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The setup

Kokotsakis n-polyhedron
An n-gon with quadrilaterals attached to its sides and triangles
attached to its vertices.

n = 5

The inner face stays planar (a plate-and-hinge structure).
A generic polyhedron of this shape is rigid.
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The setup

Kokotsakis 3-polyhedra and octahedra
Cut an octahedron in two “halves” two Kokotsakis 3-polyhedra.

Bricard’s flexible octahedra provide examples of flexible
Kokotsakis 3-polyhedra.
Conversely, extending the faces of a Kokotsakis 3-polyhedron
yields an octahedron (possibly with some vertices at infinity).

Flexibility of generalized octahedra was investigated by Nawratil.
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The setup

Kokotsakis 4-polyhedra and quad-surfaces
A quad-surface is a polyhedral surface made of quadrilaterals.
Regular quad-surface: four quadrilaterals at every vertex.
The neighborhood of a face in a regular quad-surface is a
Kokotsakis 4-polyhedron.

Theorem
A simply-connected quad-surface is flexible⇔ neighborhoods of all
faces are flexible.
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The setup

Flexible quad-surfaces: Examples

Miura-Ori Kokotsakis mesh

any mesh where the opposite angles
sum up to π: α+ γ = β + δ

any mesh where the opposite angles are
equal (discrete Voss): α = γ, β = δ

α

γδ

β
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The setup

A real-life application
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The setup

History

Sauer–Graf’31: discrete Voss surfaces, T-surfaces

Kokotsakis’33: characterization of infinitesimal flexibility, more
examples

Schief–Bobenko–Hoffmann’08: relation to integrable systems

Schief: an unpublished preprint discussing an alternative
approach

Karpenkov’10: an algebraic approach proposed

Stachel–Nawratil’10: spherical linkages, classification of
decomposable cases

I’17: a “complete” classification
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Spherical linkages

Spherical link of a vertex
Take a sphere centered at a vertex of a Kokotsakis polyhedron.

It intersects the adjacent faces along four arcs of great circles.
Arc lengths = plane angles of the faces.
When the polyhedron is deformed, the spherical quadrilateral
deforms while preserving its side lengths.

γ

βα α

γ

β

δ

δ
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Spherical linkages

Coupled spherical quadrilaterals

The links of two adjacent vertices are two spherical quadrilaterals
with a common angle.

This can be represented by a scissors linkage on the sphere.

β1

γ1

α1
α2

γ2
δ1

β2

δ2
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Spherical linkages

A spherical linkage

The links of all four vertices form a spherical linkage.

δ1

δ3
δ4

δ2δ1δ2

δ3 δ4

The Kokotsakis polyhedron is flexible⇔ the spherical linkage is flexible
(and the marked angles remain equal during the flex).
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Spherical linkages

Spherical tetragonometry
In a triangle, the side lengths determine the angles.

In a quadrilateral, the side lengths determine relations between any
pair of angles. (A quadrilateral deforms with one degree of freedom.)

ϕ
ε

α

β

γ

δ
ϕ′

ϕ

α

β

γ

δ
ψ

cos ε = cosα cos δ + sinα sin δ cosϕ
= cosβ cos γ + sinβ sin γ cosϕ′

⇒ linear relation on cosϕ and cosϕ′

sinα sin γ(cos δ cosϕ cosψ − sinϕ sinψ)
−sinα cos γ sin δ cosϕ−cosα sin γ sin δ cosϕ

+ cosβ − cosα cos γ cos δ = 0
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Spherical linkages

Polynomial equations

Substitute z = cot ϕ2 ,w = cot ψ2 .

Get a polynomial equation P(z,w) = 0.
α

γ

βϕ

δ
ψ

ϕ

ψ2 ψ1

θ
Get a system of polynomial equations:

P4(u,w2) = 0 P3(u,w1) = 0
P2(z,w2) = 0 P1(z,w1) = 0

Generically, the solution set is finite: the polyhedron is rigid.
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Spherical linkages

Algebraic approach

When does the system

P4(u,w2) = 0 P3(u,w1) = 0
P2(z,w2) = 0 P1(z,w1) = 0

have a one-parameter set of solutions?

The resultant of P1 and P2 as polynomials in z is a polynomial in
w1,w2. So is the resultant of P3 and P4 as polynomials in u.

R1(w1,w2) = 0 R2(w1,w2) = 0.

The polyhedron is flexible⇔ R1 and R2 have a common factor.

The reducible case (the common factor of lower degree) was analyzed
by Nawratil and Stachel.

Ivan Izmestiev (University of Fribourg) Flexible Kokotsakis polyhedra and elliptic functions Vienna’18 15 / 28



Spherical linkages

Algebraic approach

When does the system

P4(u,w2) = 0 P3(u,w1) = 0
P2(z,w2) = 0 P1(z,w1) = 0

have a one-parameter set of solutions?

The resultant of P1 and P2 as polynomials in z is a polynomial in
w1,w2. So is the resultant of P3 and P4 as polynomials in u.

R1(w1,w2) = 0 R2(w1,w2) = 0.

The polyhedron is flexible⇔ R1 and R2 have a common factor.

The reducible case (the common factor of lower degree) was analyzed
by Nawratil and Stachel.

Ivan Izmestiev (University of Fribourg) Flexible Kokotsakis polyhedra and elliptic functions Vienna’18 15 / 28



Elliptic functions
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Elliptic functions

Polynomial equations: a closer look
Equation relating two adjacent angles of a quadrilateral has the form

c22z2w2 + c20z2 + c02w2 + 2c11zw + c00 = 0.

c22 = sin
α+ β + γ − δ

2
sin

α− β + γ − δ
2

c20 = sin
α− β − γ − δ

2
sin

α+ β − γ − δ
2

c02 = sin
α+ β − γ + δ

2
sin

α− β − γ + δ

2
c11 = − sinα sin γ

c00 = sin
α− β + γ + δ

2
sin

α+ β + γ + δ

2

Conical mesh: α+ γ = β + δ. This implies c22 = 0.
Intrinsically flat (origami case): α+ β + γ + δ = 2π. Then c00 = 0.
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Elliptic functions

Conical case: parametrization by trigonometric
functions

The solution set of

c20z2 + c02w2 + 2c11zw + c00 = 0

can be parametrized as

z = p sin t , w = q sin(t + τ), t ∈ C.

With every quadruple (α, β, γ, δ) that satisfies α+ γ = β + δ one
associates

two amplitudes p, q (real or purely imaginary);
a phase shift τ .

Ivan Izmestiev (University of Fribourg) Flexible Kokotsakis polyhedra and elliptic functions Vienna’18 18 / 28



Elliptic functions

Conical case: parametrization by trigonometric
functions

The solution set of

c20z2 + c02w2 + 2c11zw + c00 = 0

can be parametrized as

z = p sin t , w = q sin(t + τ), t ∈ C.

With every quadruple (α, β, γ, δ) that satisfies α+ γ = β + δ one
associates

two amplitudes p, q (real or purely imaginary);
a phase shift τ .

Ivan Izmestiev (University of Fribourg) Flexible Kokotsakis polyhedra and elliptic functions Vienna’18 18 / 28



Elliptic functions

General case: elliptic functions
The solution set of

c22z2w2 + c20z2 + c02w2 + 2c11zw + c00 = 0

can be parametrized as

z = p sn(t ; k), w = q sn(t + τ ; k), t ∈ C,
or z = p cn(t ; k), w = q cn(t + τ ; k).

(Distinction according to the Grashof condition.)

With every generic quadruple (α, β, γ, δ) one associates
a modulus k ;
two amplitudes p, q (real or purely imaginary);
a phase shift τ .

Ivan Izmestiev (University of Fribourg) Flexible Kokotsakis polyhedra and elliptic functions Vienna’18 19 / 28



Elliptic functions

General case: elliptic functions
The solution set of

c22z2w2 + c20z2 + c02w2 + 2c11zw + c00 = 0

can be parametrized as

z = p sn(t ; k), w = q sn(t + τ ; k), t ∈ C,
or z = p cn(t ; k), w = q cn(t + τ ; k).

(Distinction according to the Grashof condition.)

With every generic quadruple (α, β, γ, δ) one associates
a modulus k ;
two amplitudes p, q (real or purely imaginary);
a phase shift τ .

Ivan Izmestiev (University of Fribourg) Flexible Kokotsakis polyhedra and elliptic functions Vienna’18 19 / 28



Elliptic functions

Riemann surfaces and branched covers

C C

C

P1(z,w1) = 0P2(z,w2) = 0

z

w1w2

z
w1

z
w2
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Elliptic functions

Riemann surfaces and branched covers
z

w2
z

w1

C C

C

z

w1w2

If the branch sets are different, then the configuration space of the
coupling is connected.
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Elliptic functions

Riemann surfaces and branched covers
z

w2
z

w1

C C

C

z

w1w2

If the branch sets coincide, then the configuration space has two
components.
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Elliptic functions

A (good) reducible coupling

p1 sin tp2 sin t′

q1 sin(t + τ1)q2 sin(t′ + τ2) Assume p1 = p2 =: p. Then

p1 sin t = p2 sin t ′

⇔ t = t ′ or t ′ = π − t .

The configuration space of this coupling has two components:

p sin tp sin t

q2 sin(t − τ2) q1 sin(t + τ1)

p sin tp sin t

q2 sin(t + τ2) q1 sin(t + τ1)

(That is, the resultant R1(w1,w2) factorizes.)
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Elliptic functions

A class of flexible Kokotsakis polyhedra
All couplings are reducible as above.
The sum of shifts = 0(mod 2π).

p sin t

s sin(t + τ2) q sin(t + τ1)

r sin(t + τ3)

For generic spherical links (whose configurations are parametrized by
sn(t ; k) or cn(t ; k)) there is one additional condition:

The elliptic moduli coincide: k1 = k2 = k3 = k4.
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Elliptic functions

Angle condition for reducible couplings

ϕ′′ ϕ′

Theorem
In a (good) reducible coupling, the two outermost angles are either
equal or complementary:

ϕ′ = ϕ′′ or ϕ′ = π − ϕ′′.

Compare with the Dixon’s angle condition in the Burmester
mechanism.
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Elliptic functions

Involutions

i
δ

γ

j

β

α

w

z

Two involutions on the configuration space:

i(z,w) = (z,w ′), j(z,w) = (z ′,w).

The fixed points are branch points of the coordinate projections.
Fixed points of i correspond to ϕ′ = 0 or π.
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Elliptic functions

Angle condition for reducible couplings: proof

ϕ′′ ϕ′

Theorem
In a (good) reducible coupling, the two outermost angles are either
equal or complementary:

ϕ′ = ϕ′′ or ϕ′ = π − ϕ′′.

Proof.

Branch points coincide: ϕ′ ∈ {0, π} ⇔ ϕ′′ ∈ {0, π}.
Linear relation on cosines: cosϕ′′ = a cosϕ′ + b.

Thus we have a + b = 1,−a + b = −1 or a + b = −1,−a + b = 1.
Hence b = 0,a = ±1⇒ cosϕ′′ = ± cosϕ′.
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Elliptic functions

Darboux porism
Take a quadrilateral.

Fold it along the diagonal 13.

1 2

3
4

Now fold along 24. Repeat.

Theorem (Darboux, 1879)
If the folding of a quadrilateral is periodic, then it is periodic for every
quadrilateral with the same side lengths.
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Elliptic functions

Bottema porism
Darboux porism is equvalent to Bottema porism.

Theorem (Bottema, 1969)
If an equilateral 2n-gon can be inscribed into a pair of circles, then
infinitely many equilateral 2n-gons with the same side length can be
inscribed into the same pair of circles.

Gives rise to an overconstrained bipartite linkage.
Can be derived from the Poncelet porism: join the vertices lying
on one circle, get an n-gon circumscribed about a conic.
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Elliptic functions

Proof of the Darboux porism
Reformulation: if i ◦ j has a fixed point, then it is the identity map.

i
δ

γ

j

β

α

w

z

If z = sn(t ; k),w = sn(t + τ ; k), then in terms of the parameter t

i(t) = 2K − t , j(t) = 2K − 2τ − t .

Thus i(j(t)) = t + 2τ .

A configuration is n-periodic⇒ 2τn is a period of sn
⇒ any other configuration is n-periodic.
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