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1. Motivation

Stewart Gough platforms (SGP) are 6-dof
S3PS3 parallel manipulators, as the platform
is connected with the base via six S3PS3-legs.

P denotes the active prismatic joint.

Sn denotes the passive spherical joint, which
admits the group of spherical motions SO(n)
of the n-dimensional Euclidean space En.

A SGP is called planar, if the base anchor
points M1, . . . ,M6 are coplanar and the plat-
form anchor points m1, . . . , m6 are coplanar.

MiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMi
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1. Motivation

Planar SGPs are a lot better understood geometrically than the non-planar ones:

• attachment of additional legs without changing
the direct kinematics [1] and singularity set [2],

• self-motions [3] and Duporcq’s theorem [4], etc.

We hope to gain a deeper geometric insight into the nature of non-planar SGPs by
studying the analogs of planar SGPs in E4, which are so-called hyperplanar 10-dof
S4PS4 parallel manipulators.

The basic equation for an algebraic kinematical study of this mechanisms is the
so-called hypersphere condition, which means that mi is located on a hypersphere
centered in the corresponding base anchor points Mi.

For the formulation of this equation, we need a proper kinematic mapping of SE(4).
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2a. Study Mapping of SE(3)

A kinematic mapping of SE(n) is a bijective mapping between the group of
displacements of En and a set of points in a certain space. For n = 3, this mapping
can be constructed by the usage of unit dual quaternions:

Quaternions: Q := q0 + q1i + q2j + q3k with q0, . . . , q3 ∈ R is an element of the
skew field of quaternions H, where i, j,k are the so-called quaternion units.

The conjugated quaternion to Q is given by Q̃ := q0 − q1i − q2j− q3k.

Q is called pure quaternion for q0 = 0 and unit quaternion for q2
0 +q2

1 +q2
2 +q2

3 = 1.

We embed the points X of E3 with Cartesian coordinates (x1, x2, x3) into the set
of pure quaternions by the following mapping:

ι3 : R
3 → H with (x1, x2, x3) 7→ X := x1i + x2j + x3k.
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2a. Study Mapping of SE(3)

Dual Quaternions: An element E+ εT of H + εH is called dual quaternion, where
ε is the dual unit with the property ε2 = 0.

It is called unit dual quaternion, if E is an unit quaternion and following condition
holds:

e0t0 + e1t1 + e2t2 + e3t3 = 0.

The mapping of points X ∈ E3 to X′ ∈ E3 induced by any element of SE(3), can
be written as follows by using ι3 (e.g. [8]):

X 7→ X′ with X′ := E ◦ X ◦ Ẽ + (T ◦ Ẽ − E ◦ T̃), (1)

where ◦ denotes the well-known quaternion multiplication. Moreover the mapping
of Eq. (1) is an element of SE(3) for any unit dual quaternion E + εT.
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2a. Study Mapping of SE(3)

The first summand E◦X◦ Ẽ of the pure quaternion X′ is the rotational component,
which can be written in vector-representation as (x′

1, x
′

2, x
′

3)
T = R3(x1, x2, x3)

T

with

R3 =




e2
0 + e2

1 − e2
2 − e2

3 2(e1e2 − e0e3) 2(e1e3 + e0e2)
2(e1e2 + e0e3) e2

0 − e2
1 + e2

2 − e2
3 2(e2e3 − e0e1)

2(e1e3 − e0e2) 2(e2e3 + e0e1) e2
0 − e2

1 − e2
2 + e2

3


 , (2)

where detR3 = (e2
0 + e2

1 + e2
2 + e2

3)
3 = 1 holds. As the remaining part of X′ does

not depend on X, it corresponds to a translation s3 := (s1, s2, s3)
T with

s1 = 2(e0t1 − e1t0 + e2t3 − e3t2), s2 = 2(e0t2 − e1t3 − e2t0 + e3t1),

s3 = 2(e0t3 + e1t2 − e2t1 − e3t0).
(3)
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2a. Study Mapping of SE(3)

As both unit dual quaternions ±(E+εT) correspond to the same Euclidean motion
of E3, we consider the homogeneous 8-tuple (e0 : . . . : e3 : t0 : . . . : t3).

These so-called Study parameters can be interpreted as a point of a projective
7-dimensional space P 7. Therefore there is a bijection between SE(3) and all real
points of P 7 located on the so-called Study quadric Φ ⊂ P 7, which is given by:

e0t0 + e1t1 + e2t2 + e3t3 = 0,

and is sliced along the 3-dimensional generator-space e0 = e1 = e2 = e3 = 0, as
the corresponding quaternion E cannot be normalized.

If the Study mapping is restricted to planar Euclidean displacements within a plane
α ∈ E3, we obtain the so-called Blaschke-Grünwald Mapping of SE(2).
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2b. Blaschke-Grünwald Mapping of SE(2)

The planar motion group corresponds to a generator-space of the Study quadric Φ
given by e2 = e3 = t0 = t1 = 0 for α: x1 = 0 (cf. [8]).

Therefore there is a bijection between SE(2) and all real points (e0 : e1 : t2 : t3) of
P 3, with exception of the points located on the line e0 = e1 = 0.

The vector-representation of planar displacements in dependency of the Blaschke-
Grünwald parameters (e0 : e1 : t2 : t3) can immediately be obtained from Eqs. (2)
and (3) and reads as (x′

2, x
′

3)
T = R2(x2, x3)

T + s2 with:

R2 =

(
e2
0 − e2

1 −2e0e1

2e0e1 e2
0 − e2

1

)
, s2 =

(
2(e0t2 − e1t3),
2(e0t3 + e1t2).

)
,

where detR2 = (e2
0 + e2

1)
2 = 1 holds.
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2c. Klawitter-Hagemann Mapping of SE(4)

Based on Clifford algebras, Klawitter and Hagemann [9] presented an unified
concept for constructing kinematic mappings for certain Cayley-Klein geometries.

Especially for E2 and E3, they demonstrated that their approach yields the
Blaschke-Grünwald mapping and the Study mapping (see also Selig [14]).

This method maps displacements of SE(4) onto points of P 15, located in the
intersection of nine quadrics, which is additionally sliced along a further quadric.

Due to the large number of homogeneous motion parameters, as well as the
resulting set of quadratic constraints, the Klawitter-Hagemann mapping is not
suited for performing computational algebraic kinematics in E4.

Therefore we are interested in a simplified kinematic mapping of SE(4).
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3. New Kinematic Mapping of SE(4)

We embed the points X of E4 with Cartesian coordinates (x0, x1, x2, x3) into the
set of quaternions by the mapping:

ι4 : R
4 → H with (x0, x1, x2, x3) 7→ X := x0 + x1i + x2j + x3k.

Moreover we need the quaternion representation theorem for SO(4), which has
many fathers (Euler, Cayley, Salmon, Elfrinkhof, Stringham, Bouman; cf. [10]):

Theorem 1. The mapping of points X ∈ E4 to X′ ∈ E4 induced by any element
of SO(4), can be written as follows (by using ι4):

X 7→ X′ with X′ := E ◦ X ◦ F, (4)

where E and F is a pair of unit quaternions, which is determined uniquely up to
the sign. Moreover the mapping of Eq. (4) is an element of SO(4) for any pair of
unit quaternions E and F.
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3. New Kinematic Mapping of SE(4)

Direct computation shows that the mapping given in Eq. (4) can be written in
vector-representation as (x′

0, x
′

1, x
′

2, x
′

3)
T = R4(x0, x1, x2, x3)

T with R4 = EF and

E =




e0 −e1 −e2 −e3

e1 e0 −e3 e2

e2 e3 e0 −e1

e3 −e2 e1 e0


 , F =




f0 −f1 −f2 −f3

f1 f0 f3 −f2

f2 −f3 f0 f1

f3 f2 −f1 f0


 ,

where detR4 = detE detF = (e2
0 + e2

1 + e2
2 + e2

3)
2(f2

0 + f2
1 + f2

2 + f2
3 )2 = 1 holds.

Moreover due to the free choice of sign in Theorem 1, the decomposition into a left
unit quaternion E and a right unit quaternion F yields a double cover of SO(4).
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3. New Kinematic Mapping of SE(4)

Therefore we consider again the homogeneous 8-tuple (e0 : . . . : e3 : f0 : . . . : f3),
which can be seen as a point in P 7. Hence there is a bijection between SO(4) and
all real points of P 7, which are located on the quadric Ψ ⊂ P 7 given by

(e2
0 + e2

1 + e2
2 + e2

3) − (f2
0 + f2

1 + f2
2 + f2

3 ) = 0, (5)

sliced along the 3-dimensional space e0 = e1 = e2 = e3 = 0, as the correspon-
ding quaternion E cannot be normalized. But this 3-space does not have a real
intersection with Ψ and therefore no point of Ψ has to be removed.

Note that Eq. (5) expresses the fact that F is also normalized if E is.

The extension of this kinematic mapping of SO(4) with respect to translations of
E4 can be done as follows:
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3. New Kinematic Mapping of SE(4)

Theorem 2. The mapping of points X ∈ E4 to X′ ∈ E4 induced by any element
of SE(4), can be written as follows (by using ι4):

X 7→ X′ with X′ := E ◦ X ◦ F−2(E ◦ T̃) . . . . . . ERRATUM (6)

Moreover the mapping of Eq. (6) is an element of SE(4) for any triple of quaternions
E,F, T, where E and F are unit quaternions.

Proof: Due to Theorem 1, we only have to show that there is a bijection between
the coordinates of the translation vector s4 = (s0, s1, s2, s3)

T and the entries
t0, . . . , t3 of T for a given unit quaternion E.

On one side, s1, s2, s3 equal the expressions given in Eq. (3) and for s0 we get:

s0 = −2(e0t0 + e1t1 + e2t2 + e3t3).
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3. New Kinematic Mapping of SE(4)

On the other side, we have:

t0 = −(e0s0 + e1s1 + e2s2 + e3s3)/2, t1 = (e0s1 − e1s0 − e2s3 + e3s2)/2,

t2 = (e0s2 + e1s3 − e2s0 − e3s1)/2, t3 = (e0s3 − e1s2 + e2s1 − e3s0)/2,

which already proves Theorem 2. �

As both triples of quaternions ±(E, F, T), where E and F are unit quaternions,
correspond to the same Euclidean motion of E4, we consider the homogeneous
12-tuple (e0 : . . . : e3 : f0 : . . . : f3 : t0 : . . . : t3).

These 12 homogeneous motion parameters for E4, which are called the new

parameters for short, can be interpreted as a point of P 11.
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3. New Kinematic Mapping of SE(4)

Therefore there is a bijection between SE(4) and all real points of P 11 located on
the cylinder Ξ over Ψ, which is also given by

(e2
0 + e2

1 + e2
2 + e2

3) − (f2
0 + f2

1 + f2
2 + f2

3 ) = 0,

and is sliced along the 7-dimensional space e0 = e1 = e2 = e3 = 0, as the
corresponding quaternion E cannot be normalized. The real intersection of this
7-space and Ξ equals the 3-dimensional generator-space U of Ξ with:

U : e0 = e1 = e2 = e3 = f0 = f1 = f2 = f3 = 0.

Resume: There is a bijection between elements of SE(4) and real points of Ξ \ U.
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3. New Kinematic Mapping of SE(4)

Remark: If we identify E3 with the hyperplane x0 = 0, all points of the 7-
dimensional generator-space

f0 = e0, f1 = −e1, f2 = −e2, f3 = −e3,

of Ξ, which additionally fulfill the condition that no translation is done in direction
of x0 (⇔ s0 = 0), map the hyperplane x0 = 0 onto itself.

As the condition s0 = 0 equals the Study condition, the 7-dimensional generator-
space of Ξ is the Study parameter space of SE(3). ⋄

Resume: The Study parameters and subsequently the Blaschke-Grünwald parame-
ters can be obtained from the new parameters.

Advances in Robot Kinematics, June 29 – July 3 2014, Ljubljana, Slovenia Austrian Science Fund 16



4. Hypersphere Condition

The mapping X 7→ X′ implied by an element of SE(n) can be written in vector-form
as: 


x′

4−n

. . .
x′

3


 =

1

Nn


Rn




x4−n

. . .
x3


 + sn


 , (7)

for n = 2, 3, 4 with N2 = e2
0 + e2

1 and N3 = N4 = e2
0 + e2

1 + e2
2 + e2

3, respectively,
if we neglect the normalizing condition Nn = 1. Note that the factor N−1

n , which

corresponds to the division by 1, is inserted in order to homogenize Eq. (7).

Now we can write the constraint Ωn that the point X is located on a hypersphere
of En with midpoint (m4−n, . . . , m3) and radius ρ as follows:

Ωn : (x′

4−n − m4−n)2 + . . . + (x′

3 − m3)
2 − ρ2 = 0.
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4. Hypersphere Condition

The denominator of Ωn cannot vanish due to Nn 6= 0 and the nominator is a
homogeneous polynomial Pn of degree 4 in the motion parameters.

n= 2: P2 factors into N2 and a homogeneous quadratic equation in the Blaschke-
Grünwald parameters, which is the so-called circle equation Q2.

n= 3: P3 does not behave like P2, but Husty [12] showed that N3 factors out if
we add four times the squared Study condition to P3. The remaining homogeneous
quadratic equation in the Study parameters is the so-called sphere equation Q3.

n= 4: P4 factors into N4 and a homogeneous quadratic equation in the new

parameters. This is the so-called hypersphere equation Q4.

According to the Remark, we can obtain Q3 from Q4 by setting m0 = x0 = 0,
f0 = e0, fi = −ei for i = 1, 2, 3. This also sheds light onto Husty’s tricky addition,
as it corresponds to the summand s2

0 within the new parameter approach.
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4. Hypersphere Condition

Computational Detail: The hypersphere condition Q4 can be written as follows:

0 = (m2
0 + m

2
1 + m

2
2 + m

2
3 − ρ

2)N4 + (x2
0 + x

2
1 + x

2
2 + x

2
3)(f

2
0 + f

2
1 + f

2
2 + f

2
3 ) + 4(t20 + t

2
1 + t

2
2 + t

2
3)

+ 2m0
ˆ

2(e0t0 + e1t1 + e2t2 + e3t3) − x0(e0f0 − e1f1 − e2f2 − e3f3) + x1(e0f1 + e1f0 − e2f3 + e3f2)

+ x2(e0f2 + e1f3 + e2f0 − e3f1) + x3(e0f3 − e1f2 + e2f1 + e3f0)
˜

− 4x0(f0t0 − f1t1 − f2t2 − f3t3)

− 2m1
ˆ

2(e0t1 − e1t0 + e2t3 − e3t2) + x0(e0f1 + e1f0 + e2f3 − e3f2) + x1(e0f0 − e1f1 + e2f2 + e3f3)

+ x2(e0f3 − e1f2 − e2f1 − e3f0) − x3(e0f2 + e1f3 − e2f0 + e3f1)
˜

+ 4x1(f0t1 + f1t0 + f2t3 − f3t2)

− 2m2
ˆ

2(e0t2 − e1t3 − e2t0 + e3t1) + x0(e0f2 − e1f3 + e2f0 + e3f1) − x1(e0f3 + e1f2 + e2f1 − e3f0)

+ x2(e0f0 + e1f1 − e2f2 + e3f3) + x3(e0f1 − e1f0 − e2f3 − e3f2)
˜

+ 4x2(f0t2 − f1t3 + f2t0 + f3t1)

− 2m3
ˆ

2(e0t3 + e1t2 − e2t1 − e3t0) + x0(e0f3 + e1f2 − e2f1 + e3f0) + x1(e0f2 − e1f3 − e2f0 − e3f1)

− x2(e0f1 − e1f0 + e2f3 + e3f2) + x3(e0f0 + e1f1 + e2f2 − e3f3)
˜

+ 4x3(f0t3 + f1t2 − f2t1 + f3t0)

Note that the difference of two hypersphere conditions is only linear in t0, t1, t2, t3.
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5. First Result and Outlook

Based on Q4 it can be proven (cf. presented paper) that singular (infinitesimal
movable) poses of 10-dof S4PS4 manipulators have an analogous line-geometric
characterization as those of their lower-dimensional counterparts.

Theorem 3. A 10-dof S4PS4 manipulator is in a singular configuration C if and
only if the carrier lines of the ten P -joints belong to a linear complex of lines of
E4, i.e. the Grassmann coordinates of the 10 lines are linearly dependent.

• A further kinematic study of (hyperplanar) 10-dof S4PS4 manipulators is dedi-
cated to future research.

• The kinematical analysis of SE(4) in terms of the new parameters (e.g. velocity,
acceleration, . . .) is in preparation.
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