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Abstract In this paper, we close the study on the self-motional bedraxfi non-
architecturally singular parallel manipulators of Stev@ough (SG) type, where the
planar platform and the planar base are related by a praifgcki, by showing that
planar projective SG platforms with elliptic self-motiodis not exist. The proof of
this result demonstrates the power of geometric and cortipngd interaction, but
it also points out the limits of symbolic computation.
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1 Introduction

The geometry of a planar Stewart Gough (SG) platform is glweithe six base
anchor pointd/; located in the fixed plang, and by the six platform anchor points
m; of the moving planer,. If the geometry of the manipulator and the six leg
lengths are given, the SG platform is in general rigid, buterparticular conditions,
it can perform am-parametric motionr(> 0), which is called self-motion. Note that
these motions are also solutions of the famous Borel Bripestllem (cf. [1, 2, 3]).

It is well known, that planar SG platforms, which are singuiteevery possible
configuration, possess self-motions in each pose (@y€rhese so-called architec-
turally singular planar SG platforms were extensively &ddn [4, 5, 6, 7]. There-
fore, we are only interested in self-motions of planar SGfptens, which are not
architecturally singular. Moreover, within this paper, feeus on the case, where
the base anchor poinkg; and the platform anchor points; are related by a non-
singular projectivityk. For the remainder of this article, we call these maniputato
planar projective SG platforms.
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2 Self-motions of planar projective SG platforms

Itis well known (cf. [6, 8, 9]), that a planar projective SGiibrm is architecturally
singular, if and only if, one set of anchor points is locatadaonic section, which
can also be reducible.

The author proved in Lemma 1 of [10] that one can attach a tar@spetric
set.# of additional legs to a planar projective SG platform withobanging the
forward kinematics and singularity surface. The platfomaleor pointam; and the
base anchor pointd; of these additional legs are also relateddy.e. k: m;j — M;.

Moreover, it was also shown by the author in [10] that noriiecturally singu-
lar planar projective SG platforms can either have purestedional self-motions or
elliptic self-motions. Under consideration thatlenotes the line of intersection of
Ty andTt, in the projective extension of the Euclidean 3-space, ttierléype of
self-motions can be defined as follows (cf. Definition 1 of]j10

Definition 1. A self-motion of a non-architecturally singular planar jeciive SG
platform is callecelliptic, if in each pose of this motiosniexists withs = sk and the
projectivity froms onto itself is elliptic.

Note, that an elliptic projectivity of a projectively extded line (line plus its
ideal point) onto itself, is a bijective linear mapping, wihidoes not have real fixed
points. Therefore, Definition 1 implies that neitlrgf andr,, nor two related points
of the platform and the base coincide during an elliptic-sadition.

As the geometry of all manipulators with translational satftions were already
determined in [10], we focused on the study of elliptic salftions in a recent
publication [11], where the following results were obtaine

2.1 Results on elliptic self-motions

Until now, it is an open question, whether planar projec®¢ platforms with el-
liptic self-motions even exist (cf. later given Conjectddeln the case of existence,
these self-motions have to be one-parametric ones withntesteously two degrees
of freedom in each pose of the self-motion (cf. Theorems 12a0t]11]).

It was also shown in [11], that the angleenclosed by the unique pair of ideal
points(f,F) with fk = F has to remain constant during the self-motion of a planar
projective SG platform. By introducing the nomenclator¢ghogonalfor elliptic
self-motions withy = 17/2, we can give Theorem 3 of [11]:

Theorem 1. There do not exist non-architecturally singular planar jctive SG
platforms with an orthogonal elliptic self-motion.

The proof of this theorem was done analytically, but not i ¢rassical way (cf.
Section 5.1 of [11]), as this approach resulted in a highly-hoear system of 17
equations in the design parameters, which we were not al@ve explicitly.
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Fig. 1 Wiener’s models of a deformable one-sheeted hyperboldp@h@hyperbolic paraboloid (b)
of the collection of mathematical models at the Institut®afcrete Mathematics and Geometry,
Vienna University of Technology (see http://www.geometriwien.ac.at/modelle).

Instead, we developed an alternative method (cf. Sectidrob[11]), which is
based on the algebraic formulation of two geometricallyessary conditions for
achieving an elliptic self-motion. These two conditionlgntwo homogeneous
polynomialsy; andY; of degree 12 in two Euler parameteisande,, which remain
from the Study parameters, after a performed eliminatiat@ss. Note, that each
of these two polynomials has 1960 terms. A necessary condibir the existence
of an orthogonal elliptic self-motion is, that andY; are fulfilled independently of
the Euler parameters ande,. Therefore, the coefficients &f andY;, with respect
to e; andey, imply a system of 26 equations in the design parametershalias
used to prove Theorem 1.

Due to the above cited results, we had good reasons to clegmirer [11] with
the following conjecture:

Conjecture 1Non-architecturally singular planar projective SG platfis with an
elliptic self-motion do not exist.

Clearly, the first idea to prove this conjecture, is to dortitrly to Theorem 1.
Indeed, the problem under consideration has only one mdaeawn, namely the
angley, but exactly this additional variable effects enormously tomputational
complexity: The two corresponding polynomiadsandY; of the alternative method
can be computed with MPLE on a high capacity computer (78GB RAM). Each of
these two expressions has 8259 terms and is again of degilieeelZznde, (cf.
Remark 4 of [11]). We tried hard to solve the resulting systn?6 equations
explicitly, but we failed due to its high degree of non-linga

Therefore, we have to come up with another idea for provirggdbinjecture. This
new approach, presented in Section 4, is a purely geometeicvehich is based on
some old geometric/kinematic results listed in Section &elNthat the given proof
also finishes the study of planar projective SG platform#$ wélf-motions, whose
results are summed up within the conclusions (cf. Section 5)
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3 Related historical work

Before we list related historical results, we repeat soneenehtary facts on reg-
ular ruled quadrics, which are the one-sheeted hyperbaloit the hyperbolic
paraboloid (see Fig. 1): Both surfaces carry two sets of igeoes, which are called
regulusZ and associated regulug*, respectively. Moreover, it should be noted
that all lines within one set are skew to each other and thet Biae of one set is
intersected by all lines of the other set. Therefore, a @guled quadric is uniquely
determined by three pairwise skew generators. For mordsiete refer to [12].
In 1873 the following theorem was given by Henrici (cf. [13])

Theorem 2.If the generators of a hyperboloi@® of one sheet are constructed of
rods, jointed at the points of crossing in a way that at eadkrigection point one
rod is free movable about the other one, then the surfacetisigid, but permits a
deformation into a one-parametric set” of hyperboloids.

Moreover, Greenhill remarked in 1878 th#t consists of confocal hyperboloids
and that the trajectory of a point df is orthogonal to this system of confocal hyper-
boloids. A proof of Greenhill’s statement was given in 18y3ayley [14]. In 1899
Schur [15] presented a very elegant proof for Henrici’s theoand Greenhill’s ad-
dendum, which also showed that these results remain vatiteibne-sheeted hy-
perboloid is replaced by a hyperbolic paraboloid.

Finally, it should be noted that Wiener, who made some vearg models of these
deformable one-sheeted hyperboloids and hyperbolic pias (see Fig. 1), also
gave a detailed review of this topic in Section 9 of [16].

Beside the cited results on the deformation of regular rgleatrics, the follow-
ing theorem is well known to the kinematic community (cf. p&22 of [17]):

Theorem 3.If three pointam;, m,, m3 of a lineg run on spheres, where the centers
M1,M2, M3 are also located on a lin&, then every poinin of g has a spherical
trajectory, where the centévl of this sphere belongs 6 and fulfills the relation:
CR(m1,m2,m3,m) = CR(M1, M2, M3, M), where CR denotes the cross-ratio.

Moreover, it is a well known fact of projective geometry, tthiae one-parametric
set of linesm, M] with m andM of Theorem 3 span a regulds of a regular ruled
quadric, ifg andG are skew aneh;, my, m3 andM1, M,, M3 are pairwise distinct.

4 Proof of Conjecture 1

The proof of this conjecture is done by contradiction. Weuass that a non-
architecturally singular planar projective SG platformttwbase anchor points
My,...,Mg and platform anchor pointsiy,..., mg exists, which possesses an el-
liptic self-motion&’. Without loss of generality, we can assume that the mantipula
is in a pose of” wherert,, andrgy are not parallel, as this would imply thatis an
affinity. But this affine case was already discussed in Thad®f [10].
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Fig. 2 Sketch and notation of the points, lines and planes usethéoprioof of Conjecture 1.

4.1 Definition of a special planar projective SG platform

Due to Lemma 1 of [10] and the results of [18], we can replaesotiiginal six legs
miM; with i = 1,....6 by a new set of six legs;N; without changing the direct
kinematics and singularity surface nifk = N; holds andhy,...,ng are not located
on a conic section. Therefong, . .., ng can be selected as follows (cf. Fig. 2):

We chose three lineg, g2, g3 € T, in @ way thatgy, g2, g3,s are pairwise dis-
tinct and that no three of them belong to a pencil of lines.nMive can defina;
as the intersection point @ ands = sk for i = 1,2, 3. Moreover, the intersection
point of g andg; is noted byny 3 with pairwise distinct, j,k € {1,2,3}. By ap-
plying K to nq,...,ng, we get the corresponding base anchor poiis .., Ng. It
can easily be checked, that the resulting special plangegiree SG platform is not
architecturally singular. Moreover, we dengte by G; fori =1,2,3.

Now we consider the one-parametric set of le§swith n € g1, N € G; and
nk = N. Due to Lemma 1 of [10], all these leg8l can be added to the manipulator
without disturbing the elliptic self-motio#.! Moreover, the two lineg; andG; are
skew (= n1 # N1), as the projectivity o onto itself is elliptic. As a consequence,
the one-parametric se¥; of lines [n,N] is a regulus of a regular ruled quadric
@1. Due to the results of Henrici and Schur, we can even addrarpitines of the
associated regulug; to the mechanism without restricting the elliptic self-mat
&. Note, that the lineg, andG; also belong toz;".

Clearly, analogous considerations tgrG; yield the corresponding results for
the requliz;, % of the regular ruled quadri®; for i = 2,3.

1 Note, that this can also be concluded as follows: As the gai&sis invariant under projectivities
the relationCR(n1, ns,ng,n) = CR(N1, N5, Ng,N) holds. Then Theorem 3 yields the results.
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Fig. 3 (a) Sketch for the proof of the second part of Lemma 1. (b) @kef the construction for
the special choice of the plamse

4.2 Planar intersection of®;

In the general case the planar intersectiopfs a conic section. But, if we assume
that the plane contains the line = sk, which belongs to the regulug;, then the
conic degenerates into two distinct lines, whichsaresk itself and a lineG; which
belongs to the associated regulds . Note, thate is the tangent plane aP; in the
intersection point of = sk andGj, which is denoted by7.

Clearly, analogous considerations hold for the surfabgsand @3, which also
yield the pointsN3 andN3, respectively. Moreover, we introduce the notatigjn ,
for the intersection point oG} andGJ* with pairwise distinct, j,k € {1,2,3}. For
these three pointN}, Nz, Ni the following statement holds:

Lemma 1. The pointsN}, Nz, N§ are pairwise distinct and do not belongde- sk.
Moreover,N}, Nz, N are not collinear.

Proof. The pointNy, 5 is located on the lingny, 3, Nk 3], which belongs to the
reguli % andZ; for pairwise distinct, j,k € {1,2,3}. Therefore, these three lines
[na,Ng4], [ns,Ns], [ng, Ng] are pairwise skew and not located within the platform
As a consequence, the poiltg, Nz, Nz are pairwise distinct and not located on
S = sK.

Now, we prove the second part of this lemma by contradictiga.assume that
N7, N, N are located on a link (cf. Fig. 3a). We denote the intersection point of
L ands = sk by o. It should be noted, that = N7 = N5 = N3 holds. Moreover,

L belongs to the associated reguidg of the regular ruled quadri®, defined by
the regulusZs, which is spanned by the pairwise skew lirjes N4], [ns, Ns] and
[ne, Ng]. Now, the unique line o2, througho has to bes = sk, as otherwise this
point has to be a fixed point of the projectivityobnto itself, which contradicts the
definition of an elliptic self-motion. Therefore, the indection of®, with m,, has
to consist ok = sk and a second line containing the poinisns, ng, which already
contradicts our assumptions of Section 4.1. O
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4.3 Concluding the proof

In order to verify Conjecture 1, we need one more lemma, wisigfiven below:

Lemma 2. There exists a non-singular projectivity* with njk* = N for i =
1,...,6. Therefore, the manipulator with platform anchor poinis.. ., ng and base
anchor pointsN3,..., N5 is also a planar projective SG platform with an elliptic
self-motions™.

Proof. Due to Lemma 1 the pointd}, N5, N7, N always form a quadrangle. There-
fore, the mapping; — N fori =1,2,4,5 uniquely defines a regular projectivity
k*. It can easily be seen by the collinearity properties of thehar points, that also
nzk* = N3 andnek™ = Nj hold.

Moreover, the elliptic self-motio® of the manipulator with platform anchor
pointsny,...,ng and base anchor poinkg, ..., Ng is transmitted by the motion of
the reguliZz1, %2, %3 onto the manipulator with platform anchor poimts ..., ng
and base anchor poiniis, . .., Ng. This resulting self-motion denoted & has to
be elliptic, as a fixed point of the restriction of ons = sk* also has to be a fixed
point of the restriction ok ons = sk. As this would contradict our assumption that
& is an elliptic self-motion, we are done. O

Now the proof of the conjecture can be closed by giving thestrotion for a
special choice of the plaree(cf. Fig. 3b):

We consider any finite poir§ € s = sk. This point spans together with the ideal
pointsf € 1, andF € iy (cf. Section 2.1) the plane.? Now we intersectr with
a planeB, which contains$ and is orthogonal to the directidgnWe denote the line
of intersection byt. Then we chose as the plane spanned by- sk andt.

Due to Lemma 2, the resulting planar projective SG platforith wlatform an-
chor pointsny, ...,ng and base anchor poinks;, ..., Ng possesses an elliptic self-
motion &*. According to the given constructiofix* equals the ideal point of
and therefore™ is orthogonal. As planar projective SG platforms with sucek:
motion do not exist (cf. Theorem 1), we end up with a contriaalic O

5 Conclusion

In this paper, we identified that the method based on thedatien of geometry
and symbolic computation, which was used to prove Theorefail$,for solving

the generalized problem formulated in Conjecture 1, duéaé¢sulting computa-
tional complexity. By pure geometric reasonings, basedoomeshistorical results,
we were able to verify Conjecture 1 by reducing the probletihéoalready solved
one given in Theorem 1. This is a prime example for the fadt geametry is es-
sential for solving advanced problems within the field of paational kinematics.

2 Note, thatf € s or F € sk cannot hold as this yields= F, a contradiction.
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As the proof of Conjecture 1 also closes the study of planajeptive SG plat-
forms with self-motions, we can give the following main them under considera-
tion of the results achieved in [10]:

Theorem 4. A planar projective SG platform, which is not architectuyadingular,
can only have a self-motion if the projectivity is an affiraty Ax, where the singu-
lar values § and $ of the2 x 2 transformation matrixA with 0 < 5; < s, fulfill the
condition § < 1 < s,. All one-parametric self-motions of these manipulators ar
circular translations. Moreover, the self-motion is a tdonensional translation, if
and only if, the platform and the base are congruent and gk leave equal length.
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