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[1a] Stewart Gough Platform

The geometry of a planar SGP is given

by the six base anchor points Mi with

Mi := (Ai, Bi, 0)
T in the fixed space Σ0,

and by the six platform points mi with

mi := (ai, bi, 0)
T in the moving space Σ.

Mi and mi are connected with a SPS leg.

Theorem 1

A SGP is singular (infinitesimal flexible,
shaky) if and only if the carrier lines of the
six SPS legs belong to a linear line complex.
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[1b] Self-motions and the Borel Bricard problem

If all P-joints are locked, a SGP is in
general rigid. But, in some special cases the
manipulator can perform an n-parametric
motion (n > 0), which is called self-motion.

Note that in each pose of the self-motion,
the SGP has to be singular. Moreover,
all self-motions of SGPs are solutions to
the famous Borel Bricard problem [3,6,7,8,9].

Borel Bricard problem (still unsolved)

Determine and study all displacements of a
rigid body in which distinct points of the
body move on spherical paths.
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[1c] Architecturally singular SGPs

Manipulators which are singular in every possible configuration, are called architec-
turally singular.

Architecturally singular SGPs are well studied:

⋆ For the planar case see [A,B,C,D],

⋆ For the non-planar case see [E,F].

It is well known, that architecturally singular
SGPs possess self-motions in each pose.

Therefore we are only interested in self-
motions of non-architecturally singular SGPs.

Conference on Geometry: Theory and Applications, Vorau June 20 - 24 2011, Austria 4



[1d] Review on SGPs with self-motions

• Husty and Zsombor-Murray [G]: SGP with Schönflies self-motion

• Zsombor-Murray et al. [H]: SGP with line-symmetric self-motion (cf. Krames [I])

• Husty and Karger [J] proved that the list of Schönflies Borel Bricard motions
given by Borel [3] is complete

• Karger and Husty [K]: Self-motions of the original SGP

• Karger [2,10] presented a method for designing planar SGPs with self-motions of
the type e0 = 0, where e0 denotes an Euler parameter

• Nawratil [L] presented a complete list of TSSM self-motions (6-3 SGPs)
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[2a] Redundant planar SGPs

According to Husty [M], the “sphere constraint” that mi is located on a sphere
with center Mi can be expressed by a homogeneous quadratic equation Λi in the
Study parameters (e0 : e1 : e2 : e3 : f0 : f1 : f2 : f3).

Therefore the direct kinematic problem corresponds to the solution of the system
Λ1, . . . ,Λ6,Ψ where Ψ denotes the equation of the Study quadric.

If a planar SGP is not architecturally singular, then at least a 1-parametric set of
legs λ1Λ1 + . . .+λ6Λ6 can be added without changing the direct kinematics [N,O].

As the solvability condition of the underlying linear system of equations (Eq. (30)
of [O]) is equivalent with the criterion given in Eq. (12) of [P], also the singularity
surface of the SGP does not change by adding legs of this 1-parametric set.
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[2a] Redundant planar SGPs

Moreover, it was shown [N,O] that in general the base anchor points Mi as well as
the corresponding platform anchor points mi are located on planar cubic curves C
and c, which can also split up.
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[2b] Assumptions and basic idea

Assumption 1

We assume, that there exist such cubic curves c and C in the Euclidean domain of
the platform and the base, respectively.

As the correspondence between c and C has not to be a bijection, a point ∈ P 3
C

of c resp. C is in general mapped to an non-empty set of points ∈ P 3
C

of C resp.
c. We denote this set by the term corresponding location and indicate this fact by
the usage of brackets { }.

Assumption 2

For guaranteeing a general case, we assume that each of the corresponding locations
{u1}, {u2}, {u3}, {U4}, {U5}, {U6} consists of a single point. Moreover, we assume
that no four collinear platform points ui or base points Ui for i = 1, . . . , 6 exist.

Basic idea: Attach the special “legs” uiUi with i = 1, . . . , 6 to SGP m1, . . . ,M6.
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[2c] Darboux constraint

The attachment of the “legs” uiUi with i = 1, 2, 3 corresponds with the so-called
Darboux constraint, that the platform anchor point ui moves in a plane of the fixed
system orthogonal to the direction of the ideal point Ui.

The Darboux constraint can
be written as a homogeneous
quadratic equation Ωi in the Stu-
dy parameters (for details see [1]).

Note that Ωi depends only
linearly on f0, f1, f2, f3.

Remark: Due to Assumption 2 not both

points ui and Ui can be ideal points. ⋄ U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1

u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1
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[2c] Mannheim constraint

The attachment of the “leg” ujUj with j = 4, 5, 6 corresponds with the so-called
Mannheim constraint, that a plane of the moving system orthogonal to uj slides
through the point Uj.

The Mannheim constraint can
be written as a homogeneous
quadratic equation Πj in the Stu-
dy parameters (for details see [1]).

Note that Πj depends only
linearly on f0, f1, f2, f3.

Remark: Due to Assumption 2 not both

points uj and Uj can be ideal points. ⋄

U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6

u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6

Conference on Geometry: Theory and Applications, Vorau June 20 - 24 2011, Austria 10



[2d] Implication of the assumptions

Theorem 2

Given is a planar SGP m1, . . . ,M6 which is not architecturally singular and which
fulfills Assumption 1 and 2. Then the resulting manipulator u1, . . . ,U6 is redundant
and therefore architecturally singular.

Proof: As the points Ui and ui are corresponding points of C and c we get:

Ωi =
6

X

k=1

λi,kΛk and Πj =
6

X

k=1

λj,kΛk for i = 1, 2, 3 and j = 4, 5, 6.

As Ωi and Πj are only linear in f0, . . . , f3, in contrast to Λk which contains the
term 4(f2

0 + f2
1 + f2

2 + f2
3 ), the equations can be rewritten as:

Ωi =

6
X

k=2

δi,k∆k and Πj =

6
X

k=2

δj,k∆k with ∆k = Λ1 − Λk.

Therefore the set of the six polynomials Ω1,Ω2, Ω3,Π4, Π5,Π6 is redundant. �
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[3a] Types of self-motions

Definition 1

Assume M is a 1-parametric self-motion of a non-architecturally singular SGP
m1, . . . , M6. Then M is of type n DM (Darboux Mannheim) if the corresponding
architecturally singular manipulator u1, . . . , U6 has an n-parametric self-motion U .

Note that U includes M, because if we attach the “legs” uiUi for i = 1, . . . , 6
to m1, . . . ,M6, we do not change the direct kinematics and singularity surface.
Therefore also M remains unchanged. By removing the legs miMi the self-motion
M can only be enlarged.

Theorem 3 (Proof is given in [1])

All 1-parametric self-motions of non-architecturally singular planar SGPs fulfilling
Assumption 1 and 2 are type I or type II DM self-motions.
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[3b] Computation of type II DM self-motions

W.l.o.g. we can assume that the variety of a 2-parametric DM self-motion is
spanned by Ψ, Ω1,Ω2, Ω3, Π4,Π5 (otherwise we can consider the inverse motion).

Lemma 1 (Proof is given in [1])

W.l.o.g. we can choose coordinate systems in Σ0 and Σ with X2(X2 −X3)x5 6= 0,

a1 = b1 = y4 = A4 = B4 = Y1 = h4 = g5 = 0, X1 = Y2 = Y3 = x4 = y5 = 1,

where (0 : Xi : Yi : 0) and (0 : xi : yi : 0) are the projective coordinates of the
ideal points Ui and ui, respectively.

We solve Ψ,Ω1, Ω2, Π4 for f0, . . . , f3 and plug the obtained expressions in the
remaining two equations which yield Ω⋆

3[40] (degree 2) and Π⋆
5[96] (degree 4).

Finally, we compute the resultant of Ω⋆
3 and Π⋆

5 with respect to one of the Euler
parameters. For e0 this yields Γ[117 652] (degree 8).
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[3b] Computation of type II DM self-motions

In the following, we list the coefficients of ei
1e

j
2e

k
3 of Γ, which are denoted by Γijk:

Γ080 = F1[8]F2[18]
2
, Γ800 = (b2 − b3)

2(L1 − g4)
2
F3[8],

Γ170 = F2[18]F4[283], Γ710 = (b2 − b3)(L1 − g4)F5[170],

Γ620[2054], Γ602[1646], Γ260[6126], Γ062[4916],

Γ026[5950], Γ116[3066], Γ530[4538], Γ512[4512],

Γ152[6514], Γ440[7134], Γ422[6314], Γ242[7622],

Γ044[6356], Γ314[6934], Γ224[7096], Γ134[6656],

Γ206[5950], Γ350[7166], Γ404[5766], Γ332[6982].

Based on these 24 equations Γijk = 0 (in 14 unknowns), we were already able to
compute first results for type II DM self-motions in [5], which raise the hope of
giving a complete classification of these self-motions in the future.
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[3b] SGPs with type II DM self-motions

Assuming we have computed a 2-parametric DM self-motion, the question remains
open how to construct a SGP with a 1-parametric self-motion from it.

Clearly, we can attach an arbitrary finite leg m6M6 to the manipulator u1, . . . , U5.
The resulting planar manipulator u1, . . . ,U5, m6, M6 is not architecturally singular
as (m6, M6) 6= (u6, U6) holds.

Analogous considerations as in [N,O] yield that we can attach at least a 1-parametric
set L of legs to u1, . . . ,U5, m6, M6, without changing the direct kinematics.

Replace “legs” uiUi bei finite legs miMi (i = 1, . . . , 5) of L such that the resulting
SGP m1, . . . , M6 is not architecturally singular.
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[4] Known examples of type II DM self-motions

The self-motions K computed by Karger [2,10] with e0 = 0 are of type II DM.

Karger [10] wrote that the general condition for the geometry of the SGP yielding
a self-motion of K is a very complicated algebraic condition (approx. 1000 terms).

Moreover, he noted that it would be interesting to find further special cases beside
the original SGP [K] and the homological configuration [6,7], for which the condition
has a geometric interpretation.

Based on our approach we can give easily a nice geometric interpretation for a
subset of K as follows: If we set e0 = 0 the equations Ω⋆

3 and Π⋆
5 have to vanish

identically. Doing so, we only cover a subset S of K as for the general case U1

must not be located on the x-axis of the fixed frame.
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[4] Known examples of type II DM self-motions

Theorem 4 (Proof is given in [1])

The self-motions S fulfilling Assumption 1 and 2 are line-symmetric motions and
can be parametrized with respect to the homogeneous parameter e1 : e2.

Moreover, the self-motions S fulfilling
Assumption 1 and 2 are octahedral.

Definition 2

A DM self-motion is called octahedral if
following triples of points are collinear:

(u1, u2, u6), (u1, u3, u5), (u2, u3, u4),

(U4,U5, U3), (U5, U6,U1), (U4,U6, U2). U4U4U4U4U4U4U4U4U4U4U4U4U4U4U4U4U4
U5U5U5U5U5U5U5U5U5U5U5U5U5U5U5U5U5

U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6

u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u2u2u2u2u2u2u2u2u2u2u2u2u2u2u2u2u2
u3u3u3u3u3u3u3u3u3u3u3u3u3u3u3u3u3
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[4] Known examples of type II DM self-motions

Theorem 5 (Proof is given in [1])

Assume that a self-motion of S is given which fulfills Assumption 1 and 2. If all
anchor points of the corresponding manipulator u1, . . . ,U6 are real then it is always
possible to attach a leg (e.g. u2U4) to u1, . . . , U6 such that we get a self-motion of
a type 1 Bricard octahedron.

Corollary 1

All Bricard octahedra of type 1 have a type II DM self-motion.

Therefore we can construct easily non-architecturally singular SGP with a type II
DM self-motion from any Bricard octahedron of type 1.

Remark: As all self-motions of type I DM and II DM, known to the speaker, are octahedral, the

question arises if this property is a necessary condition for a general planar SGP (cf. Assumption 1

and 2) in order to have a 1-parametric self-motion? ⋄
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[4] Example
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Remark: m1, . . . , M6 is a non-architecturally singular SGP with a 1-parametric self-motion.

m2, . . . , M7 is an architecturally singular SGP with a 1-parametric self-motion, where e0 = 0

characterizes only one branch of the self-motion. For more details see [1]. ⋄

Conference on Geometry: Theory and Applications, Vorau June 20 - 24 2011, Austria 19



[5] References

For [1-10] see the abstract. The remaining references [A-P] are as follows:

[A] Karger A (2003) Architecture singular planar parallel manipulators. Mech Mach Theory 38(11):1149–1164

[B] Nawratil G (2008) On the degenerated cases of architecturally singular planar parallel manipulators. J Geom
Graphics 12(2):141–149
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