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Methods

In robotics, two fundamental coordinate spaces, The computation performance in terms of costs
the joint space and the configuration space are and exectution times are compared for the
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Homogeneous Coordinates

A discrete transformation comprising a rotation and a translation
between two coordinate frames using homogeneous coordinates is given
by the 4x4 matrix T

1 o' d ...translation vector
_d R R ...rotation matrix

T =

forward kinematics
fr(0) = Ty (0) =T5(01)T1(62)---Ty_,(On)

inverse kinematics
In the inverse kinematics problem, a given desired transformation T* is
solved for the joint angles ¢

0 =f; (T

The method presented in M. Pfurner, “Closed form inverse kinematics
solution for a redundant anthropomorphic robot arm”, Oct. 2016, is utilized
for calculation of the forward and inverse kinematics in homogeneous
coordinates. This method exploits the constructional benefits and
intuitive geometric relations. For an algebraic solution, the trigonometric
functions are substituted using the Weierstral’ substitution.

* Intel Core i7-6700K is investigated in this work. This serial chain
.« 16 GB RAM comprises a spherical 'sholder’ joint, a rotational
'elbow’ joint and a spherical 'wrist'.

Dual Quaternions

A discrete transformation comprising a rotation and a translation
between two coordinate frames using dual quaternions is given by the
dual quaternion u

qq - ..translation quaternion
1 qr ...rotation unit-quaternion
4= qR+§6qR®qd e ...dual unit
® ...quaternion multiplication

forward kinematics
faQ(0) = uy' (8) = ug(6y) ® ui(f2) - @uy_,(On)

inverse kinematics

In the inverse kinematics problem, a given a desired transformation u*
solved for the joint angles @

0 =f,,(u*)

The method presented by Pfurner is reformulated using dual quaternions.
The proposed method still applies, but the resulting equations become
polynomials of 4" order. Solving these yields multiple invalid solutions,
which have to be eliminated.

Substitutions for Algebraic Unity

The forward kinematics equations derived using homogeneous

Weierstrald substitution square of sin and cos

coordinates and dual quaternions lead to analytically identical x , 2t Lo/ T 1
expressions by applying the two substitutions on the right. The rotational b= tan(§)  sin(z) = 1+ 2 S (§> — 5(1 — cos(z))
quaternion utilizes sin(-) and cos(-) of the half rotation angle, while 1 — 2 o [T 1
homogeneous coordinates use the whole rotation angle. cos(z) = —— cos (5) = 5(1 + cos(z))
I+
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Table Il. Performance for the forward and inverse kinematics

Figure I. Relative computation times for the forward and inverse kinematics



