as we will see below, we cannot simply aim at second order contact

between the generated surfaces 𝐸𝑖 and 𝑆 , since this implies local

penetration and thus overcutting.

2.2 Local contact situation and second order line contact
2.2.1 Osculating paraboloid and Dupin indicatrix. To analyze the
local contact situation between a tool position 𝑇 and the target

surface 𝑆 at a contact point p, we introduce the principal frame of 𝑆

at p. The axes (𝑥,𝑦, 𝑧) of this orthonormal frame are aligned with

the two principal curvature directions t1, t2 and the normal vector

n. Recall that n and thus the positive 𝑧-axis point to the outside

of the solid S bounded by 𝑆 . In this frame, a local second order

approximation of 𝑆 is given by the osculating paraboloid 𝑃𝑆 ,

2𝑧 = 𝜅1𝑥
2 + 𝜅2𝑦

2,

where 𝜅1, 𝜅2 are the corresponding signed principal curvatures. It

is useful to view the osculating paraboloid as boundary of a solid

P𝑆 whose points satisfy 2𝑧 ≤ 𝜅1𝑥
2 + 𝜅2𝑦

2 .We can see P𝑆 as a local

approximation of S at p.
In surface theory, we do not have a solid attached to 𝑆 , but here

it matters. Hence, the distinction of cases does not only concern the

sign of Gaussian curvature 𝐾 = 𝜅1𝜅2. We can assume |𝜅1 | ≤ |𝜅2 |
and arrive at the following cases:

(a) 𝜅1 < 0, 𝜅2 < 0. Convex elliptic point.
(b) 𝜅1 > 0, 𝜅2 > 0. Concave elliptic point.
(c) 𝜅1 = 0, 𝜅2 < 0. Convex parabolic point.
(d) 𝜅1 = 0, 𝜅2 > 0. Concave parabolic point.
(e) 𝜅1𝜅2 < 0. Hyperbolic point.
(f) 𝜅1 = 𝜅2 = 0. Flat point.
The osculating paraboloid 𝑃𝑆 contains information about the

variation of normal curvatures. A normal section of 𝑃𝑆 with a plane

Fig. 4. Three positions of a tool along a
milling path (black) are shown. The tool
traverses from a concave elliptic to a hy-
perbolic region; the Dupin indicatrices of
the tool (blue) and the surface (green) are
shown.

spanned by n and the tangent vector t := t1 cos𝜙 + t2 sin𝜙 is a

parabola (or straight line), whose curvature 𝜅𝑛 (𝜙) at p satisfies

Euler’s formula,

𝜅𝑛 (𝜙) = 𝜅1 cos
2 𝜙 + 𝜅2 sin

2 𝜙. (1)

For 𝜅𝑛 < 0 the parabolic section lies on the negative side of the

tangent plane 𝑧 = 0.

The distribution of normal curvatures is nicely visualized with the

Dupin indicatrix. We enrich its information adapted to the present

application. For that, we intersect the solid P𝑆 with the planes

𝑧 = ±1/2 and project the intersection regions into the tangent plane

𝑧 = 0. This yields the regions

𝑖+S : 𝜅1𝑥
2 + 𝜅2𝑦

2 ≥ 1, 𝑖−S : 𝜅1𝑥
2 + 𝜅2𝑦

2 ≤ −1.

They are bounded by the usual Dupin indicatrix of the surface 𝑆 ,

𝑖𝑆 : 𝜅1𝑥
2 + 𝜅2𝑦

2 = ±1,

which is a radial diagram of the function 1/
√
|𝜅𝑛 (𝜙) |. It is an ellipse

for an elliptic point, a pair of parallel lines for a parabolic point, and

a pair of hyperbolae for a hyperbolic point, see Fig. 4. Indicatrix

regions for the most important cases in our application are shown

in Fig. 6. The case of a flat point is not interesting: P𝑆 is the negative

half-space 𝑧 ≤ 0, 𝑖+S is empty and 𝑖−S is the entire plane.

Analogously, we investigate the curvature behavior of the tool

surface 𝑇 and associated solid T at p. The principal directions of a
rotational surface are in the profile planes and orthogonal to those.

Hence, the projection 𝐴′
of the axis 𝐴 onto the tangent plane is one

principal direction k2 of𝑇 . In the principal frame of 𝑆 it shall be given

𝜓

𝜙

n 𝐴

k2

t2
t1

k1

by k2 := −t1 sin𝜙 + t2 cos𝜙 . The other

principal direction k1 = t1 cos𝜙+t2 sin𝜙

of 𝑇 is tangent to the rotational circle on

𝑇 . We call 𝜙 the rotational angle of the
tool, and the angle𝜓 between tool axis 𝐴

and the surface normal n at the contact

point p the tilt angle of the tool.
Everything which has been said for the curvature of the target

solid S applies to the tool solid T as well. We prefer to use the

principal frame of 𝑆 at p and the normal n, which points to the

inside of T , and we consider the signs of normal curvatures of

𝑇 with respect to n. The solid P𝑇 associated with the osculating

paraboloid 𝑃𝑇 of 𝑇 is of the form

P𝑇 : 2𝑧 ≥ 𝑎0𝑥
2 + 2𝑎1𝑥𝑦 + 𝑎2𝑦

2 =: 𝑝𝑇 (𝑥,𝑦).

The indicatrix region 𝑖+T is obtained by projecting P𝑇 ∩ (𝑧 = 1/2)
into 𝑧 = 0, and analogously arises 𝑖−T from P𝑇 ∩ (𝑧 = −1/2).
Most tool surfaces are convex and thus belong to cases (a) and

(c) above (with respect to 𝑇 ’s principal frame). There is, however,

a toroidal cutter where part of the negatively curved area of the

torus at the bottom of the tool is operating as a cutting surface (see
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√
𝑅𝑀

√
𝑟

𝑖+
𝑇

𝐴′

(a)

√
𝑅𝑀𝑖+

𝑇

𝐴′

(b)

√
−𝑅𝑀

√
𝑟 𝑖−

𝑇

𝐴′

(c)

𝐴

𝜓

𝑚 𝑟

p

𝑅𝑀

(d)

Fig. 5. Tool indicatrix for a convex elliptic point on a toroidal cutter (a), the
limit case of a cutting circle, i.e. 𝑟 = 0 (b) and the negatively curved part of
a toroidal cutter (c). In (d) we illustrate the geometry leading to the normal
curvature radius 𝑅𝑀 .

Fig. 2 c). This is case (e) and very important for machining convex

regions of 𝑆 . For a cutting flat tool bottom we have case (f).

Let us provide more details on the tool indicatrix 𝑖𝑇 (see Fig. 5).

One axis direction k2 lies in the projection 𝐴′
of the tool axis 𝐴

onto the tangent plane at p. For a toroidal cutter, the corresponding
normal curvature radius is 𝑟 . The other principal direction k1 is

tangent to the rotational circle 𝑐𝑇 on𝑇 through p. The corresponding
principal curvature center is on the axis 𝐴, i.e., its normal curvature

radius is equal to the radius 𝑅𝑀 of a sphere (Meusnier sphere; see

below) which touches 𝑇 along 𝑐 (Fig. 5 d). 𝑅𝑀 is computed from tilt

angle𝜓 , medial circle radius𝑚, and profile radius 𝑟 as

𝑅𝑀 = 𝑟 + 𝑚

sin𝜓
. (2)

2.2.2 Local millability condition. In an arbitrarily small neighbor-

hood around the contact point p, the corresponding solids T and

S shall only have the contact point p in common. Here we first

exclude the (unfortunately) very rare case that the two solids are

tangent to each other along a curve; this is discussed below and

related to 2nd order line contact. Excluding this curve tangency, no

intersection curve 𝑆 ∩𝑇 should pass through p. If that was the case,
the normal curvatures of the intersection curve with respect to 𝑇

and 𝑆 (and the same choice of n) at p were the same and the oscu-

lating paraboloids and Dupin indicatrices would intersect. Hence,

local millability requires that the intersection P𝑆 ∩ P𝑇 consists of the
single point p (𝑃𝑇 lies above 𝑃𝑆 except at p; 𝑝𝑇 (𝑥,𝑦) > 𝜅1𝑥

2 + 𝜅2𝑦
2

for (𝑥,𝑦) ≠ (0, 0)). Equivalently, the corresponding Dupin indicatrix
regions derived from planes 𝑧 = ±1/2 should have no common point.

Prior work deals with convex cutters only, and there one has the

condition that the tool indicatrix 𝑖𝑇 (ellipse) must lie in the interior

of the target surface indicatrix 𝑖𝑆 (see [Yoon et al. 2003] and the

example in Fig. 4).

𝑖+
𝑇

𝑖+
𝑆

(a)

𝑖−
𝑆

𝑖−
𝑇

(b)

𝑖+
𝑇

𝑖+
𝑆

(c)

𝑖+
𝑇

𝑖+
𝑆

(d)

Fig. 6. Locally collision free positions visualized via indicatrix regions for
tool and target shape. (a) A concave point of 𝑆 milled with a convex cutter. (b)
A convex point of 𝑆 milled with a negatively curved cutter. (c) A hyperbolic
point of 𝑆 milled with a convex cutter and (d) milled with the flank of a
cylindrical or conical cutter.

p

𝑐𝑚

d

k1

𝑆

𝑆𝑟

p d

k1

𝑆

𝑆𝑟

𝑇

Fig. 7. Circle 𝑐𝑚 in 2nd order line contact with 𝑆𝑟 lies on the Meusnier
sphere (left). The corresponding torus 𝑇 possesses 2nd order line contact
with 𝑆 (right).

Fig. 6 illustrates the discussed concepts at hand of the typical local

contact situations inmilling the various types of surface points. Here

we exclude points p ∈ 𝑆 with 𝐾 = 0 for brevity, as they may be seen

as limits of the discussed cases. In subsection 2.3.3, we discuss the

machining of developable surfaces 𝑆 , where 𝐾 = 0 everywhere.

2.2.3 Second order line contact. Rotating the tool about the con-

tact normal n may bring the osculating paraboloids 𝑃𝑇 and 𝑃𝑆

𝑖𝑆
𝑖𝑇

d

𝑃𝑆

𝑃𝑇closer together until in a limiting posi-

tion they are tangent to each other along

a parabola in a plane 𝐷 through the con-

tact normal. Equivalently the indicatrices

𝑖𝑇 , 𝑖𝑆 are tangent to each other at the end

points of a common diameter with direc-

tion vector d. This situation would occur in the ideal case where the

tool surface 𝑇 is tangent to the target 𝑆 along a curve with tangent

d at p. However, in general it implies that there are curves 𝑐𝑆 ⊂ 𝑆
and 𝑐𝑇 ⊂ 𝑇 (e.g. the intersection curves 𝑐𝑆 = 𝐷 ∩ 𝑆, 𝑐𝑇 = 𝐷 ∩ 𝑇 )
which have second order contact at p. This situation is called second
order line contact and can be characterized with help of the ruled

surfaces 𝑁𝑆 , 𝑁𝑇 formed by the surface normals of 𝑆 along 𝑐𝑆 and

normals of 𝑇 along 𝑐𝑇 ([Pottmann and Wallner 2001], pp. 457): Two
surfaces 𝑆,𝑇 are in second order line contact at p if there are curves
𝑐𝑆 ⊂ 𝑆 and 𝑐𝑇 ⊂ 𝑇 whose normal surfaces 𝑁𝑆 and 𝑁𝑇 are tangent to
each other along the entire common normal at p.
Since offset surfaces possess the same surface normal at corre-

sponding points, we conclude that offsetting keeps second order

line contact. We are mostly dealing with toroidal cutters 𝑇 which

are offsets of their medial circle at distance 𝑟 , and thus we conclude:

Proposition 2.1. A torus𝑇 with profile circle radius 𝑟 is in second
order line contact with a surface 𝑆 , if its medial circle 𝑐𝑚 has second
order contact with the offset 𝑆𝑟 of 𝑆 at distance 𝑟 , see Fig. 7.

Based on this and the fact that offsetting keeps second order

contact between surfaces, it is easy to prove the following result: A
cutter 𝑇 which moves tangentially along a curve 𝑐 ⊂ 𝑆 by keeping in
each position second order line contact with 𝑆 in a direction transversal
to 𝑐 generates an envelope surface 𝐸 which is in second order contact
with the target surface 𝑆 along the contact curve 𝑐 .
This shows the good local approximation one gets with these

limit positions of cutters, but unfortunately second order contact

implies in general local penetration (gouging). Thus, we have to

move the cutter minimally away from such positions so that there

is no collision with the target surface 𝑆 anymore.
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𝑀

c𝑀

p 𝜏𝑆pd

Fig. 8. The Meusnier sphere. The one-
parameter family of circles (black)
that are in second order contact with
𝑆 at point p in the direction d form the
Meusnier sphere𝑀 . The locus of their
centers is another circle (yellow) that
lies in a plane passing through p and
is perpendicular to d. Given a specific
radius, two solutions generically exist
(green).

p

c𝑀

𝜏𝑆p

𝑀

𝑐𝑇

p

c𝑀

𝜏𝑆p

𝑀

𝑐𝑇

Fig. 9. Tool Meusnier spheres at an elliptic point (left) and a hyperbolic
point (right) of the tool.

2.3 Generalized Meusnier spheres and Euler formula
In the following, we aim at a better understanding of second order

line contact positions between cutter 𝑇 and surface 𝑆 . This yields

a new smooth transition between two classical geometric results,

namely the spheres of Meusnier and Mannheim, and the formulae

of Euler and Blaschke. These classical results have recently been

used in connection with principal meshes and a proposal to employ

those for CNC machining with a flat end cutter or a conical cutter

[Pellis et al. 2020]. Moreover, we present a simple relation between

tool axis direction and direction d of the 2nd order line contact.

2.3.1 Tool Meusnier sphere. We start with the case 𝑟 = 0 of a cutting

circle 𝑇 = 𝑐𝑚 . Second order line contact means that the circle 𝑐𝑚 is

in second order contact with 𝑆 . All circles which have second order

contact with a surface 𝑆 at a point p in tangent direction d lie on the

so-called Meusnier sphere 𝑀 . Its radius 𝑅𝑀 = 1

𝜅𝑛
equals the normal

curvature radius to direction d and its center is c𝑀 = p + 1

𝜅𝑛
n (see,

e.g., [Blaschke and Leichtweiß 1973, p. 105]). The considered circles

possess axes which pass through c𝑀 and lie in a plane, see Fig. 8. Its

angle with the first principal direction t1 at p is the rotation angle

𝜙 of the tool 𝑐𝑚 .

Consider now all tools with the same rotation angle and profile

radius 𝑟 . We apply Prop. 2.1 and offsetting with distance 𝑟 to 𝑆 and

the tool𝑇 . This brings us to the above situation of a circular tool 𝑐𝑚
(Fig. 7). There is a Meusnier sphere for the offset, and reversing the

offsetting operation, we obtain the following nice local situation:

Proposition 2.2. All tools with a fixed profile radius 𝑟 which are
in second order line contact with a surface 𝑆 at a point p at a rotation
angle 𝜙 , possess axes which pass through the same point c𝑀 on the
surface normal at p. Each of these tools is tangent to a sphere𝑀 (𝑟, 𝜙)
along a circle. This tool Meusnier sphere𝑀 touches the target surface
at the contact point p, see Fig. 9.

Note that the tool Meusnier sphere𝑀 (𝑟, 𝜙) deserves this name

also because it is the Meusnier sphere of the torus 𝑇 at all points of

the contacting circle 𝑐𝑇 of 𝑇 and𝑀 , for directions tangent to 𝑐𝑇 .

While our derivation uses a finite radius 𝑟 , we can pass to the

limit 𝑟 → ∞ and obtain an analogous result for rotational cones or

cylinders which are in second order line contact with 𝑆 . The tool

Meusnier sphere𝑀 for this case is known as Mannheim sphere and
has so far been seen as a dual counterpart to the Meusnier sphere

(see, e.g., [Blaschke and Leichtweiß 1973, p. 157]). We can now view

it as a limit of a continuous sequence of tool Meusnier spheres which

belong to tori that are in second order line contact with 𝑆 .

Let us now derive the radius 𝑅𝑀 (𝑟, 𝜙) of the tool Meusnier sphere

𝑀 (𝑟, 𝜙). This is easily done by noting the following facts: A surface

𝑆 and all its offsets 𝑆𝑟 possess the same principal curvature centers.

This means that the principal curvature radii of 𝑆𝑟 are computed

from the principal curvature radii 𝑅𝑖 = 1/𝜅𝑖 of 𝑆 as 𝑅𝑖 − 𝑟 . Likewise,
we know that the Meusnier sphere radius for 𝑐𝑚 equals 𝑅𝑀 − 𝑟 , but
it also equals the normal curvature radius for the offset surface 𝑆𝑟 .

Applying Euler’s formula (1) for the variation of normal curvatures

to the offset 𝑆𝑟 , we obtain

1

𝑅𝑀 − 𝑟 =
1

𝑅1 − 𝑟
cos

2 𝜙 + 1

𝑅2 − 𝑟
sin

2 𝜙, (3)

and the following generalization of Euler’s formula for the radii 𝑅𝑀 :

Proposition 2.3. The radii𝑅𝑀 of the toolMeusnier spheres𝑀 (𝑟, 𝜙)
satisfy the generalized Euler relation

𝑅𝑀 =
𝑅1 (𝑅2 − 𝑟 ) cos

2 𝜙 + 𝑅2 (𝑅1 − 𝑟 ) sin
2 𝜙

(𝑅2 − 𝑟 ) cos
2 𝜙 + (𝑅1 − 𝑟 ) sin

2 𝜙
. (4)

The case 𝑟 = 0 yields Euler’s formula, since there 𝑅𝑀 = 1/𝜅𝑛 . In
the limit 𝑟 → ∞, we obtain

𝑅𝑀 = 𝑅1 cos
2 𝜙 + 𝑅2 sin

2 𝜙,

which is known as Blaschke’s formula for the variation ofMannheim

sphere radii (see, e.g., [Blaschke and Leichtweiß 1973, p. 157]).

If the tool axis lies in a principal plane, i.e. 𝜙 = 0 or 𝜙 = 𝜋/2, the

corresponding spheres𝑀 (𝑟, 𝜙) are the principal spheres: 𝑅𝑀 = 𝑅1

or 𝑅𝑀 = 𝑅2, respectively, independently of the radius 𝑟 . In a concave

elliptic point, 𝑅𝑀 lies in between 𝑅1 and 𝑅2.

For a hyperbolic point p of 𝑆 this is different. Note that our radii

come with a sign, dependent on whether the sphere lies on the

positive or negative side of the tangent plane. Assume 𝑅1 > 0

and 𝑅2 < 0. Then, increasing 𝜙 , the sphere radii grow from 𝑅1 to

∞ = −∞. This case 𝑅𝑀 = ∞ belongs to an asymptotic direction on

the offset 𝑆𝑟 . It happens for the rotational angle 𝜙∞,

𝜙∞ = ± arctan

√
𝑟 − 𝑅2

𝑅1 − 𝑟
. (5)

Going further, the spheres lie on the negative side of the tangent

plane and radii vary from −∞ to 𝑅2. As we mill a hyperbolic point

p with the convex part of a toroidal cutter, this does not concern us.

However, convex surface points p (𝑅1 ≤ 𝑅2 < 0) are of great

interest to us, since we canmachine themwith the negatively curved

part of a toroidal cutter. Due to 𝑟 > 0, (4) yields a negative radius

𝑅𝑀 < 0 of the tool Meusnier sphere. Its center is on the negative

side of the tangent plane and the torus𝑇 touches it from the outside.
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T

M

T

M

Fig. 10. Removing gouging, shown in planar sections through the cutter axis.
Left column: Configuration with second order line contact at an elliptic point
(left) or hyperbolic point (right) of the tool. Tool solid T andMeusnier sphere
solid M touch along a circle. Right column: Tilting the tool so that T ∩ M
consists locally only of the contact point, removes the local penetration of
tool and target surface.

Dealing with signs of 𝑅𝑀 follows a simple principle. We assign a

solidM with the tool Meusnier sphere𝑀 : For 𝑅𝑀 > 0, the material

is at the outside of the sphere, for 𝑅𝑀 < 0 in the interior (ball). Let

the tool solid T be just the torus surface materialized in its interior.

Then, at a locally penetration free position, M and T only touch at a
single point, and for second order line contact they are tangent along
a circle, see Fig. 10, left. Changing the tilt angle of the tool to move

away from second order line contact and thus remove the local

penetration must achieveM ∩ T = {p}, see Fig. 10, right.

2.3.2 Direction of second order line contact. So far, we did not talk

about the direction d in which second order line contact between

tool 𝑇 and target surface 𝑆 happens. This direction is the diameter

line through the contact points of the two indicatrices and can be

computed as follows. By Prop. 2.1, second order line contact of

𝑇 and 𝑆 implies second order contact of the medial circle 𝑐𝑚 of

𝑇 and 𝑆𝑟 . The characterization of second order line contact with

help of normal surfaces which are tangent to each other along

the entire contact normal at p (see [Pottmann and Wallner 2001],

pp. 457, and the proof of Prop. 2.1) shows: The tangent d of this

contact on 𝑆 is mapped to the tangent of the medial circle 𝑐𝑚 of

the tool at its contact point with 𝑆𝑟 . The mapping from 𝑆 to the

offset 𝑆𝑟 via common surface normals is most easily understood if

we use a principal curvature parameterization s(𝑢, 𝑣) of 𝑆 . With the

unit normal field n(𝑢, 𝑣), the first partial derivatives of s and n are

eigenvectors of the shape operator and satisfy

n𝑢 = −𝜅1s𝑢 , n𝑣 = −𝜅2s𝑣 .

The tangent vector d is of the form d = 𝑢1s𝑢 + 𝑣1s𝑣 . The offset

at distance 𝑟 is s𝑟 = s + 𝑟n, and thus the derivative of the map

s(𝑢, 𝑣) ↦→ s𝑟 (𝑢, 𝑣) is given by

𝑢1s𝑢 + 𝑣1s𝑣 ↦→ 𝑢1 (1 − 𝑟𝜅1)s𝑢 + 𝑣1 (1 − 𝑟𝜅2)s𝑣 .

The 2-dimensional tangent vector spaces at corresponding points

of 𝑆 and 𝑆𝑟 are parallel and can be identified. We can assume that

s𝑢 , s𝑣 at the considered contact point p = s(𝑢0, 𝑣0) form a Cartesian

frame. In this frame, the vector (𝑢1, 𝑣1) at 𝑆 is mapped to (𝑢1, 𝑣1) at
𝑆𝑟 , with

𝑢1 = (1 − 𝑟𝜅1)𝑢1, 𝑣1 = (1 − 𝑟𝜅2)𝑣1 . (6)

The direction (𝑢1, 𝑣1) is tangent to the medial circle 𝑐𝑚 of 𝑇 and

therefore orthogonal to the projection (𝑢 ′
1
, 𝑣 ′

1
) of the tool axis𝐴 into

𝑆

q

𝑐𝑚 𝑆𝑟

0.0164 12.2

0.020

𝑆

Fig. 11. High quality milling of a convex developable surface 𝑆 with a
toroidal cutter (left) can be achieved by positioning the tool such that the
medial circle of the torus, 𝑐𝑚 , moves tangentially to the offset 𝑆𝑟 in a feed
direction (yellow) transversal to the rulings (middle). The whole surface
𝑆 is approximated by only seven paths of the tool and color-coded by the
distance error (right). The third order contact is well seen by the scallop
heights in a plane containing the ruling (bottom framed).

the tangent plane at p. Hence, we can write (6) also as

𝑢1

𝑣1

= −
𝑣 ′

1

𝑢 ′
1

=
(1 − 𝑟𝜅1)𝑢1

(1 − 𝑟𝜅2)𝑣1

.

This may be expressed as follows:

Proposition 2.4. In the tangent plane at the contact point p be-
tween tool 𝑇 and target surface 𝑆 , the relation between the direction
d = (𝑢1, 𝑣1) of the second order line contact and the vector (𝑢 ′

1
, 𝑣 ′

1
) of

the projected tool axis is given by

(1 − 𝑟𝜅1)𝑢1𝑢
′
1
+ (1 − 𝑟𝜅2)𝑣1𝑣

′
1
= 0. (7)

Here, coordinates are with respect to the principal frame at p.

Of course, (7) expresses orthogonality for 𝑟 = 0. In the limit

𝑟 → ∞, we obtain

𝜅1𝑢1𝑢
′
1
+ 𝜅2𝑣1𝑣

′
1
= 0.

Here the tool 𝑇 is a cylinder or cone and we obtain the well-known

fact that the ruling of the tool (= projection of its axis) must be

conjugate to the direction d of the contact curve. Again, our set-

ting provides a continuous blend between two simple relations:

orthogonality and conjugacy. Note that the only directions which

are orthogonal and conjugate are the principal directions (1, 0) and
(0, 1), which satisfy (7) for any 𝑟 . This is a result of symmetry.

If we denote by 𝛿 the angle of d against the first principal direction,
we have (𝑢1, 𝑣1) = (cos𝛿, sin𝛿), and with the tool angle 𝜙 , one has

(𝑢 ′
1
, 𝑣 ′

1
) = (− sin𝜙, cos𝜙) and therefore

cot𝜙 =
1 − 𝑟𝜅1

1 − 𝑟𝜅2

cot𝛿. (8)

2.3.3 Milling a developable surface. Finally, we address the special
situation of machining a developable surface 𝑆 . It has 𝐾 = 0 every-

where and carries a family of straight line segments (rulings) along

which the tangent plane is constant. If accessibility is given, one

can mill 𝑆 by flank milling with a cylindrical or conical cutter 𝑇 .

One just has to make sure that 𝑇 remains tangent to the rulings of

𝑆 (see e.g. [Stein et al. 2018]). However, if this is not possible due

to collisions, there are still other ways to solve the problem if the

points of 𝑆 are convex parabolic (see Fig. 11).

If a cutter 𝑇 with a flat cutting bottom is available, one leads the

cutter so that the flat cutting part remains in contact with 𝑆 along

a ruling. If one has just a toroidal cutter with a negatively curved

cutting part, one can use the bottom circle 𝑐𝑏 of 𝑇 . One mills 𝑆 so
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that 𝑐𝑏 is always tangent to a ruling of 𝑆 (Fig. 11, left) and proceeds

transversal to the rulings. This strategy produces envelopes 𝐸 which
are in third order contact with 𝑆 along the cutter contact curve. By the

offsetting argument, is is sufficient to consider the ringed surface 𝑆𝑚
generated by the medial circle 𝑐𝑚 of 𝑇 . On 𝑆𝑚 , the ruling direction

is an asymptotic direction since 𝑐𝑚 lies in the tangent plane of q,
see Fig. 11, middle. Intersecting the normal plane of the developable

surface 𝑆𝑟 along the ruling with 𝑆𝑚 yields a curve 𝑐𝑛 with vanishing

curvature at q. Thus, we have at least contact order two, but it must

be three since there is no local penetration. Fig. 11, bottom, shows

the O(ℎ4) behaviour of the error.

3 CURVATURE ADAPTED POSITIONS
In this section we discuss the variety of good tool positions at a

given surface point p. At first we look at second order line contact

which is then corrected to get rid of local penetration. We assume

that the tool 𝑇 is given; its choice is discussed in Section 5.

3.1 Positions with second order line contact
We now describe all possible positions of𝑇 providing 2nd order line

contact with 𝑆 at a fixed point p. The basics are well prepared: For
a given rotational angle 𝜙 , equations (3) or (4) yield a radius 𝑅𝑀 of

the tool Meusnier sphere 𝑀 and the tilt angle 𝜓 , cf. (2). If we mill

with the convex part of 𝑇 , 𝑀 has to be sufficiently big so that the

torus 𝑇 can be inscribed (see Prop. 2.2). This requires 𝑅𝑀 ≥ 𝑟 +𝑚.

If we mill with the hyperbolic part of 𝑇 , the torus 𝑇 must touch𝑀

(with radius 𝑅𝑀 < 0) from the outside. Geometrically, this requires

𝑅𝑀 ≤ 𝑟 −𝑚. In practice, 𝑅𝑀 = 𝑟 −𝑚 will not work since the toroidal

cutter cannot cut with its smallest circle (see Fig. 2) and thus there

will be a limit value 𝑅∗ < 0 such that 𝑅𝑀 < 𝑅∗.

𝑊
𝛿

−𝛿 t1

t2 dWe now discuss all possible situations.

Let us start with concave elliptic points

and w.l.o.g. 𝑅1 ≥ 𝑅2. If 𝑅2 ≥ 𝑟 + 𝑚, all

rotation angles 𝜙 provide a 2nd order line

contact, whereas if 𝑅1 < 𝑟 +𝑚 it is not

possible for any 𝜙 . For 𝑅2 < 𝑟 +𝑚 ≤ 𝑅1 we

have a wedge𝑊 of admissible directions d
along which 2nd order line contact of𝑇 with 𝑆 can be obtained. The

utmost directions of the wedge correspond to 𝑅𝑀 =𝑚+𝑟 . Together

with (8) it yields

𝛿 = arctan

(����𝑅2

𝑅1

����√ (𝑅1 − 𝑟 ) (𝑅1 −𝑚 − 𝑟 )
(𝑅2 − 𝑟 ) (𝑚 + 𝑟 − 𝑅2)

)
. (9)

For convex elliptic points, equation (9) remains valid, however

we need to consider −𝑚 instead of𝑚. Nevertheless in practise we

employ a limit value 𝑅∗ < 0.

𝑊2

𝑊1

𝛿 𝛿
t1

t2 d

d̂

The situation is slightly more compli-

cated at hyperbolic points since one can-

not obtain 2nd order line contact along

the directions with a negative value of

𝑅𝑀 − 𝑟 . The directions where 𝑅𝑀 = ±∞
correspond to the asymptotes of the Dupin

indicatrix (hyperbola) of 𝑆𝑟 at q, see (5).

Hence two wedges𝑊1,𝑊2 (𝑊 =𝑊1 ∪𝑊2) of admissible directions

with utmost directions are given by (9) and

𝛿 = arctan

(����𝑅2

𝑅1

����√𝑅1 − 𝑟
𝑟 − 𝑅2

)
.

Once d is chosen in𝑊 , the rotational and tilt angles of 𝑇 are

given by (8) and (2), respectively, and a direct computation gives

the center s and the axis vector a of 𝑇 as

a = k2 sin(𝜓 ) + n cos(𝜓 )
and

s = q +𝑚N𝑝 ,

where N𝑝 is the unit principal normal of 𝑐𝑚 , i.e.,

N𝑝 = n sin(𝜓 ) − k2 cos(𝜓 ) .

Remark 1. Once an admissible direction d, d ∈𝑊 , is selected, the
position of 𝑇 w.r.t 𝑆 is fully determined and, generically, there are two
solutions. This fact is a direct consequence of the Meusnier theorem
which assigns to the given radius the tilt angle guaranteeing osculation,
recall Fig. 8. Therefore, we speak about “wedges” rather than “angles”
of admissible directions as we encode the tilt inclination (positive or
negative) into the orientation of d.

3.2 Correction of local penetration
The analysis described in Section 3.1 results in positions of 𝑇 that

are in 2nd order line contact with 𝑆 . Such a contact means a very

good local approximation as the distance error between 𝑇 and 𝑆

in d behaves as O(ℎ3), ℎ being a parameter that parametrizes the

medial circle 𝑐𝑚 , see Fig. 13. However, the cubical behaviour of the

error function corresponds to a sign change at zero (contact point

p) and consequently local penetration in the very neighborhood of

p. This phenomenon, called “gouging” in the machining literature,

is very undesirable as it directly implies overcutting at p.
One can fix this phenomenon by moving the torus as follows:

(1) Rotate the tool towards the right principal direction. For an el-

liptic point of 𝑆 , this is the direction with the smaller principal

curvature (major axis of the indicatrix 𝑖𝑆 ). For a hyperbolic

point, this is the direction with the negative principal curva-

ture (minor axis of the hyperbola), see Fig. 14, middle.

(2) Increase the tilt angle 𝜓 . This is the same as working with

slightly smaller tool Meusnier spheres and considering tools

tangential to those, see Fig. 14, right and Fig. 10, right.

(3) Combination of both (1) and (2) in situations where global

collision occurs.

Operations (1) and (2) fix penetration locally, i.e., close to p, but
may lead to global collision, discussed next.

4 ACCESSIBILITY AND COLLISION AVOIDANCE
To access 𝑆 with the cutter𝑇 , one has to avoid both local and global

collisions. The analysis described in the previous section takes care

of local collisions. To control global collisions, we perform collision

tests as follows. The head of the milling cutter is conceptualized

as a torus while the shank is represented by a cylinder (the real

shank is a more complex object, but its cylindrical bound is taken

for the sake of simplicity). Our collision detection algorithm relies

on fast computation of point-mesh projections [Chang et al. 2010;
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Curvature adapted

matching of 𝑇

and 𝑆 , Section 3

Local (Section 3.2)

and global

(Section 4)

collision detection

Tool selec-

tion, Section 5

Contact path

construction,

Section 6.1

Tool motion,

Section 6.2

Physical realiza-

tion & valida-

tion, Section 7

Fig. 12. Algorithm overview.

𝑆𝑟

𝑐𝑚

q

𝛾 Fig. 13. Osculation. The medial circle of the
torus, 𝑐𝑚 , has second order contact with 𝑆𝑟 at
q. The osculation implies local penetration of
𝑐𝑚 and 𝑆𝑟 in the neighborhood of the contact
point q. That is, in the plane of 𝑐𝑚 , 𝛾 , the circle
intersects the surface-plane intersection curve
(black) at q.

𝑇

𝑆

𝑖𝑆

𝑖𝑇

Fig. 14. Correction of local penetration. Left: A toroidal milling tool 𝑇 in
second order line contact with a given surface 𝑆 at an elliptic point p — this
corresponds to a tangential contact of the Dupin indicatrices of the tool,
𝑖𝑇 (blue), and of the surface, 𝑖𝑆 (green). This configuration results in local
penetration (cf. Fig. 13) and can be corrected by decreasing the rotational
angle (middle) or by increasing the tilt angle (right).

Redon et al. 2005]. The input geometry is represented as a fine mesh,

which is then loaded and manipulated with the Trimesh [Dawson-

Haggerty et al. 2019] Python library. Being capable of building the

bounding volume hierarchy (BVH) of the mesh, the latter assures

fast computation of closest points (aka footpoints), as well as other

convenient routines like navigation through adjacent faces, mesh

alignment etc.

Both the head and the shank can collide with 𝑆 globally. To detect

a collision of the head, we sample the medial circle 𝑐𝑚 and compute

the footpoints on 𝑆 . For a sample point p𝑖 , the projection algorithm

returns its footpoint p⊥
𝑖
, see Fig. 15, and a distance check ∥p𝑖−p⊥𝑖 ∥ <

𝑟 reveals the collision (up to sampling of 𝑐𝑚). For the cylindrical

part, we proceed analogously: we sample the axis 𝐴, compute the

footpoints on 𝑆 , and if lying in the half-space of the shank part, see

Fig. 15 right, a distance check ∥p𝑖 − p⊥
𝑖
∥ < 𝑟 +𝑚 is evoked. If the

collision is realized at some point, the collision routine is terminated

(and the corresponding tangent direction d is labeled as colliding).

5 TOOL SELECTION
We aim at efficient milling and look for a tool as “big” as possible in

order to maximize the width of the milling strips, and consequently

to minimize the number of paths needed for machining the work-

piece. As the second order line contact is strongly correlated with

𝑆

p𝑖

p⊥
𝑖

shank

Fig. 15. Global collision detection test. Left: the medial circle and the axis of
the tool are sampled and their footpoints on 𝑆 are computed. The collision-
free footpoints (green) and those that correspond to collision (red) are
returned. Right: In case of the footpoints of the axis (shank), only the
footpoints in the half-space of the shank are considered, and tested by
∥p𝑖 − p⊥

𝑖
∥ < 𝑚 + 𝑟 . The shank is typically curved (cf. Fig.2), but for the

collision test it is simplified as a cylinder (that contains the real shank).

the width of the milling strips, we postulate that a good tool shall

be able to offer second order line contact in large parts of 𝑆 .

Ω

Δ

𝜔

𝑟

𝑚

1

1

The space of possible tools is part of the

𝑟𝑚-plane, where each point (𝑟,𝑚) repre-

sents the two radii of a torus tool 𝑇 . We

denote by Ω the subset characterizing tools

that can possess 2nd order line contact at all

(concave elliptic and hyperbolic) points of 𝑆

(see inset). Ω turns out to be a trapezoidal

domain; its upper side 𝜔 ⊂ Ω yields tools

with the maximal value of 𝑟 +𝑚. The (possi-

bly empty) subset Δ ⊂ Ω characterizes tools which provide second

order line contact also at all convex elliptic points.

We first consider a concave elliptic point p (𝑅1 ≥ 𝑅2 > 0).

Milling with the convex part of 𝑇 , it can possess 2nd order line

𝑅1

𝑟

𝑚

contact at p if it can be inscribed into the

maximal tool Meusnier sphere at p, i.e., if
𝑟 +𝑚 ≤ 𝑅1. At a hyperbolic point p (𝑅1 <

0, 𝑅2 > 0), the tool Meusnier sphere associ-

ated to the asymptotic directions is infinite

and hence there is no constraint on 𝑟 +𝑚. As

𝑟 > 𝑅2 implies local penetration of 𝑇 and 𝑆

(𝑖𝑇 is not inside 𝑖𝑆 ), a necessary condition for a locally penetration-

free position at a (concave elliptic or hyperbolic) point is 𝑟 < 𝑅2.

Now looking at all concave elliptic and hyperbolic points of 𝑆

(we suppose 𝜅1 ≤ 𝜅2), there is a minimal value 𝑀 of 𝑅1 (over all
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concave elliptic points) and a minimal value 𝑅 of 𝑅2 (over all concave

elliptic and hyperbolic points). Finally, we identifyΩ as the following

trapezoidal domain (note 𝑅 < 𝑀)

Ω : 𝑟 ∈ [0, 𝑅] and 𝑚 ∈ (0, 𝑀 − 𝑟 ] .
The largest tools may be seen as those with maximal𝑚 + 𝑟 . They
correspond to the line segment 𝜔 ,

𝜔 :𝑚 = 𝑀 − 𝑟, where 𝑟 ∈ [0, 𝑅] .
At a convex elliptic point (𝑅1 ≤ 𝑅2 < 0), we mill with the hyper-

bolic part of 𝑇 (we suppose𝑚 > 𝑟 ) and obtain second order line

contact for 𝑟 −𝑚 ≥ 𝑅1. Hence we have

Δ : (𝐾 ≤ 𝑟 −𝑚 < 0) ∩ Ω,

where 𝐾 = 1/maxp∈𝑆𝑐𝑜𝑛𝑣𝑒𝑥 𝜅1. However, in practice we employ a

limit value 𝑅∗ < 0. Let us note that Δ may be empty.

The above described approach considers tools that enable second

order line contact at all (concave elliptic and hyperbolic) sampled

points. However, when some (possibly tiny) part of 𝑆 is very curved,

this approach forces the tool to be small even though the rest of 𝑆

admits a larger tool. In such a case one may consider to machine

the workpiece with two different cutters.

Finally, to select the optimal tool from Ω, we consider those points
in Ω which correspond to the available tools and for each such a tool

𝑇 perform the collision detection of 𝑆 and 𝑇 . For that, we compute

the number of points (and positions of the tool) at which the tool

does not intersect 𝑆 . Thenwe choose the best tool as the one with the

maximal coverage in terms of non-colliding points and directions.

Hence the selection process yields the largest possible tool (from

the set of all available tools) providing penetration-free positions

(with possible 2nd order line contact) at a maximal part of 𝑆 .

6 TOOL MOTION PLANNING
With the information about the admissible directions of second order

line contact (Section 3) and the fast global collision test (Section 4),

we are now ready to design milling (aka contact) paths 𝑐 𝑗 ∈ 𝑆 , 𝑗 =
1, . . . , 𝑛. There are several requirements on these paths: (i) At every

time instant, the second order line contact shall be as orthogonal as

possible to the tangent direction of 𝑐 𝑗 in order maximize material

removal using a single sweep of the tool. (ii) The paths as well as

the tool motion along them should be smooth and fair to prevent

chattering of the tool. (iii) The paths shall be aligned one to another

in quasi parallel fashion with the milling error occurring between

two neighboring paths 𝑐 𝑗 , 𝑐 𝑗+1 below a predefined machining error,

see Fig. 16. (iv) The motion of the tool must be locally and globally

penetration-free. With the objectives (i-iv) in mind, we describe the

construction of the contact paths.

6.1 Contact path construction
We represent the milling paths 𝑐 𝑗 ∈ 𝑆 , 𝑗 = 1, . . . , 𝑛, as level sets of a

scalar function𝐺 : 𝑆 → R defined on 𝑆 , i.e.,𝐺 is constant along each

path 𝑐 𝑗 . The function 𝐺 is computed within an optimization-based

framework as follows.

In our discrete setup, 𝑆 is represented by a triangle mesh with

𝑁 vertices p𝑖 . 𝐺 is assumed to be linear in each triangle and thus

defined by its values 𝑥𝑖 at p𝑖 , i.e.,𝐺 (p𝑖 ) = 𝑥𝑖 , 𝑖 = 1, . . . , 𝑁 . The vector

𝑐𝑖+5

𝑐𝑖

Fig. 16. Scalloping. Top: After fixing the local pene-
tration, the tool-surface error in the neighborhood
of the milling paths (blue) is tiny as it mimics
the O(ℎ3) behaviour due to the nearby oscula-
tion. The material left between two neighboring
sweeps of the tool and the surface (blank) forms
so called scallops that determine the milling accu-
racy. Here, for visualization purposes, a position
of a tool along an 𝑖-th and (𝑖 + 5)-th milling path
are shown. Bottom: Material block with milling
strips and scallops.

x = {𝑥1, . . . , 𝑥𝑁 } of function values at vertices is the unknown of

a minimization problem. Its objective function (11) is composed of

several parts which are now described.

Good tangent directions. The milling error vanishes along a milling

path and increases when moving away from it, see Fig. 16. The max-

imum error between two neighboring tool envelope strips occurs

along their intersection curve. As milling paths are required to be

quasi parallel (requirement (iii)), one aims at having the contact

direction orthogonal to the paths. This places the intersection curve

of the two strips at nearly equal distance to the two corresponding

milling paths, which helps to minimize the milling error.

At each p𝑖 , we may have several wedges in which 𝑇 possesses

second order line contact w.r.t. 𝑆 and the configuration is globally

penetration-free, see Fig. 17(b). Let 𝑘𝑖 be the number of wedges𝑊
𝑗
𝑖

at p𝑖 , u
𝑗
𝑖
the central vector of each wedge, and 𝛼

𝑗
𝑖
the angle between

u𝑗
𝑖
and the corresponding wedge boundary. The objective that the

level-sets of𝐺 are orthogonal to (either of) the wedges is formulated

as

𝐹𝑜𝑟𝑡ℎ𝑜 (x) =
𝑁∑
𝑖

𝑘𝑖∏
𝑗

(
𝜇 (𝛼 𝑗

𝑖
)
〈
∇𝐺 (p𝑖 ), u𝑗⊥𝑖

〉
2

)
1/𝑘𝑖

, (10)

∇ being the gradient, and 𝜇 being a weight function defined as

𝜇 (𝛼) = (𝜋 − 4𝛼)𝛽
𝜋 (𝛼 + 𝛽) .

𝜋/4 𝛼

1

𝜇 (𝛼)

It maps the opening angle 𝛼 of the wedge to

a real number in [0, 1]. The purpose of this

function is to assign higher weights to narrow

wedges as there is little choice for maneuvering

of the tool to be in second order line contact

with 𝑆 . Observe that 𝜇 (0) = 1 and 𝜇 (𝜋/4) = 1

and the function is decreasing. The parameter

𝛽 controls the decay of 𝜇 and was set experimentally to 𝛽 = 0.05

in all our examples. Therefore, for small values of 𝛼 , one obtains

large weights (higher priority), while for wedges with large opening

angles, the orthogonality constraint is more relaxed as many good

directions exist.

Fairness of the paths 𝑐 𝑗 is closely related to fairness of 𝐺 , which

is achieved by the energy

𝐹𝑓 𝑎𝑖𝑟 (x) =
𝑁∑
𝑖

Δ𝐺 (p𝑖 )2,

whereΔ is the Laplace–Beltrami operator, discretized with the cotan-

gent formula.
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𝑆

𝑇

(a) (b)

(𝑤1, 𝑤2, 𝑤3) = (1, 1, 1)

(c)

(1, 𝜀, 𝜀)

(d)

(𝜀, 1, 𝜀)

(𝜀, 𝜀, 1)

(10𝜀, 10𝜀, 1)

Fig. 17. Contact path construction. Given a reference surface 𝑆 and a toroidal tool𝑇 (a), the analysis conducted in Section 3.1 categorizes tangent directions
into three types of tangent wedges: second order line contact between 𝑆 and𝑇 is possible (green); second order contact causes global collision (red); first order
contact (blank). (c) The contact paths are computed as level-sets of a scalar function𝐺 , defined on 𝑆 , computed by minimizing the objective function in
Eq. (11); here all three objective terms are represented equally. (d) The contact paths are defective if only one term dominates; various triplets of weights
(𝑤1, 𝑤2, 𝑤3) with 𝜀 = 10

−2 are shown.

Parallelism of paths. Finally, we aim at level sets 𝑐 𝑗 which are close

to geodesic offsets of each other. In other words,𝐺 shall not deviate

much from a distance function on 𝑆 , characterized by ∥∇𝐺 ∥ = 1.

This leads to the term

𝐹𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 (x) =
𝑁∑
𝑖

(∥∇𝐺 (p𝑖 )∥ − 1)2 .

Altogether, we obtain the following objective function

𝐹 (x) = 𝑤1 𝐹𝑜𝑟𝑡ℎ𝑜 (x) +𝑤2 𝐹𝑓 𝑎𝑖𝑟 (x) +𝑤3 𝐹𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 (x), (11)

where𝑤1,𝑤2, and𝑤3 are weights to control orthogonality, fairness,

and parallelism of the milling paths, respectively. The impact of

these weights on the milling paths is shown in Fig. 17. One can

see that setting a dominant weight for 𝐹𝑜𝑟𝑡ℎ𝑜 results in meandering

milling paths, while a dominating fairness term produces fair curves,

but without a geodesically parallel pattern. Finally, the parallel term

alone does not yield a nice (orthogonal) path through the wedges,

see Fig. 17(d). Therefore a combination of all terms is needed and

the weights were set to (𝑤1,𝑤2,𝑤3) = (1, 1, 1) in all our examples.

The objective function in Eq. (11) is non-linear and therefore

an initial guess x0 = {𝑥0

1
, . . . , 𝑥0

𝑁
} is needed. We initialize 𝐺 as

distance function of an appropriately chosen plane Γ, i.e., we set
𝑥0

𝑖
= dist(p𝑖 , Γ). Thus the initial level sets lie in planes parallel to Γ

which is determined as follows. We compute a central point m as

closest point on 𝑆 to the barycenter (∑ p𝑖 )/𝑁 . Γ is spanned by the

normal line of 𝑆 at m and a further vector w whose computation is

based on our requirement that milling paths shall be perpendicular

to the green wedges, see Fig. 17(b). At every vertex p𝑖 , we take

the central wedge direction u𝑖 , if any1, compute its orthogonal

tangential complement u⊥
𝑖
, and project it to the tangent plane of 𝑆

at m. Then w is computed as median of these projections.

Finally, having the initial guess, minimization uses the gradient-

based solver Adam [Kingma and Ba 2014] implemented in Tensor-

Flow, without the stochastic aspect.

Remark 2. Typically, path-planning methods prescribe and/or re-
quire the contact paths as input and deal only with the orientation of
the tool. However, this reduces the search space and consequentlymakes

1
Points with no admissible direction (empty wedge) and points with too many good

directions (half discs and larger) do not contribute.

the solution sub-optimal. In contrast, our approach looks for contact
paths such that the milling strips are as wide as possible (milling time
minimization) and their construction is a part of the path-planning
algorithm.

6.2 Tool motion planning
In this section we describe how the smooth and penetration-free

motion of a given tool is computed. In our discrete setup, a particu-

lar contact path 𝑐 is a polyline c1, . . . , cℓ on a triangular mesh. Let

us first consider the case when an underlying B-spline surface 𝑆 is

available. We proceed as follows. We pull back the cutter contact

path c1, . . . , cℓ to the parameter domain and approximate it with a

cubic spline c(𝑡), 𝑡 ∈ [0, 1] with a parametric speed as constant as

possible. Mapping c(𝑡) back to 𝑆 yields the smooth contact curve

c(𝑡). When no underlying spline is available, we proceed analo-

gously by computing locally B-spline approximations of the triangle

mesh along the cutter contact polyline.

Once the smooth contact paths are computed, the motion con-

struction inheres in finding smooth rotation 𝜙 (𝑡) and tilt𝜓 (𝑡) func-
tions along each path c(𝑡). Since we aim at parallel envelope strips

with equal widths, we do not further optimize the rotation angle

and choose the tool axis in the plane spanned by the path tangent

and the surface normal at c(𝑡).
Thus, the tool motion is optimized only via the tilt function

𝜓 (𝑡), which is constructed as follows: We sample parameter values

𝑡0, . . . , 𝑡𝑘 ∈ [0, 1] and for each 𝑡𝑖 :

(i) Compute the tilt angle𝜓𝑖 corresponding to the 2nd order line

contact (if there is no 2nd order line contact possible,𝜓 = 0).

(ii) Sample values for tilts from [𝜓𝑖 + 𝜖, 𝜋] and perform the colli-

sion detection. Penetration-free positions correspond to the

interval [𝜓0

𝑖
,𝜓1

𝑖
], see Fig. 18, top.

Intervals [𝜓0

𝑖
,𝜓1

𝑖
] determine a region of admissible tilts, see Fig. 18,

middle. Thus, tool motion planning is translated to the construction

of a function 𝜓 (𝑡) through the green region, which is (a) close to

the bottom boundary 𝜓0

𝑖
(yielding tool orientations close to 2nd

order line contact) and (b) possesses a nice distribution of curvature

(yielding a fair motion of the tool), see Fig. 18, bottom. We proceed

as follows. The tilt angle function is represented as a cubic B-spline

function 𝜓 (𝑡) =
∑
𝑏𝑖𝑁

3

𝑖
(𝑡) with coefficients 𝑏0, . . . , 𝑏𝑛 ∈ R and
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𝜓

𝑡𝑡𝑖

𝜓𝑖

𝜓 0

𝑖

𝜓 1

𝑖

𝜓

𝑡

𝜓

𝑡

𝜓 (𝑡 )

Fig. 18. Tilt function construction. Top:
Collision tests at sampled values along
a contact curve c(𝑡 ) determine intervals
[𝜓 0

𝑖
,𝜓 1

𝑖
] (green) of admissible tilts yield-

ing penetration-free positions of𝑇 . The val-
ues 𝜓𝑖 correspond to 2nd order line con-
tact positions (if possible). Middle: Inter-
vals [𝜓 0

𝑖
,𝜓 1

𝑖
] determine a tube (green) of

admissible tilts along a curve c(𝑡 ) . The black
curve corresponds to tilt angles providing
2nd order line contact at c(𝑡𝑖 ) . Bottom: Tilt
function construction – we look for a nicely
shaped smooth spline function in the green
(penetration-free) region.

normalized cubic B-spline basis functions 𝑁 3

𝑖
(𝑡) over a uniform

knot sequence 𝐾 . At first, we interpolate values𝜓0

𝑖
and𝜓1

𝑖
by cubic

B-spline functions 𝜓0 (𝑡) and 𝜓1 (𝑡) (with knot sequence 𝐾 and B-

spline coefficients 𝑏0

0
, . . . , 𝑏0

𝑛 and 𝑏1

0
, . . . , 𝑏1

𝑛 , respectively). Then𝜓 (𝑡)
is found by minimizing the quadratic objective function

𝐹𝑡𝑖𝑙𝑡 (𝑏0, . . . , 𝑏𝑛) = 𝐹𝑐𝑙𝑜𝑠𝑒 +𝑤𝐹𝑓 𝑎𝑖𝑟 ,

subject to the constraints 𝑏0

𝑖
+ 𝜀 ≤ 𝑏𝑖 ≤ 𝑏1

𝑖
, 𝑖 = 1, . . . , 𝑘 . The term

𝐹𝑐𝑙𝑜𝑠𝑒 forces 𝜓 (𝑡) to lie close to the bottom boundary 𝜙0 (𝑡) + 𝜀,
where 𝜀 = 10

−2
is used as a safety threshold,

𝐹𝑐𝑙𝑜𝑠𝑒 (𝑏0, . . . , 𝑏𝑛) =
1

𝑛 + 1

𝑛∑
𝑖=0

(𝑏𝑖 − 𝑏0

𝑖 )
2 .

The second term 𝐹𝑓 𝑎𝑖𝑟 votes for the fair motion of the tool,

𝐹𝑓 𝑎𝑖𝑟 (𝑏0, . . . , 𝑏𝑛) =
1

𝑛 − 1

𝑛−1∑
𝑖=1

(𝑏𝑖−1 − 2𝑏𝑖 + 𝑏𝑖+1)2 .

𝜓

𝑡

𝑤 = 0.1

𝑤 = 10

The weight 𝑤 controls the

trade-off between closeness to

2nd order line contact and fair-

ness. Setting𝑤 = 0 yields exactly

the function𝜓0 (𝑡) +𝜀 and𝑤 = ∞
a straight line (if compatible with

the constraints). In our examples, we set 𝑤 = 1 as a suitable com-

promise, see Fig. 18, bottom.

Remark 3. Let us emphasize that the above described motion plan-
ning approach automatically handles the transition between concave
and convex points of 𝑆 by tilting the tool and using its elliptic or
hyperbolic part appropriately, see Fig. 19.

7 SIMULATION RESULTS AND PHYSICAL VALIDATIONS
The proposed methodology has been tested on a variety of free-form

surfaces. Given a reference surface 𝑆 , Fig. 20 shows milling paths

for a specific milling tool 𝑇 .

Another example where the milling paths are computed for two

specific tools on a single target surface is shown in Fig. 21(a,c). The

view is upside-down to demonstrate a collision-free configuration

of 𝑆 and 𝑇 throughout the surface. The motion of the toroidal head

(blue) of the tool is visualized as a swept volume in Fig. 21(b,d).

𝑆

hyperbolic

(a)

convex elliptic

(b)

Fig. 19. Milling with the right part of the tool. The parabolic points on 𝑆

form curves (red) that separate regions with positive and negative Gaussian
curvature. In hyperbolic regions, the tool touches 𝑆 with its elliptic part
(blue positions), while in the convex elliptic regions, the tool touches by its
hyperbolic part. Hyperbolic-elliptic and elliptic-hyperbolic match of the tool
and the surface is essential for highly-accurate milling. (b) A smooth motion
of the tool with involvement of its elliptic (blue) and hyperbolic (green) part.

milling side

material side

𝑆

(a) (b)

Fig. 20. Collision-free motions. (a) A reference surface 𝑆 can be accessed
by a toroidal cutter only from the milling side. The analysis described in
Section 6 computes the contact paths. The green curves correspond to
positions of the tool where second order line contact is possible and no
global collision occurs. Along the black curves (b), only first order contact
can be achieved. There we aim at smooth motions of the tool, where neither
the toroidal part nor the shank collide with 𝑆 .

When the tool 𝑇 moves along a contact curve 𝑐𝑖 , it cuts a surface

into the material block, which is part of the envelope 𝐸 of the torus

𝑇 under that motion. The nature of 𝐸 is simple and thus it can be

computed with high accuracy: The medial circle 𝑐𝑚 of 𝑇 sweeps

out a ringed surface, and the envelope 𝐸 is its offset at distance 𝑟 ,

where 𝑟 is the profile radius. We prefer to use this direct geometric

construction over alternatives proposed in the literature; see e.g.

[Roth et al. 2001].

For our curvature adapted tool motion planning, the surface 𝐸

generated by the moving tool approximates the target surface 𝑆

really well in the proximity of the milling path. This can be seen

in Fig. 22(b). The two neighboring milling paths, that lie (exactly)

on 𝑆 , are within a fine distance error of 𝜀 � 10
−4

of the size of the

bounding box of the surface. Typically, the machining tolerance

is several micrometers for an object of tens of centimeters (factor

ca 10
−5
). Hence, the distribution of the milling paths shown in

Fig. 22(a) roughly corresponds to the desired accuracy. Observe that

the distance error 𝜀 is not the scallop height, but the distance of

the next path to the envelope (i.e., an upper bound of the milling
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(a) (b)

(𝑚,𝑟 ) = (20, 6)

(c) (d)

(𝑚,𝑟 ) = (44, 6)

Fig. 21. Tool-dependent milling paths. (a,c) Given the reference surface 𝑆 (light) and a specific milling tool𝑇 (framed), the milling paths that correspond to
motions perpendicular (in the least square sense) to the second order line contact between 𝑆 and𝑇 are computed (black). (b,d) The two swept volumes of the
bottom of the tool (blue) that approximate the input surface within fine machining tolerances are shown. Note that the viewpoint is from the material side in
order to shown the part of the envelope that approximates 𝑆 .

(a) (b)
(c)

Fig. 22. Approximation by swept volumes. (a) A reference surface with a
set of milling paths. Its approximation by a coarse (b) subset of toroidal
swept volumes. (c) The whole surface approximated by 38 swept volumes.
For visualization purposes, the objects are upside-down.

(a) (b)

(c) (d)

Fig. 23. Envelope patterns. A moving tool defines an envelope surface and
the machining quality is governed by the error of the intersection curve
of two neighboring envelope strips. The machining error is (theoretically)
zero along the milling paths and maximal along the intersection curves.
Therefore, a “bisector-like” pattern is desirable. The reference surfaces with
the computed milling paths are showed framed.

error.) Such a high accuracy can be intuitively felt by looking at the

shadows of the neighboring paths cast on the swept volume.

To mill 𝑆 with high accuracy, the tool has to approach it with

the appropriate part. Fig. 19(a) shows configurations of the tool

in hyperbolic (blue) and convex elliptic (green) regions. While the

hyperbolic regions require the elliptic part of the tool (positive tilt),

convex elliptic regions need to be approached by the hyperbolic

part of the tool (negative tilt). The smooth transition of the tool

throughout these regions is shown in Fig. 19(b).

Milling paths and some tool positions at a convex elliptic surface

𝑆 are shown in Fig. 24. Typically, in state-of-the-art path planning

CAM software such as Siemens NX or SprutCAM, a toroidal tool is

navigated such that the bottom circle of the tool is in contact with a

convex elliptic surface. In contrast, our approach poses the tool such

that it touches the surface with its hyperbolic part, leading to higher

approximation quality, and consequently better surface finish, see

Fig. 25. Note that we use fewer number of milling strips than needed

in real life applications to better demonstrate the difference between

our approach and the commercial software.

Another important issue of highly-accurate milling are the widths

of the machined strips. Even though it is possible to relax the con-

straint on parallel strips by decreasing𝑤3 in Eq. (11), we prioritize

parallel strips. The reason for that is the fact that the milling error is

zero along the milling paths and increases as one moves away from

those. The maximum error between two neighboring strips occurs

along the intersection of the two tool envelopes. Therefore, one aims

at intersection curves at equal distance to the two milling paths.

Fig. 23 shows the pattern of milling strips for various surfaces and

milling tools. One can observe this parallel-like behaviour among

the milling paths and the intersections of neighboring strips.

A comparison with the commercial software SprutCAM is shown

in Fig. 26. SprutCAM requires user intervention to tune several

parameters. We experimented with these parameters to optimize

the performance and compare our results against the best result we

could achieve with SprutCAM. Amachined part exhibiting a general

free-form surface is shown in Fig. 28. We again emphasize that the

coarse use of milling paths is intentional, to visually demonstrate

the high approximation quality and minimal scalloping effects with

just a few milling paths.

A quantitative comparison with ball-end milling is shown in

Fig. 27. Machining the convex surface of Fig. 24 is simulated by

our approach and compared with ball milling while maintaining a

given distance error. Our approach needs less than a third of the

milling paths and still has significantly smaller kink angles at the

intersections of neighboring strips, see Fig. 27(c,d).
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𝑆

𝑇

(a) (b)

p

(c) (d)

Fig. 24. High quality machining of a convex elliptic surface. (a) Motion of a milling tool along a milling path (bold) on a convex surface 𝑆 . (b) The tool touches
the surface with its negatively curved part at the contact point p. (c) Machined part using 𝑛 = 38 milling paths. (d) High resolution of the surface silhouette.

(a) (b)

Fig. 25. Smooth surface finish. The surface shown in Fig. 21 is approximated
by𝑛 = 24 milling strips using our algorithm (a) and the commercial software
SprutCAM (b). Observe the smooth finish as well as equally distributed
milling strips in (a) while (b) suffers by irregularities. A zoom-in of the
bottom-right corner of (b) that highlights the irregular strip pattern is shown
framed.

Another qualitative comparisons against toroidal cutting (non

curvature-adapted) and ball-end cutting are shown in Fig. 29 via

reflection lines. One can see that the smoothest reflection lines

appear for our curvature-adapted method with a toroidal cutter.

7.1 Implementation details
The algorithms corresponding to mesh processing (computation of

wedges, milling paths and collision detection) were implemented in

Python 3.6.11, and the tool motion planning in Mathematica 12.2.

Parallelized libraries like Trimesh, TensorFlow, and igl [Jacobson

et al. 2018] were used to speed up the computation, including multi-

threaded realizations.

The quality of the final tool paths depends on the resolution of

the mesh. We worked with two sets of meshes: the fine ones (cca

50-150K vertices), that were pre-processed and used for collision

detection, and the coarse ones (1-3K) that were used for the milling

path construction, in particular for the optimization in Eq. (11). With

that, we achieved a good balance in time-vs-performance, being able

to run all the example optimizations on a low-end desktop PC Intel

NUC6CAYB (Intel Celeron J3455) (below referred to as NUC), or a

DELL XPS laptop with Intel i7-10510U. A substantial speed boost

was achieved when running the code on a computer cluster (4 cores

of Intel Xeon Gold 6140) and/or a GPU (NVIDIA Tesla K40c). A

summary of simulation timings of all other examples shown in the

paper, computed on a cluster, are summarized in Table 1.

0.7

0

1.1

0

(a)

0

0.05

undercut

overcut(b)

Fig. 26. Comparison with a commercial software. The surfaces shown in
Fig. 21, Fig. 19, and Fig. 24 (from top to bottom) are approximated by 𝑛 = 28,
𝑛 = 14, and 𝑛 = 34 milling strips, respectively, using our algorithm (a)
and the commercial software SprutCAM (b). The machined envelopes are
color-coded by the error to the reference surface. While both algorithms are
penetration free (no overcutting) our algorithm produces a much smaller
machining error (undercutting) and thus a better surface finish. As the
convex surface is not fully visible, the top views are also shown (framed).

7.2 Discussion and limitations
We aimed at highly-accurate collision free machining. Milling paths

c are constructed with a wish that second order line contact is

possible in a direction perpendicular to the tangent direction t𝑐 of
c. Due to the size of the tool or global collision, this is not always
possible and then one would need to rotate the tool w.r.t. t𝑐 . This
is not done in our current implementation; we only optimize the

tilt angle. For mold-like reference geometries like ours, we always

found a tilt angle that gives a globally collision-free position. This

approach also generates nicemilling patternswithmaximummilling
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(a) 0

0.05

𝑚𝑚

(b)

(c)
0

5

𝑑𝑒𝑔

(d)

Fig. 27. Quantitative comparison with ball-end milling. Using the testing
surface of Fig. 24, to achieve the same machining error 0.05𝑚𝑚, our al-
gorithm with a toroidal cutter (𝑟 = 6𝑚𝑚,𝑚 = 21𝑚𝑚) needs 38 milling
paths (a), while ball-end cutting (𝑟 = 10𝑚𝑚) requires 143 milling paths
to get the same maximum scallop height (b). Our results (c) outperform
ball-end cutting (d) also in terms of angular difference (kink angle) between
neighboring milling strips. In (c,d) the color coding represents this angular
deviation for the threshold 0-5 degrees. The framed images are the top views
to show the error on the whole surface.

Fig. 28. Physical validation. Left: The surface shown in Fig. 26 (middle row)
has been 5-axis milled. As the real machining is time demanding, a sparser
set of the milling paths was used. The surface contains all types of points
(convex elliptic, hyperbolic, concave elliptic), yet the transition between
these regions is very smooth. Right: A zoom-in figure of a fine finish with a
marginal scalloping effect; note the smoothness of the silhouette.

errors attained in the middle between neighboring milling paths,

as seen in Fig. 23. It is an open question whether optimizing the

rotation angle would significantly improve the machining quality.

Another place for possible improvements may be the global colli-

sion detection test. There, we consider a cylindrical shank instead

of an eventually existing tighter approximation, cf. Fig. 15. This

approach slightly restricts the search space of solutions. However, it

is a conservative strategy that makes the computation more efficient,

and it has not been an obstacle in finding non-colliding positions.

Our approach supports both discrete (triangle mesh) and smooth

(B-spline) target surfaces 𝑆 . If 𝑆 is smooth, we still compute a trian-

gulation and use it for path planning and point-surface projections.

(a) (b) (c)

Fig. 29. Reflection lines on two patches of the surface from Fig. 24 are
shown. (a) shows the result of our algorithm, (b) is based on the commercial
software SprutCAM using a cylindrical center-cutting end mill, which is
the best one can do on a convex surface without using a negatively curved
cutter, and (c) is achieved by a ball-end cutter.

Fig. 30. Back-cutting. The same set of
tool envelopes as in Fig. 23, bottom-left,
is shown. There is an artefact caused by
a motion of the tool (yellow). Observe
that this is an upside-down view and the
yellow blot does not mean a penetration,
but the fact that the tool is just closer to
the reference surface than when milling
the light and blue strips. This phenome-
non is called back-cutting; zoom-in im-
age is shown framed.

Curvature computation is performed on the smooth representa-

tion, if available, otherwise we apply the jet-fit method [Cazals and

Pouget 2003].

8 CONCLUSIONS & FUTURE RESEARCH
We have introduced a path-planning pipeline for curvature adapted

5-axis CNC machining of free-form surfaces. We conduct curvature

analysis to compute tangent directions along which second order

line contact between a toroidal cutting tool and the reference surface

is possible, followed by a global collision detection test to remove

positions that are not physically realizable. We use this analysis to

design collision free tool motions which yield nearly parallel milling

strips and generate surfaces which well approximate the target

geometry and reduce kink angles at intersections of neighboring

strips. As a result, our approach offers highly accurate machining

that needs a lower number of milling paths than other techniques,

and consequently reduces the machining time. We have tested the

proposed methodology on various free-form surfaces, compared it

Table 1. Timings of three computation stages: 1. Tool positioning and
collision detection on a coarse mesh; 2. Path optimization on a coarse mesh;
3. Tool motion planning and validation on a fine mesh, for different models
used in the paper (run on 4 cores of Intel Xeon Gold 6140)

Time per stage Total time

Example st. 1 st. 2 st. 3 (min:sec)

Fig. 21(a) 2:18 6:13 1:57 10:28

Fig. 21(c) 4:53 10:21 8:07 23:21

Fig. 22 6:18 12:55 15:54 35:07

Fig. 24 2:51 5:17 1:35 9:43

Fig. 23(a) 4:50 12:53 4:26 22:09

Fig. 23(b) 1:59 6:13 2:07 10:19

Fig. 23(c) 7:27 21:27 6:06 35:00

Fig. 23(d) 8:57 21:17 22:19 52:33
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to state-of-the-art CAM path-planning software, and validated it by

real machining experiments.

A direction for future research is the avoidance of artefacts created

by back-cutting. One can observe this artefact in Fig. 23, bottom-left,

where one of the light envelopes interferes the blue neighbor. This

is caused by another sweep of the tool; see the yellow envelope in

Fig. 30. While the manufacturing would still be collision-free, the

impact on the surface finish is undesirable.

Another thread for future research is incorporating the physics

of the milling process into the path-planning loop. We postulated

that wide milling strips reduce machining time. However, there are

other motion parameters, such as feed rate, that need to be aligned

according to the milling paths. A related issue is incorporating feed

parameters (e.g., velocity, acceleration, and jerk drive limits) of a

particular milling machine into the path-planning process.
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