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1. Motivation

The theory of bonds was introduced by Hegedüs, Schicho and Schröcker [1] as a
new means for the analysis of overconstrained closed linkages with R-joints.

Basic idea of bonds

Each configuration of the overconstrained closed linkage can be identified with a
point on the so-called configuration curve. Bonds are the points on this algebraic
curve at some degenerate infinity, which contain a lot of information regarding the
geometry of the overconstrained closed chain.

Analogy for bonds

To an algebraic curve k in Euclidean 2-space, we associate the points of k at
infinity. These ideal points correspond with the bonds. If this set is a singleton, the
curve is a line in direction of the ideal point. If it contains the two cyclic points,
the curve is circular, and so on. ⋄
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1. What is a self-motion of a SGP?

The geometry of a SGP is given by the six
base anchor points Mi ∈ Σ0 and by the six
platform points mi ∈ Σ for i = 1, . . . , 6.

A SGP is called planar, if M1, . . . ,M6 are
coplanar and m1, . . . ,m6 are coplanar.

Mi and mi are connected with a SPS leg.

If all P-joints are locked, a SGP is in ge-
neral rigid. But, under particular conditions,
the manipulator can perform an d-parametric
motion (d > 0), which is called self-motion.
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1. Singularity of SGPs

Theorem 1. Merlet [6]

A SGP is singular (infinitesimal flexible, shaky), if
and only if, the carrier lines of the six SPS legs
belong to a linear line complex.

If a SGP is singular in every possible configuration
then it is called architecturally singular.

πM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πm MiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMi

mimimimimimimimimimimimimimimimimi

πmπmπmπmπmπmπmπmπmπmπmπmπmπmπmπmπm

πMπMπMπMπMπMπMπMπMπMπMπMπMπMπMπMπM

Remark: Architecturally singu-
lar SGPs possess self-motions in
each pose over C. ⋄
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1. Study parameters

We use Study parameters (e0 : e1 : e2 : e3 : f0 : f1 : f2 : f3) for the parametrization
of SE(3). Note that (e0 : e1 : e2 : e3) are the so-called Euler parameters of SO(3).

All real points of the Study parameter space P 7, which are located on the so-called
Study quadric

Ψ : e0f0 + e1f1 + e2f2 + e3f3 = 0,

correspond to an Euclidean displacement with exception of the 3-dimensional
subspace e0 = e1 = e2 = e3 = 0 of Ψ, as its points cannot fulfill the condition
N = 1 with

N = e20 + e21 + e22 + e23.

All points of P 7, which cannot fulfill this normalizing condition, are located on the
so-called exceptional quadric N = 0.
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1. Direct kinematics of SGPs

The solution of the direct kinematics is based on Husty’s quadratic homogeneous
equation in Study parameters expressing that the point mi := (ai, bi, ci) is located
on a sphere centered in Mi := (Ai, Bi, Ci) with radius Ri (cf. [2]). This is the
so-called sphere condition Λi with:

Λi : (a2i + b2i + c2i + A2

i +B2

i + C2

i −R2

i )N + 4(f2

0
+ f2

1
+ f2

2
+ f2

3
)

− 2(aiAi + biBi + ciCi)e
2

0
+ . . .+ 4(ciBi − biCi)e0e1 + . . .

+ 4(ai −Ai)(e0f1 − e1f0) + . . . = 0.

Now the solution of the direct kinematics over C can be written as the algebraic
variety V of the ideal I spanned by Ψ,Λ1, . . . ,Λ6, N = 1. In general V consists of
a discrete set of points with a maximum of 40 elements.
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2. Basic idea of bonds for SGPs

We assume that a given SGP has a d-dimensional self-motion. As a d-dimensional
self-motion corresponds with a d-dimensional solution of the direct kinematics
problem, the seven quadrics Ψ,Λ1, . . . ,Λ6 have to have a d-dimensional set of
points in common (= algebraic motion).

Now the points of this algebraic motion with N 6= 0 equal the kinematic image of
the algebraic variety V . But we can also consider the points of the algebraic motion,
which belong to the exceptional cone N = 0. These points are the so-called bonds
of the d-dimensional self-motion.

For their exact definition, one has to consider that an algebraic motion of fixed
orientation (= pure translational motion) is projected to a single point (with N 6= 0)
of the Euler parameter space P 3 by the linear elimination of f0, . . . , f3.
=⇒ The kernel of this projection equals the group of translational motions.
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2a. SGPs with pure translational self-motions

All SGPs with pure translational self-motions can easily be characterized as follows:

Theorem 2. Nawratil [9]

A SGP possesses a pure translational self-motion, if and
only if, the platform can be rotated about the center

m1 = M1 into a pose, where the vectors
−−−→
Mimi for i =

2, . . . , 6 fulfill the condition rk(
−−−→
M2m2, . . . ,

−−−→
M6m6) ≤ 1.

• All 1-parametric self-motions are circular translations.

• We get a 2-parametric translation iff the platform
and the base are congruent (⇒ R1 = . . . = R6).

mi

m2

Mi

M2

m1

M1

Therefore pure translational self-motions correspond with components of V .
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2b. Definition of bonds

Based on this preparatory work, an exact definition of bonds reads as follows:

Definition 1. Nawratil [9]

For a parallel manipulator of SG type the set B of bonds is defined as:

B := ZarClo(V ⋆) ∩ {(e0 : . . . : f3) ∈ P 7 | Ψ = Λ1 = . . . = Λ6 = N = 0}.

V ⋆ denotes the variety V after the removal of all components, which correspond
to pure translational motions. Moreover ZarClo(V ⋆) is the Zariski closure of V ⋆;
i.e. the zero locus of all algebraic equations that also vanish on V ⋆.

Therefore the set of bonds B can be seen as exceptional points (N = 0) of the
algebraic motion, which are limits of non-translational motions.
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3. Example: Butterfly self-motion

m5 m6

m4

m3

m2

m1
x

y

M1 M2 M3 M4

M5

M6

x

y

We get the following two 1-
parametric bonds (up to conjugati-
on of coordinates), where the ratio
u : v can be seen as projective
parameter with (u, v) 6= (0, 0):

B = {(uI : u : 0 : 0 : vI : v : 0 : 0), (0 : 0 : u : uI : 0 : 0 : v : vI)}.

This SGP can perform a so-called butterfly self-motion if the x-axes of the fixed
frame and moving frame coincide. The first bond corresponds to the 1-dimensional
set of rotational self-motions, where the x-axes have the same orientation. For the
second bond they have opposite orientation.
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3. Basic facts and results on bonds

Theorem 3. Nawratil [9]

The set B of bonds depends on the geometry of the SGP, but not on R1, . . . , R6.

Proof: This follows directly from the equation of the sphere condition Λi. �

Moreover, Theorem 3 and Definition 1 already imply the following result:

Theorem 4. Nawratil [9]

A SGP is free of non-translational self-motions if B = ∅ holds.

Due to these properties the bond theory is suited for different tasks; e.g.:

a. Classification of SGPs with non-translational self-motions

b. Check whether a SGP is free of non-translational self-motions

c. Determine SGPs with non-translational self-motions

CGTA, June 24–28 2013, Ljubljana, Slovenia Austrian Science Fund 11



3a. Example for the classification task

m5 = m6 m4

m3

m1

m2

M1 = M2

M5

M4

M3

M6

x

y

x

y

We get the following four 1-
parametric bonds (up to conjugati-
on of coordinates), where the ratio
u : v can be seen as projective
parameter with (u, v) 6= (0, 0):

B = {(0 : 0 : u : uI : 0 : 0 : v : vI), (uI : u : 0 : 0 : vI : v : 0 : 0),

(0 : uI : 0 : u : 0 : vI : 0 : v), (u : 0 : uI : 0 : v : 0 : vI : 0)}.

The first and second bond contain the information that the SGP possesses butterfly
self-motions if the x-axes of the fixed and moving frame coincide. An analogous
interpretation can be given for the bonds three and four with respect to the y-axes.
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3a. Example for the classification task

The SGP also has a spherical self-motion if M1 = M2 coincides with m5 = m6.
Therefore this spherical self-motion is also encoded within B, which demonstrates
the following: The set of bonds is more than the sum of its single bonds.

There exist manipulators with the
same bond-set B, which only pos-
sess the butterfly self-motions but
no spherical self-motion. m5 m6

m4

m3

m2

m1 M1 M2 M3 M4

M5

M6

x

y

x

y

=⇒ For a serious classification of SGPs with non-translational self-motions, alge-
braic properties of B have to be taken into consideration, which are invariant with
respect to changes of the reference frames (e.g. algebraic multiplicities of bonds).
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3b. Examples for the checking task

Due to Theorem 4, the following examples are free of non-translational self-motions.

Example 1: For a SGP with a generic geometry (= randomly generated), we get
B = ∅. Moreover due to Theorem 2 a generic SGP is also free of pure translational
self-motions. Therefore a generic SGP does not possess any self-motions.

Example 2: The planar platform and planar base
of the SGP are related by a regular affinity. Due
to a well known result (e.g. [7]), we can use any
six platform and base anchor points related by the
affinity (as long as they are not located on a conic
section) for the computation of B.
B = ∅ verifies [4,7] that planar affine SGPs can
only possess translatory self-motions if they are
not architecturally singular.
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3c. Basic idea of the determination task

If we want to design SGPs with non-translational self-motions, we can also make
use of the necessary condition that these manipulators have to possess bonds. This
criterion can for example be used for the determination of planar and spherical
3-dof RPR parallel manipulators with non-translational self-motions (cf. [9]).

But in the remainder of the talk we focus on the determination of SGPs with
so-called multidimensional self-motions (d-dimensional self-motions with d > 1).

Until now only the following non-architecturally singular SGP with a multidimen-
sional self-motion is known to the author (cf. Theorem 2): The platform and the
base are congruent and R1 = . . . = R6 =⇒ 2-dimensional translation.

Moreover the question is motivated by footnote 3 of [3], which reads as follows:

Examples of 2-DOF self motions are known. If non-trivial 3-DOF self motions

are possible is not known. They would correspond to solids on S2
6.
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3c. Types of 3-dimensional self-motions

We assume that a given SGP has a 3-dimensional self-motion S. Therefore
its corresponding algebraic motion is also 3-dimensional and the bond-set is an
algebraic variety of dimension 2; i.e. a bonding surface.

We classify S with respect to the dimension β of the bonding surface after its
projection into the Euler parameter space P 3 (by a linear elimination of f0, . . . , f3).
As we have a bonding surface in the Study parameter space P 7, β can take the
values:

β = 2, β = 1, β = 0, β = −1.

In order that β = i holds for i = −1, 0, 1, there has to exist a (2− i)-dimensional
translational sub-self-motion, which is contained in S, in each pose of S.

Remark: For i = −1 this already implies that S is a 3-dimensional translation. ⋄
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3c. Example for a 2-dim. self-motion with β = 0

We study a congruent SGP, where the anchor points are located on the x-axis and a
parallel line through (0, d, 0). Therefore the manipulator is architecturally singular.
If all legs have equal lengths, this manipulator has two 2-dimensional self-motions.
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3c. Example for a 2-dim. self-motion with β = 0

Parallelogram mode: The already known 2-dimensional translational self-motion.
Therefore this self-motion is of type β = −1.

Anti-parallelogram mode: There exists a 1-dimensional translational sub-self-
motion (circular translation) in each pose of the 2-dimensional self-motion. Its
corresponding bonds are as follows, up to conjugation of coordinates:

(

−
2u

d
:
2uI

d
: 0 : 0 : v : −vI : u : −uI

)

,

(

2u

d
: −

2uI

d
: 0 : 0 : v : −vI : u : uI

)

.

By restricting us to the first four coordinate entries, we project the first and
second bonding curve to the Euler parameter space P 3, which yields the points
(−1 : I : 0 : 0) and (1 : −I : 0 : 0). This shows that the anti-parallelogram
self-motion is indeed of type β = 0.
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3c. 3-dimensional self-motions

Theorem 5. Nawratil [10]

Non-architecturally singular SGPs with 3-dimensional self-motion do not exist.

Sketch of the proof:

Case β = 2: It turns out that the solution of the general case is equivalent to
the fact that a homogeneous polynomial P [1 955 651] of degree 16 in e0, e1, e2 is
fulfilled identically for all e0, e1, e2. This problem can only be solved as Q[7 589]2 =
P [1 955 651] holds.

Case β = 1, 0: Due to Theorem 2 a necessary condition for the existence of these
types of self-motions is that a (1+β)-dimensional set of platform orientations with

m1 = M1 and rk(
−−−→
M2m2, . . . ,

−−−→
M6m6) ≤ 1 exists.

Case β = −1: Trivial. �
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3c. 3-dimensional self-motions

Theorem 6. Nawratil [10]

If a SGP has a 3-dimensional self-motion,
it has to be one of the following architec-
turally singular designs:

1. m1 = m2 = m3 and M4 = M5 = M6.

2. m1 = m2 = m3 = m4 and M5 = M6.

3. m1 = m2 = m3 = m4 = m5.

4. m1, . . . ,m6 are collinear, M1, . . . ,M6

are collinear and there exists a regu-
lar projectivity κ with Mi 7→ mi for
i = 1, . . . , 6.
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3c. n-dimensional self-motions with n>3

Based on the results for 3-dimensional self-motions, one can prove the following:

Theorem 7. Nawratil [10]

Non-architecturally singular SGPs with 4-dimensional self-motion do not exist.
SGPs (architecturally singular or not) with higher-dimensional self-motions than 4
do not exist.

Theorem 8. Nawratil [10]

If a SGP has a 4-dimensional self-motion, it has
to be the following architecturally singular design:

• All six base anchor points are collinear and the
six platform anchor points collapse into one point.
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3c. 2-dimensional self-motions

Architecturally singular SGPs:

• Based on Theorem 3 of [5], it is not difficult to give a list of all SGPs with
rk(J) = 4, where J denotes the Jacobian matrix.

• The more challenging (still unsolved) problem is to determine all designs with
rk(J) = 5. From each of these designs one can construct non-architecturally
singular SGPs with 1-dimensional self-motions (cf. type II DM self-motion [8]).

Non-architecturally singular SGPs:

Beside the translational self-motion of the con-
gruent SGP, there exists a further trivial example,
which was not mentioned in the literature before,
to the best knowledge of the author:

m1 = m2 = m3 and M4 = M5.

This self-motion is spherical with center m1 = M4.
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4. Conclusion and outlook

• In this paper we introduced the theory of bonds for SGPs with self-motions.

• We presented some basic facts and results on bonds and demonstrated the
potential of this theory on the basis of several examples.

• Moreover we showed that for a further, deeper study of bonds, their algebraic
multiplicities have to be considered as well, which is dedicated to future research.

• This concept is not limited to SGPs, but it can also be adopted for other parallel
manipulators as well (e.g. spherical and planar 3-dof RPR manipulators).

• We gave a geometric characterization of all SGPs with pure translational self-
motions.

• We listed all SGPs, which have n-dimensional self-motions with n > 2. The case
of SGPs possessing multidimensional self-motions with n = 2 remains open.
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