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The theory of bonds was introduced by Hegediis, Schicho and Schrocker [1] as a
new means for the analysis of overconstrained closed linkages with R-joints.

Basic idea of bonds

Each configuration of the overconstrained closed linkage can be identified with a
point on the so-called configuration curve. Bonds are the points on this algebraic
curve at some degenerate infinity, which contain a lot of information regarding the
geometry of the overconstrained closed chain.

Analogy for bonds

To an algebraic curve k in Euclidean 2-space, we associate the points of k£ at
infinity. These ideal points correspond with the bonds. If this set is a singleton, the
curve is a line in direction of the ideal point. If it contains the two cyclic points,
the curve is circular, and so on. o
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The geometry of a SGP is given by the six
base anchor points M; € >3 and by the six
platform points m; € X fort =1,...,6.

A SGP is called planar, if Mq,..., Mg are
coplanar and mq, ..., mg are coplanar.

M, and m; are connected with a SPS leg.

If all P-joints are locked, a SGP is in ge-
neral rigid. But, under particular conditions,
the manipulator can perform an d-parametric
motion (d > 0), which is called self-motion.
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Theorem 1. Merlet [6]

A SGP is singular (infinitesimal flexible, shaky), if
and only if, the carrier lines of the six SPS legs
belong to a linear line complex.

If a SGP is singular in every possible configuration
then it is called architecturally singular.

T™ =— Tm
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Remark: Architecturally singu-
lar SGPs possess self-motions in
each pose over C. o
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We use Study parameters (eg : €1 : ex:e3: fo: f1: fo: f3) for the parametrization
of SE(3). Note that (eg : €1 : €5 : e3) are the so-called Euler parameters of SO(3).

All real points of the Study parameter space P’, which are located on the so-called
Study quadric

v 6()f0 + 61f1 + €2f2 + €3f3 =0,

correspond to an Euclidean displacement with exception of the 3-dimensional

subspace e) = e; = e5 = e3 = 0 of ¥, as its points cannot fulfill the condition
N =1 with
N =2 +ef +e5 + e3.

All points of P”, which cannot fulfill this normalizing condition, are located on the
so-called exceptional quadric N = 0.
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The solution of the direct kinematics is based on Husty's quadratic homogeneous
equation in Study parameters expressing that the point m; := (a;, b;, ¢;) is located
on a sphere centered in M; := (A;, B;, C;) with radius R; (cf. [2]). This is the
so-called sphere condition A; with:

Ni: (@2 4024+ G+ A2+ B2 +C?— RN +4(fE+ f2+ f2+ f2)
— Q(G,ZAZ + b;B; + CZ'CZ')G(% + ...+ 4(Csz — biC’i)eoel + ...
+ 4(61,@' — Ai)(eofl — elfo) +...=0.

Now the solution of the direct kinematics over C can be written as the algebraic
variety V' of the ideal Z spanned by W, Aq,...,Ag, N = 1. In general V consists of
a discrete set of points with a maximum of 40 elements.
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We assume that a given SGP has a d-dimensional self-motion. As a d-dimensional
self-motion corresponds with a d-dimensional solution of the direct kinematics
problem, the seven quadrics W, Aq,...,Ag have to have a d-dimensional set of
points in common (= algebraic motion).

Now the points of this algebraic motion with N # 0 equal the kinematic image of
the algebraic variety V. But we can also consider the points of the algebraic motion,
which belong to the exceptional cone NV = 0. These points are the so-called bonds
of the d-dimensional self-motion.

For their exact definition, one has to consider that an algebraic motion of fixed
orientation (= pure translational motion) is projected to a single point (with N # 0)
of the Euler parameter space P? by the linear elimination of fo,..., fs.

= The kernel of this projection equals the group of translational motions.
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All SGPs with pure translational self-motions can easily be characterized as follows:

Theorem 2. Nawratil [9]
A SGP possesses a pure translational self-motion, if and
only if, the platform can be rotated about the center
: 7 :
m; = M; into a pose, where the vectors M;m; for ¢ =
2,...,6 fulfill the condition rk(Msms, ..., Mgmg) < 1. Mo

/[
/4

e All 1-parametric self-motions are circular translations. ™M v
“M;
e \We get a 2-parametric translation iff the platform Mi

and the base are congruent (= Ry = ... = Rg). M2

Therefore pure translational self-motions correspond with components of V.
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Based on this preparatory work, an exact definition of bonds reads as follows:

Definition 1. Nawratil [9]
For a parallel manipulator of SG type the set B of bonds is defined as:

B:=ZarClo(V*) N {(eg:...: f3) EPT| U =A;=...=A¢ =N = 0}.

V* denotes the variety V after the removal of all components, which correspond
to pure translational motions. Moreover ZarClo(V™*) is the Zariski closure of V*;
I.e. the zero locus of all algebraic equations that also vanish on V™.

Therefore the set of bonds B can be seen as exceptional points (N = 0) of the
algebraic motion, which are limits of non-translational motions.
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We get the following two 1-
parametric bonds (up to conjugati-
on of coordinates), where the ratio
u : v can be seen as projective
parameter with (u,v) # (0, 0):

B={(ul:u:0:0:0]:v:0:0),(0:0:u:ul:0:0:v:vl)}.

This SGP can perform a so-called butterfly self-motion if the z-axes of the fixed
frame and moving frame coincide. The first bond corresponds to the 1-dimensional
set of rotational self-motions, where the z-axes have the same orientation. For the
second bond they have opposite orientation.
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Theorem 3. Nawratil [9]
The set B of bonds depends on the geometry of the SGP, but not on R, ..., Rg.

Proof: This follows directly from the equation of the sphere condition A;. ]

Moreover, Theorem 3 and Definition 1 already imply the following result:

Theorem 4. Nawratil [9]
A SGP is free of non-translational self-motions if B = & holds.

Due to these properties the bond theory is suited for different tasks; e.g.:

a. Classification of SGPs with non-translational self-motions
b. Check whether a SGP is free of non-translational self-motions

c. Determine SGPs with non-translational self-motions
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We get the following four 1-
parametric bonds (up to conjugati-
on of coordinates), where the ratio
u : v can be seen as projective
parameter with (u,v) # (0, 0):

B={0:0:u:ul:0:0:v:vl),(ul :u:0:0:vl:v:0:0),
O:ul:0:u:0:vl:0:v),(u:0:ul:0:v:0:vl:0)}.

The first and second bond contain the information that the SGP possesses butterfly
self-motions if the z-axes of the fixed and moving frame coincide. An analogous
interpretation can be given for the bonds three and four with respect to the y-axes.
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The SGP also has a spherical self-motion if M; = My coincides with m5 = meg.
Therefore this spherical self-motion is also encoded within B, which demonstrates
the following: The set of bonds is more than the sum of its single bonds.

There exist manipulators with the
same bond-set B, which only pos-
sess the butterfly self-motions but
no spherical self-motion.

— For a serious classification of SGPs with non-translational self-motions, alge-
braic properties of B have to be taken into consideration, which are invariant with
respect to changes of the reference frames (e.g. algebraic multiplicities of bonds).
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3b. Examples for the checking task

Due to Theorem 4, the following examples are free of non-translational self-motions.

Example 1: For a SGP with a generic geometry (= randomly generated), we get
B = @. Moreover due to Theorem 2 a generic SGP is also free of pure translational
self-motions. Therefore a generic SGP does not possess any self-motions.

Example 2: The planar platform and planar base —
of the SGP are related by a regular affinity. Due / )
to a well known result (e.g. [7]), we can use any — —

six platform and base anchor points related by the

affinity (as long as they are not located on a conic

section) for the computation of B.

B = & verifies [4,7] that planar affine SGPs can (

only possess translatory self-motions if they are )
not architecturally singular. S~— ,
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If we want to design SGPs with non-translational self-motions, we can also make
use of the necessary condition that these manipulators have to possess bonds. This
criterion can for example be used for the determination of planar and spherical
3-dof RPR parallel manipulators with non-translational self-motions (cf. [9]).

But in the remainder of the talk we focus on the determination of SGPs with
so-called multidimensional self-motions (d-dimensional self-motions with d > 1).

Until now only the following non-architecturally singular SGP with a multidimen-
sional self-motion is known to the author (cf. Theorem 2): The platform and the
base are congruent and R; = ... = Rg¢ = 2-dimensional translation.

Moreover the question is motivated by footnote 3 of [3], which reads as follows:

Examples of 2-DOF' self motions are known. If non-trivial 3-DOF self motions
are possible is not known. They would correspond to solids on S§.
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We assume that a given SGP has a 3-dimensional self-motion S. Therefore
its corresponding algebraic motion is also 3-dimensional and the bond-set is an
algebraic variety of dimension 2; i.e. a bonding surface.

We classify & with respect to the dimension 3 of the bonding surface after its
projection into the Euler parameter space P (by a linear elimination of fo,..., f3).

As we have a bonding surface in the Study parameter space P’, 3 can take the
values:

B =2, B =1, B =0, B =—1.

In order that 8 =i holds for i = —1,0, 1, there has to exist a (2 — i)-dimensional
translational sub-self-motion, which is contained in S, in each pose of §.

Remark: For : = —1 this already implies that § is a 3-dimensional translation. ¢
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We study a congruent SGP, where the anchor points are located on the x-axis and a
parallel line through (0, d,0). Therefore the manipulator is architecturally singular.
If all legs have equal lengths, this manipulator has two 2-dimensional self-motions.
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Parallelogram mode: The already known 2-dimensional translational self-motion.
Therefore this self-motion is of type 5 = —1.

Anti-parallelogram mode: There exists a 1-dimensional translational sub-self-
motion (circular translation) in each pose of the 2-dimensional self-motion. Its
corresponding bonds are as follows, up to conjugation of coordinates:

2u  2ul 2 2ul
(—;: Z :O:O:v:—vI:u:—uI),(g:—%:O:O:v:—vI:u:uI).

By restricting us to the first four coordinate entries, we project the first and
second bonding curve to the Euler parameter space P3, which yields the points
(=1 :7:0:0)and (1 : —I : 0 :0). This shows that the anti-parallelogram
self-motion is indeed of type 8 = 0.
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Theorem 5. Nawratil [10]
Non-architecturally singular SGPs with 3-dimensional self-motion do not exist.

Sketch of the proof:

Case 0 = 2: It turns out that the solution of the general case is equivalent to
the fact that a homogeneous polynomial P[1955651] of degree 16 in eg, e1, €5 is
fulfilled identically for all eq, €1, e2. This problem can only be solved as Q[7589]% =
P[1955651] holds.

Case 8 = 1,0: Due to Theorem 2 a necessary condition for the existence of these
types of self-motions is that a (1 + )-dimensional set of platform orientations with

P e
m; = M1 and Tk(MQmQ, ceey M6m6) S 1 exists.
Case 8 = —1: Trivial. ]
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3c. 3-dimensional self-motions

Theorem 6. Nawratil [10]
If a SGP has a 3-dimensional self-motion,
it has to be one of the following architec-
turally singular designs:

1. M — Mo =— M3 and M4:M5:M6.
2. M — Mo = M3 — My and M5:M6.
3. M =My =m3=myg = Ms.

4. mq,...,mg are collinear, Mq,..., Mg
are collinear and there exists a regu-
lar projectivity v with M; — m,; for
1 =1,...,6.
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3c. n-dimensional self-motions with n>3

Based on the results for 3-dimensional self-motions, one can prove the following:

Theorem 7. Nawratil [10]
Non-architecturally singular SGPs with 4-dimensional self-motion do not exist.

SGPs (architecturally singular or not) with higher-dimensional self-motions than 4
do not exist.

Theorem 8. Nawratil [10]
If a SGP has a 4-dimensional self-motion, it has
to be the following architecturally singular design:

e All six base anchor points are collinear and the -
six platform anchor points collapse into one point. »
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3c. 2-dimensional self-motions

Architecturally singular SGPs:

e Based on Theorem 3 of [5], it is not difficult to give a list of all SGPs with
rk(J) = 4, where J denotes the Jacobian matrix.

e The more challenging (still unsolved) problem is to determine all designs with
rk(J) = 5. From each of these designs one can construct non-architecturally
singular SGPs with 1-dimensional self-motions (cf. type || DM self-motion [8]).

Non-architecturally singular SGPs:
Beside the translational self-motion of the con-
gruent SGP, there exists a further trivial example,

which was not mentioned in the literature before,
to the best knowledge of the author:
M = Mo = M3 and M4 = M5.

This self-motion is spherical with center m; = My.
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e In this paper we introduced the theory of bonds for SGPs with self-motions.

e We presented some basic facts and results on bonds and demonstrated the
potential of this theory on the basis of several examples.

e Moreover we showed that for a further, deeper study of bonds, their algebraic
multiplicities have to be considered as well, which is dedicated to future research.

e This concept is not limited to SGPs, but it can also be adopted for other parallel
manipulators as well (e.g. spherical and planar 3-dof RPR manipulators).

e We gave a geometric characterization of all SGPs with pure translational self-
motions.

e We listed all SGPs, which have n-dimensional self-motions with n > 2. The case
of SGPs possessing multidimensional self-motions with n = 2 remains open.
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