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Introduction & Motivation

Both pictures by courtesy of F. Rist (TU Vienna, Department for 3D Design and Model Making).

For a large number of applications in robotics the end-effector has a rotational
symmetry; e.g. milling, spot-welding, laser or water-jet engraving/cutting, etc.
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Introduction & Motivation

For the determination of an axial symmetric task the rotation axis a of the tool is
of importance as well as the location of the tool tip A. In addition, the orientation
of the line a has to be taken into account (⇒ −→a ).
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Introduction & Motivation

The two geometric objects A and −→a can
be combined to a so-called oriented line-
element (A,−→a ), which is also known as:

• oriented pointed line (e.g. Selig [1])

• point-line (e.g. Zhang & Ting [2])

• point dirigé (e.g. De Saussure [3])

A

−→a

In the Euclidean plane two oriented line-elements can be transformed uniquely
into each other by a planar displacement. Therefore the set of oriented line-elements
of R2 is isomorphic to the group of planar Euclidean displacements.

The kinematic mapping of Blaschke [8] and Grünwald [9] implies a point-model
for the set of oriented line-elements of R2.
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Introduction & Motivation

We are interested in point-models for the set
−→L of oriented line-elements of R3,

which can be used for the motion design based on well-known methods for curves.
This approach is a standard technique for designing Euclidean motions [10–13].

Therefore our point-model P should have the follow three properties:

P1 The point-model P is an algebraic variety.

P2 The underlying kinematic mapping
−→L → P is a bijection.

P3 A change of the moving and the fixed frame implies a linear transformation
of the point-model P.

Remark: Due to the demand P3 linear curve design algorithms remain invariant
under the choice of the fixed and moving frame. ⋄
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Outline of the Talk

1. Point-models possessing P1–P3

(a) Point-model based on rigid-body motions

(b) Point-models based on representations

2. Metric aspects

3. Application examples

(a) Interpolation by variational motion design

(b) Motion design by De Casteljau’s algorithm

(c) Closeness to singularities in robotics
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1(a) Point-model based on rigid-body motions

We consider the set D of Euclidean displacements SE(3), which map one oriented

line-element (B,
−→
b ) into another one (A,−→a ). Clearly, D is a 1-dimensional set.

Remark: According to [17,18] it is an incompletely specified displacement. ⋄

It is well-known [15] that D corresponds to a line in the Study quadric. Therefore
we can compute the Grassmann coordinates of these lines, which imply the
following point-model (for details see [Naw]):

Theorem 1. There exists a bijection between
−→L and all real points of the 15-

dimensional projective space P15 located on the 5-dimensional variety of degree 20,
which is sliced along a hyperplane.
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1(b) Point-models based on representations

Odehnal, Pottmann, Wallner [35] studied unoriented line-elements of R
3.

Their result can be adapted for oriented ones by adding a normalization condition:

Theorem 2. There exists a bijection between
−→L and all real points (a, â, a) of the

7-dimensional space R
7 located on the 5-dimensional quartic variety given by:

〈a, a〉 = 1, 〈a, â〉 = 0.

a . . . direction vector of the oriented line −→a
â . . .moment vector A× a of −→a
A . . . position vector of A ∈ a

a . . . oriented distance FA w.r.t. −→a
F . . . pedal point of a w.r.t origin U
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1(b) Point-models based on representations

Based on Clifford algebras [1,15,30], oriented line-elements are just represented
by combining • points (grade 4 elements) with

• oriented lines (grade 2 elements)
under the side condition that the point is located on the oriented line.

This is similar to the approach ofOdehnal [31] taken for characterizing unoriented
line-elements of P3. Therefore, these two approaches imply the same point-model:

Theorem 3. There exists a bijection between
−→L and all real points (a, â,A) of

the 9-dimensional space R9 located on the 5-dimensional variety of degree 10 given
by

〈a, a〉 = 1, 〈a, â〉 = 0, 〈A, â〉 = 0, A× a = â.
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1(b) Point-models based on representations

The most intuitive approach for representing an oriented line-element is just to
combine the point coordinates A and the unit-direction-vector a of −→a .

Theorem 4. There exists a bijection between
−→L and all real points (a,A) of the

6-dimensional space R
6 located on the singular quadric

〈a,a〉 = 1.

• Zhang & Ting [2] represented oriented line-elements by (a, â+ aa).

• Combebiac [32] used the description (a, â+A).

These two representations have also the singular quadric of Theorem 4 as point-
model. But the transform between these three point-models is in all three cases a
non-linear one.
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1(b) Point-models based on representations

We represent an oriented line-element by an oriented line-segment with a constant
length d given by an ordered pair (A−,A+) of points with A−A+ = d. From the
applicational point of view two possibilities are reasonable:

1. If the rotational end-effector has a
second remarkable point beside the tool
tip A, then these two points can be
regarded as A+ and A−.

Example: If the end-effector is a
miller, then the second endpoint can
be considered as A+.

A−

A+

−→a
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1(b) Point-models based on representations

2. One can select A− and A+ in a way on
−→a that A is their midpoint. In this case
we still have the free choice of d.

Remark: In the remainder of the talk
we assume this point of view. ⋄

Chen & Pottmann [35] represented a
line-segment by their endpoints (A−,A+).
This implies the following point-model:

A+

A−

−→a

Theorem 5. There exists a bijection between
−→L and all real points (A−,A+) of

the 6-dimensional space R
6 located on the singular hyperquadric

Ω : < A− −A+,A− −A+〉 = d2.
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2 Metric aspects

It is desirable for path planning in robotics (e.g. approximation, interpolation,

optimization, . . . ) to have a metric f on
−→L .

One can come up with the idea to base a distance measure on Euclidean

displacements transforming (B,
−→
b ) 7→ (A,−→a ). But distance metrics on SE(3) are

quite problematic as they depend on the choice of length and angle scales (cf. [37]).

Instead of a distance metric on SE(3) one can consider the distance between two
poses of the same rigid body, which yields object dependent metrics.

This interpretation suggests to consider an oriented line-element as an oriented
line-segment with a constant length d.
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2 Metric of Kazerounian & Rastegar

The metric proposed by Kazerounian & Rastegar [38] modified for line-
segments (A−,A+) and (B−,B+) equals

f1 =
√

mean of the squared distances of corresponding points over the entire line-segment

f2
1 = 1

3

[
(A− −B−)

2 + (A+ −B+)
2 + (A− −B−)(A+ −B+)

]
.

This metric can also be extended to the ambient space R
6 (=̂ line-segments of

different lengths) of the point-model Ω according to Chen & Pottmann [35].
Note that f1 implies a Euclidean metric in the ambient space R

6.

Remark: This metric has been used on [39] for optimizing 5-axis machining. ⋄
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2 Metric of Pottmann, Hofer, Ravani

Basic idea: One samples a number n of points X1, . . . ,Xn from the surface of the
moving object and defines the squared distance between two of its poses by the
sum of the squared distances of the n corresponding point pairs (cf. [40]).

Remark: As this distance strongly depends on the number n of points we suggest
to divide the sum by n. ⋄

As in our case the rigid body is only 1-dimensional, its boundary is just given by
the two end points (A−,A+) and (B−,B+), respectively, which yields:

f2
2 = 1

2

[
(A− −B−)

2 + (A+ −B+)
2
]
.

This metric can also be extended from Ω to the ambient space R
6. R

6 equipped
with f2 is again a Euclidean space.
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3(a) Interpolation by variational motion design

The variational motion design algorithm of
[40] can be adapted to the path planing
of oriented line-elements [Naw], based on
the object depended metrics in the ambient
space R

6 of Ω.

The corresponding points of the four given poses in

R
6 are interpolated by three line-segments. Their

projection onto Ω is illustrated in red. The

geodesic motion is displayed in green. In both cases

the barycenter of the line-segment moves along a

straight line between two given poses.
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3(a) Interpolation by variational motion design

The interpolant with minimal bending energy

Eb is displayed in red. The barycenter moves

along a cubic C2 spline (cf. [35,50]), which

is illustrated as magenta-colored curve.

Moreover the minimizer of Eb + 0.05Eg is

illustrated in green where Eg denotes the

energy-functional of the geodesic motion.
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3(b) Motion design by De Casteljau’s algorithm

Projection algorithms: The Bézier curve is constructed in the ambient space of the point-model and

then projected back onto it. Left: Point-model Ω in the ambient space R
6. Right: Point-model is

the 5-dimensional quartic variety of Theorem 2 and its ambient space is R7.
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3(b) Motion design by De Casteljau’s algorithm

Geodesic algorithms: The basic idea is to replace the straight line of the control polygon in the

ambient space by their analog on the point-model; i.e. by geodesics. The result depends on the

underlying geodesic motions [Naw].
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3(c) Closeness to singularities in robotics

Left: Sketch of a linear pentapod; i.e. a pentapod with a linear platform. Right: A linear pentapod

in the (green) given configuration and the (red) closest singular configuration (cf. [Raz]). The

yellow configuration is the closest singularity under similarity transformations of the platform.
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Thank you for the attention!
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