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[1a] Bricard octahedra

An octahedron is called flexible if
its spatial shape can be changed
continuously due to changes of its
dihedral angles only, i.e. every face
remains congruent to itself during
the flex.

All flexible octahedra in the Euclide-
an 3-space E3, where no two faces
coincide permanently during the flex,
were firstly determined by Bricard [7].

There are 3 types of these so-called
Bricard octahedra:

Bricard octahedra of type I

All three pairs of opposite vertices are
symmetric with respect to a line.
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[1a] Bricard octahedra

Bricard octahedra of type II

Two pairs of opposite vertices are
symmetric with respect to a plane
through the remaining two vertices.

Bricard octahedra of type III

These octahedra possess two flat poses
and can be constructed as follows [8]:
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[1b] Stewart Gough Platform

The geometry of a planar SGP is given

by the six base anchor points Mi with

Mi := (Ai, Bi, 0)
T in the fixed space Σ0,

and by the six platform points mi with

mi := (ai, bi, 0)
T in the moving space Σ.

Mi and mi are connected with a SPS leg.

Theorem [A]
A SGP is singular (infinitesimal flexible) if
and only if the carrier lines of the six SPS
legs belong to a linear line complex.
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[1c] Self-motions and the Borel Bricard problem

If all P-joints are locked, a SGP is in
general rigid. But, in some special cases the
manipulator can perform an n-parametric
motion (n > 0), which is called self-motion.

Note that in each pose of the self-motion,
the SGP has to be singular. Moreover, all
self-motions of SGPs are solutions to the
famous Borel Bricard problem [3–6].

Borel Bricard problem (still unsolved)
Determine and study all displacements of a
rigid body in which distinct points of the
body move on spherical paths.
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[1d] Architecturally singular SGPs

Manipulators which are singular in every possible configuration, are called architec-
turally singular [16].

Architecturally singular SGPs are well studied:

⋆ For the planar case see [17–20],

⋆ For the non-planar case see [21–23].

It is well known, that architecturally singular
SGPs possess self-motions in each pose.

Therefore we are only interested in self-
motions of non-architecturally singular SGPs.
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[2] Parallel manipulators of TSSM type

A TSSM consists of a platform Σ, which is connected via three SPR legs with the
base Σ0, where the axes ri of the R-joints are coplanar.

In the following we give a complete classifi-
cation of non-architecturally singular TSSM
designs with self-motions. For this, we distin-
guish four subcases of TSSMs:

[a] TSSM with intersecting axes

[b] TSSM with copunctal axes

[c] TSSM with 2 coinciding axes

[d] TSSM with 2 parallel axes
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[2a] TSSMs with intersecting axes

As we can replace each SPR leg li by two SPS legs pi and qi, the determination of
TSSM self-motions can be traced back to those of planar 6-3 SGP.

Moreover, by applying ∆-transforms [B]
the planar 6-3 SGP can be transformed
into an octahedral manipulator.

Therefore TSSMs with self-motions
correspond to the three types of Bricard
octahedra, if we assume that no two
faces coincide permanently during the
flex.

l2l2l2l2l2l2l2l2l2l2l2l2l2l2l2l2l2
p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2 q2q2q2q2q2q2q2q2q2q2q2q2q2q2q2q2q2

r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2
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[2a] TSSMs with intersecting axes

Without this assumption we get two more types of self-motions [C], which are also
known as butterfly motion and spherical four-bar motion [D].

Butterfly motion Spherical four-bar motion
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[2b] TSSMs with 3 parallel axes

In this case the problem reduces to a planar one, as these manipulators possess
a cylindrical singularity surface [E]. The self-motions correspond to those of the
planar 3-dof RPR manipulator with three collinear base anchor points:

Circular translation

M1M1M1M1M1M1M1M1M1M1M1M1M1M1M1M1M1 M2M2M2M2M2M2M2M2M2M2M2M2M2M2M2M2M2 M3M3M3M3M3M3M3M3M3M3M3M3M3M3M3M3M3

m1m1m1m1m1m1m1m1m1m1m1m1m1m1m1m1m1 m2m2m2m2m2m2m2m2m2m2m2m2m2m2m2m2m2 m3m3m3m3m3m3m3m3m3m3m3m3m3m3m3m3m3

Pure rotation 1

M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3 M3M3M3M3M3M3M3M3M3M3M3M3M3M3M3M3M3

m1m1m1m1m1m1m1m1m1m1m1m1m1m1m1m1m1 m2m2m2m2m2m2m2m2m2m2m2m2m2m2m2m2m2

Pure rotation 2

M1M1M1M1M1M1M1M1M1M1M1M1M1M1M1M1M1 M2, m1, m3M2, m1, m3M2, m1, m3M2, m1, m3M2, m1, m3M2, m1, m3M2, m1, m3M2, m1, m3M2, m1, m3M2, m1, m3M2, m1, m3M2, m1, m3M2, m1, m3M2, m1, m3M2, m1, m3M2, m1, m3M2, m1, m3 M3M3M3M3M3M3M3M3M3M3M3M3M3M3M3M3M3

m2m2m2m2m2m2m2m2m2m2m2m2m2m2m2m2m2
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[2b] TSSMs with copunctal axes

In this case the problem reduces to a spherical
one. The self-motions correspond to those of
the spherical 3-dof RPR manipulator with three
collinear base anchor points:

Pure rotation 1

M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3M1, M2, m3

M3M3M3M3M3M3M3M3M3M3M3M3M3M3M3M3M3

m1m1m1m1m1m1m1m1m1m1m1m1m1m1m1m1m1 m2m2m2m2m2m2m2m2m2m2m2m2m2m2m2m2m2

Pure rotation 2

M1M1M1M1M1M1M1M1M1M1M1M1M1M1M1M1M1
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M3M3M3M3M3M3M3M3M3M3M3M3M3M3M3M3M3

m2m2m2m2m2m2m2m2m2m2m2m2m2m2m2m2m2

r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1 r3r3r3r3r3r3r3r3r3r3r3r3r3r3r3r3r3

r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2

Austrian Robotics Workshop, May 23 – 24 2011, Hall in Tyrol, Austria 11



[2c] TSSMs with 2 coinciding axes

If we disconnect the third leg from the
platform, the point P3 describes a so-called
fourth order cyclide of revolution Φ.

This surface is generated by the rotation of
the circle R about r := r1 = r2.

Now there exists a self-motion if the circle
L (or a segment of it) is located on Φ.

Therefore the problem reduces to the
determination of all circle sections on Φ.

rrrrrrrrrrrrrrrrr
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[2c] TSSMs with 2 coinciding axes

Case A) If g and r are parallel, then Φ is a part of a plane. If they intersect,
then Φ is a part of a sphere. In these cases the determination of circles is trivial.
Self-motions correspond to planar resp. spherical four-bar motions.

Case B) g and r are skew and R lies in a
meridian plane: Φ is a torus, which carries
meridian circles and R-circles.

In the case of a ring torus we get two more
sets generated by the Villarceau circles.

As non of the circle axes intersect r, we only
get a rotational self-motion for P3 ∈ r.

RRRRRRRRRRRRRRRRR

rrrrrrrrrrrrrrrrr

ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ
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[2c] TSSMs with 2 coinciding axes

Case C) g and r are skew and R is not located in a meridian plane: If we reflect
R on a meridian plane we get R.

Φ has at least three sets of circles
(meridian circles, R-circles, R-circles).

Only in the case where R and r have no
point in common, there exist two further
sets, which can be constructed similarly
to the Villarceau circles [F].

As non of the circle axes intersect r,
we only get a rotational self-motion for
P3 ∈ r.

RRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRRR

rrrrrrrrrrrrrrrrr

ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ
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[2d] TSSMs with 2 parallel axes

Similar considerations as in item [2a] yield that self-motions of these TSSMs
correspond with flexible octahedra where one vertex is an ideal point (assumed that
no two faces coincide permanently during the flex).

We determined all flexible octahedra with
one vertex at infinity in [14]:

⋆ Flexible octahedra of type II, where one
vertex located in the plane of symmetry is
an ideal point.

⋆ Flexible octahedra of type III, with one
vertex at infinity. Construction is similar
to the type III Bricard octahedron [8].
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[2d] TSSMs with 2 parallel axes

It is not obvious that these flexible octahedra are the only ones where one vertex
is an ideal point, as there could even exist flexible octahedra, which do not have
flexible counterparts with six finite vertices [15].

For the special case of coinciding faces during the flex, we get again the butterfly

motion and the spherical four-bar motion.
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[2] Self-motions of TSSMs

Recapitulation
Self-motions of TSSMs can only be:

⋆ circular translations,

⋆ pure rotations,

⋆ planar four-bar motions,

⋆ spherical four-bar motions,

⋆ self-motions of Bricard octahedra,

⋆ self-motions of flexible octahedra

with one vertex at infinity.

ΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣ

Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0

r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1 r3r3r3r3r3r3r3r3r3r3r3r3r3r3r3r3r3

r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2
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[3] Review on SGPs with self-motions

Beside the presented self-motions, only a few more are known:

• Husty and Zsombor-Murray [24]: SGP with Schönflies self-motion

• Zsombor-Murray et al. [25]: SGP with 2-parametric line-symmetric self-motion
(see also Krames [26])

• Husty and Karger [27] proved that the list of Schönflies Borel Bricard motions
given by Borel [3] is complete

• Karger and Husty [28]: Self-motions of the original SGP

• Karger [29,30] presented a method for designing planar SGPs with self-motions
of the type e0 = 0, where e0 denotes an Euler parameter
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[3a] Redundant SGPs

According to Husty [1], the “sphere constraint” that mi is located on a sphere with
center Mi and radius Ri can be expressed by a homogeneous quadratic equation
Λi in the Study parameters (e0 : e1 : e2 : e3 : f0 : f1 : f2 : f3).

Therefore the direct kinematic problem corresponds to the solution of the system
Λ1, . . . ,Λ6,Ψ where Ψ :

∑3

i=0
eifi = 0 is the equation of the Study quadric.

If a planar SGP is not architecturally singular, then at least a one-parametric set of
legs λ1Λ1 + . . .+λ6Λ6 can be added without changing the direct kinematics [G,H].

As the solvability condition of the underlying linear system of equations (Eq. (30)
of [H]) is equivalent with the criterion given in Eq. (12) of [I], also the singularity
surface of the SGP does not change by adding legs of this one-parametric set.
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[3a] Redundant SGPs

Moreover, it was shown [G,H] that in general the base anchor points Mi as well as
the corresponding platform anchor points mi are located on planar cubic curves C
and c, which can also split up.

U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2

U3U3U3U3U3U3U3U3U3U3U3U3U3U3U3U3U3

U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1

u3u3u3u3u3u3u3u3u3u3u3u3u3u3u3u3u3

u2u2u2u2u2u2u2u2u2u2u2u2u2u2u2u2u2 u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1

Cubic C of the octahedral SGP

U4U4U4U4U4U4U4U4U4U4U4U4U4U4U4U4U4

U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6

U5U5U5U5U5U5U5U5U5U5U5U5U5U5U5U5U5

u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6

u4u4u4u4u4u4u4u4u4u4u4u4u4u4u4u4u4

u5u5u5u5u5u5u5u5u5u5u5u5u5u5u5u5u5

Cubic c of the octahedral SGP
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[3b] Darboux and Mannheim motion

The Darboux constraint that ui moves
in a plane ∈ Σ0 orthogonal to the
direction of the ideal point Ui is a
homogeneous quadratic equation Ωi

in the Study parameters (i = 1, 2, 3).

U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1

u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1

The Mannheim constraint that a plane
of Σ orthogonal to uj slides through
the point Uj ∈ Σ0 is a homogeneous
quadratic equation Πj in the Study
parameters (j = 4, 5, 6).

U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6

u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6
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[3c] Self-motions implied by Bricard octahedra I

As the points Ui and ui are corresponding points of the cubics C and c we get:

Ωi =

6∑

k=1

λi,kΛk and Πj =

6∑

k=1

λj,kΛk for i = 1, 2, 3 and j = 4, 5, 6.

It can easily be seen [31], that the system Ω1,Ω2, Ω3, Π4, Π5,Π6 is redundant
=⇒ manipulator u1, . . . , U6 is architecturally singular.

Moreover, if the underlying SGP is a Bricard octahedron of type I, then u1, . . . ,U6

has even a two-parametric self-motion (type II DM self-motion [31,32]).

By adding an arbitrary leg Λ to Ω1, Ω2,Ω3, Π4,Π5 we get an one-parametric
self-motion. Further legs are determined by:

λΛ +
3∑

i=1

νiΩi +
5∑

j=4

µjΠj.
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[3c] Example
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Remark
Note that all self-motions implied by Bricard octahedra of type I are line-symmetric
motions. Moreover these self-motions can even be parametrized [31].
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