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Abstract. A STEWART GOUGH (SG) manipulator, where the platform is similar to
the base, is called equiform SG manipulator. It is well kndhat these SG manip-
ulators with planar platform and planar base only have melfions, if they are ar-
chitecturally singular; i.e. the anchor points are locaiadh conic section. Therefore
this study focuses on the non-planar case. We prove thatwfoeg SG manipulator
has translational self-motions, if and only if it is a soledlreflection-congruent one.
Moreover we give a necessary geometric property of nongplequiform SG plat-
forms for possessing non-translational self-motions bamseof bond theory. We close
the paper by discussing some non-planar equiform SG phagfarith non-translational
self-motions, where also a set of new examples is presented.
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1. Introduction

The geometry of a EWART GOUGH (SG) platform is given by the six base anchor poiv{svith
coordinateM; := (A, B;,Ci)T with respect to the fixed system and by the six platform anpbonts
m; with coordinatesn; := (a;,b;,¢)T with respect to the moving system (fio= 1,...,6). Each pair
(Mj, m;j) of corresponding anchor points is connected by a SPS-legrendmly the prismatic joint
(P) is active and the spherical joints (S) are passive (¢f. Fa).

If the geometry of the manipulator is given as well as the &agths, the SG platform is gener-
ically rigid. But, under particular conditions, the maniigor can perform a-dimensional motion
(n > 0), which is called self-motion.

Note that self-motions are also solutions to the still unsdlproblem posed by the French
Academy of Science for the "Prix Vaillant” of the year 1904hiaeh is also known as BREL
BRICARD problem (cf. [1], [2], [7]) and reads as follow¥Determine and study all displacements
of a rigid body in which distinct points of the body move onesjdal paths.”

In this article we study so-called equifotrBG manipulators, which can be defined as follows:

1This notation was introduced by Karger in [8].
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Figure 1. (a) SG manipulator with planar platform and plarese £ planar SG manipulator).
(b) Notation used for the computation of cylinders of reviaa.

Definition 1 A SG manipulator is called equiform, if an equiform mofion
K:mi— pu(mj)=M; for i=1....6 (1)

exists, which does not belong to the subset SE(3) of orientpteserving congruence transforma-
tions. If Eq. (1) holds fou € SE(3), then the SG manipulator is called congruent.

Moreover if Eg. (1) holds for an orientation reversing congnce transformatiop, then the
non-planar equiform SG platform is called reflection-camgmt?

Without loss of generality (w.l.0.g.) we can choose Caaresioordinate systems in the platform
and base of an equiform SG platform in a way that

A =pa, Bi=pb, GC=pc, (2)

holds fori =1,...6, wherep € R\ {0,1} denotes the similarity factor (cf. footnote 2). Note that
for p = 1 we get a congruent SG manipulator and {hhat O has to be excluded, as otherwise the
base collapse into a single point. In this context it sholdd &e mentioned that equals—1 for
reflection-congruent SG manipulators.

Moreover we can assume for the remainder of this article dlgdlatform anchor points are
distinct, as otherwise two legs coincide due to the sintilari the platform and the base.

1.1. Cylinders of revolution

In this section we review some results on cylinders of revoiy as they play a central role in the
study of non-planar congruent/equiform SG manipulatots won-translational self-motions (cf.
Theorems 1 and 3).

A cylinder of revolution® equals the set of all points, which have equal distance toféion
axiss (finite line). Under the assumption thd@thas at least one real point, we can distinguish the
following four cases:

1. sis real andd is not reducible® is a cylinder of revolution oveR.

2. sis real andd is reducible:® equals a pair of isotropic plarfeg, andy,, which are conjugate
complex. Triviallys carries the only real points @.

2An equiform motion is a composition of an Euclidean motiod arsimilarity transformation.

3Note that the notation "reflection-congruent” only makesssefor non-planar equiform SG platforms, as in the
planar case the composition pfwith the reflection on the carrier plane of the anchor poirgkig an element of SE(3).

4A plane is called isotropic, if its ideal line is tangent te thbsolute quadric.
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3. sisimaginary andb is not reducible® is a cylinder of revolution ove€. The real points of
® are located on the 4th order intersection curvéand its conjugate.

4. s is imaginary andb is reducible: In this cas® equals a pair of isotropic plangs and y»,
which are not conjugate complex. Moreo¥contains two real lineg; (i = 1, 2), which are
the intersections of; and its isotropic conjugatg.

Note that not all cylinders of revolution appear as soluteixy. imaginary cylinder (real axis and
imaginary radius).

Remark 1 It is a well known fact from projective geometry that the axis the line, where the
tangent planeg, and y» throughs onto® are isotropic planes. o

Now we focus on the determination of all cylinders of revimatthrough a given set of real
pointsXj, ..., Xn. There exist many papers on this well studied problem (sed3, [13], [14] and
the references therein). In the following we want to use th@apmutational approach ofCHAAL
[13], which was furthered by Z0MBOR-MURRAY and E. FASHNY in [14]. They pointed out that
this problem is equivalent with the solution of the follogisystem of equations, K1 equals the
origin U of the reference frame:

=1, 3)
Y: s-t=0, 4)
Qi (xix9)?—28%(x-t) =0, (5)

fori =2,...,n, wherex; is the coordinate vector of the pot, s:= (s1,%,53)" the direction vector
of the rotation axis, andt := (t,t,t3)" is coordinate vector of the footpoiiitons with respect to
U = X1 (cf. Fig. 1b).

The rough procedure for solving this system of equations ilows: In the first step, one
solves the equation¥, Qo, ..., Qn, which already gives the solutions up to a common factor; i.e
we gets; : @ s3:tp:to:t3. In the second step, we normalize these 6-tuples with réspebe
normalizing condition given in Eq. (3). This normalizatisralways possible as the axis cannot be
isotropi®, because it is the intersection of two isotropic planesReinark 1).

Remark 2 For n=5there exist in general six cylinders of revolution o¢&fe.g. [14]). There even
exist examples, where all six cylinders are real (e.g. [Br n > 5 no solution exists, Ky, ..., Xp
are in general configuration. o

1.2. Bond Theory

In this section we give a short introduction into the thedipands for SG manipulators presented
in [11], which was motivated by the bond theory of overcaosisted closed linkages with revolute
joints given by HEGEDUS, SCHICHO and SSHROCKER in [4] (see also [5]). We start with the direct
kinematic problem of parallel manipulators of SG type anthier with the definition of bonds.

Due to the result of HSTY [6], it is advantageous to work withT®DY parametergey : e; :
e :e3: fo: f1: fp: f3) for solving the forward kinematics. Note that the first foontoge-
neous coordinate&y : e; : e : e3) are the so-called EER parameters. Now all real points of
the 7-dimensional BuDY parameter spade’, which are located on the so-called@®Y quadric
W z?zoa fi = 0, correspond to an Euclidean displacement, with excemtidhe 3-dimensional
subspacé& of W given byey = 1 = e, = e3 =0, as its points cannot fulfill the conditidth# 0 with

5The line is called isotropic, if its ideal point is located thie absolute quadric.
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N = €%+ €7 + €5 + €5. The translation vector := 2(vy,Vv»,v3)" and the rotation matriR := (rjj)
of the correspondlng Euclidean displacemR@rt}- v are given by:

vi=efi—efot+texfz—esfy, ww=efr—efot+esfi—efs, via=efz—efot+efr—enfy,

and

2(e18+6063) E-E€+€—6  2(e63— ey
2(e163—€0&2)  2(exe3+epe1) € — € — €5+

(e%+e§—%—‘°% 2(e1e; — eo€3) 2(6163+6092))
R= (6)

if the normalizing conditiorN = 1 is fulfilled. All points of the complex extension &, which
cannot fulfill this normalizing condition, are located ore tho-called exceptional comé= 0 with
vertexE.

By using the SuDY parametrization of Euclidean displacements the conditiahthe poinin;
is located on a sphere centeredMpwith radiusR;, is a quadratic homogeneous equation according
to HUSTY [6]. This so-called sphere conditigy has the following form:

Ao (@2 +Db2+ P+ A2+ B2+ C? — RPN — 2(a A + biBi + GiCi)e§ — 2(a A — biBi — GiCi)el
+2(aiA — biB;i + GG ) &5 + 2(ayA + biBi — 6iCi)€5 + 4(ciB; — biCi)eper — 4(GA — Ci)evez
+4(biA — aiBi)eoes — 4(biA +aiBj)ere; +4(a — Ai) (eof1 —erfo) +4(a + Ai) (esf2 — exfs)

—4(GiA +&aiCi)eres — 4(ciB; + biCi)exes + 4(bj — Bi) (eo f2 — €2 fo) +4(bi + Bi) (€1 f3 — esfy)

+4(

G —Ci)(eofs—e3fo) +4(ci +Ci)(exfy — e fo) +4(f + 2+ 24 f2) = 0.
(7)

Now the solution of the direct kinematics ov€rcan be written as the algebraic vari&tyof the
ideal .# spanned by, A1,...,Ag,N = 1. In generaV consists of a discrete set of points with a
maximum of 40 elements.

We consider the algebraic motion of the mechanism, whichhe@oints on the Study quadric
that the constraints define; i.e. the common points of thersquadric$V, A4, ..., N\g. If the manip-
ulator has ax-dimensional self-motion then the algebraic motion als® teabe of this dimension.
Now the points of the algebraic motion with# 0 equal the kinematic image ¥f But we can also
consider the points of the algebraic motion, which belonth&exceptional cond = 0. An exact
mathematical definition of these so-called bonds can bengigdollows (cf. Remark 5 of [11]):

Definition 2 For a SG manipulator the se® of bonds is defined as:
B :=ZarCloV*) N {(ep:...: f3) € P" | W ,Ag,...,Ag,N =0},

where \* denotes the variety V after the removal of all components¢twborrespond to pure
translational motions. Moreover ZarC(d*) is theZARISKI closure of \, i.e. the zero locus of all
algebraic equations that also vanish on.v

We have to restrict to non-translational motions for théofwing reason: A component &, which
corresponds to a pure translational motion, is projected single pointO (with N # 0) of the
EULER parameter spade® by the elimination offg, .. ., f3. Therefore the intersection 6fandN =

0 equalsz. Clearly, the kernel of this projection equals the grouparslational motions. Moreover
it is important to note that the set of bonds only depends ergfometry of the manipulator and
not on the leg lengths (cf. Theorem 1 of [11]). For more dstpliéase see [11].
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Figure 2: (a) lllustration of the condition given in Eq. (8)tltwm1 = M1. (b) The tetrahedr®,, and
©y are symmetric with respect to the pladgwhich is projecting in this sketch.

Due to Theorem 2 of [11] a SG platform possesses a pure ttemsaself-motion, if and only
if the platform can be rotated about the centgr= M1 into a pose (cf. Fig. 2a), where the vectors

_) . . .
Mim; fori = 2,...,6 fulfill the condition

rk(Mamsa, ..., Mgmg) < 1. (8)

Moreover all 1-dimensional self-motions are circular slations, which can easily be seen by con-

sidering a normal projection of the SG manipulator in di@ttof the parallel vectorm for
i=2,...,6. If all these five vectors are zero-vectors, the platformh tre base are congruent and
therefore we get a congruent SG manipulator (cf. [12]), Whias a well known 2-dimensional
translational self-motiot, if all legs have equal (non-zero) length.

2. Review and preliminary results

As congruent SG platforms can be seen as a special case @regunanipulators, we start this
section with a detailed review of their known self-motiohahavior.

2.1. Congruent SG manipulators

In the case of planar platform and planar base there only gx=isslational self-motions, if the
anchor points are not located on a conic section (cf. [9] 494)] If the anchor points are located
on a conic section, the manipulator is a so-called architally singulaf one. Moreover, it is well
known that architecturally singular manipulators posse#ismotions in each pose ov€r

In the non-planar case the manipulator can only have narsiational self-motions beside the
above-mentioned 2-dimensional translational self-motd. The geometric characterization for
these non-planar congruent SG manipulators with non{atiasal self-motions is given in the
following theorem, which will be proven by the author at théth International Conference on
Geometry and Graphid4 2] by means of bond theory:

Theorem 1 A non-planar congruent SG manipulator can have a real namdtational self-motion
only if the six base (resp. platform) anchor points have édistance to a finite ling, i.e. they are
located on a cylinder of revolution of type 1, 3 or 4 listed ecfon 1.1. Moreover this condition is
also sufficient for the existence of self-motions dver

A SG platform is called architecturally singular, if it isigiular in every possible configuration.



6 G. Nawratil: On equiform Stewart Gough platforms with selétions

Remark 3 Note that the cylinders of revolution of type 2 are missingjlweorem 1, as they violate
the non-planarity condition. Although this result is kngvencomplete list of all possible non-
translational self-motions of congruent SG platforms i stissing. Moreover a restriction of the
sufficiency condition with respect Balso remains open. o

In this paper we are interested in an extension of Theoremetjadform SG manipulators, for
which the following is known until now:

2.2. Equiform SG manipulators

Equiform SG manipulators with planar platform and planaebare special cases of so-called pla-
nar affine SG manipulators, which were already discusseetailcby the author in [10]. Due to
Remark 2 of [10] and the work [8] of KRGER, it is well known that planar equiform SG manipu-
lators only have self-motions, if the anchor points are tiedan a conic section; i.e. in the case of
architecturally singularity. Therefore we can focus onrtba-planar case, for which the following
lemma gives information about the architecture singuarit

Lemma 1 A non-planar equiform SG platform is architecturally siteyuif and only if four anchor
points are collinear. These manipulators possess selfem®tn each pose ovér.

As this lemma has exactly the same proof as Lemma 2 of [12] angoooceed with the follow-
ing theorem on equiform SG manipulators with pure transteti self-motions:

Theorem 2 A non-planar equiform SG platform has translational setitions, if and only if it
is reflection-congruent. Moreover all these translatiosalf-motions are 1-parametric circular
translations.

PROOF. As the manipulator is non-planar, there exist four coroesiing pairs of anchor points,
which span a tetrahedrd®,, and®), in the platform and the base, respectively. After a perhaps
necessary reindexing we can assume w.l.0.g. that thesergmaints areny,...,mgandMzy, ..., My,
respectively (cf. Fig. 2b).

If an equiform SG manipulator has a translational self-orothere has to exist an orientation of
the platform withrk(Momo, ..., Mgmg) = 1 andmi1 = M1, as congruent SG platforms are excluded
(cf. last two paragraphs of Section 1.2). We assume that #repulator is in such a pose.

Due to our assumptions; # M; has to hold for at least onec {2,3,4}, as otherwis®,, = O
holds, which implies a congruent SG manipulator (a conttamh). W.l.0.g. we can assume that
i =2 holds. As a consequence we can denote the ideal point ahthgny, M| by P. There exist
at least one face,, (resp.gy) of ©,, (resp.©y) throughm; = M1, which does not contaiR (cf.
Fig. 2b). Therefore the linear mappirgwhich maps the pointsof &, to pointsX of gy by :

K:x— X:=gunx,P],

is well-defined. Agk(Mama,...,Mgmg) = 1 has to holdk has to map the triangular face 6f,
located ing,,, to the corresponding triangular face®j; located ingy,. By these three corresponding
point pairs the affinity is uniquely determined.

As m1 = My holds, the two planes,, andgy either intersect each other along a Igéhrough
m1 = M1 or are identical. In the first case all pointsgoéire fixed undek and in the second case all
points of the plane are fixed under Thereforeo can only equal-1 in both cases, as 1 is excluded
due to Definition 1.
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For p = —1 the reflection on the plan (cf. Fig. 2b) orthogonal to the lingn,, M5| through

my = M1 maps the platform to the base in a way that each of the veltansfori = 3,...,6 either
point in the direction oP or equals the zero-vector. This proves the first sentendeeathieorem.
The second one follows immediately from the last paragrdf@ection 1.2. O

3. Non-translational self-motions

In the following we show that the necessary condition of ptarar equiform SG platforms for
possessing non-translational self-motions is the sameagf@ the congruent case (cf. Theorem 1).

Theorem 3 A non-planar equiform SG manipulator can have a real nomstational self-motion
only if the six base (resp. platform) anchor points have édistance to a finite ling, i.e. they are
located on a cylinder of revolution of type 1, 3 or 4 listed acfon 1.1.

PROOF. This theorem can be proven similarly (but not analogousty]heorem 1 by using the
following fact: If a non-translational self-motion existee bond-set has to be non-empty. Therefore
we have to determine the conditions for which the set of b@odsists of at least one element. The
computation of these conditions is outlined next.

W.l.0.g. we can specify the coordinate systems of Eq. (2)diyrga; = by =by,=c1=¢, =
c3 = 0. Moreover we choose the scale in a way that the distance fgro m, equals the unit
length; i.e.ap = 1. Finally we can assume (after a possible necessary remglekanchor points)
that the first four points are not coplanar; begc, # O.

According to [11] the set of bonds can be computed as follds:calculatedj i .= Aj — A,
which is only linear in the Study parametdgs. . ., f3. Under the assumption that the motion is real
and that the following two conditions are not fulfilled sirtarieously

90:07 p:_17 (9)

we can solve the linear system of equatithd\, 1,Az 1,A4 1 for fo, f1, fo, f3 w.l.0o.g.. We plug the
obtained expressions fdp, f1, f2, f3 into A1,As 1,A61 and consider their numerators, which are
homogeneous polynomials, Ps andPs, respectivelyP; is of degree six in the ELER parameters
in contrast td% andPs; which determine quadrics in theUEER parameters space.

We eliminateeyg from B andN = 0 by computing the resulta®; of these two expressions for
i =1,5,6. NowQ; can only vanish without contradiction, if the following facF, vanishes:

= Z\ gimeleses for jkle{0,1,23}
j+k+1=3
with
Oo10= —b3Ca, Gr11= —2bzba(az —as), QGooz = baba(bs — ba) +bsag(az— 1) — bzas(as — 1),
O120= bsCa(2a3— 1), goo1=ba(bsbs—bf—cF), Qo21=bsaz(as— 1) —bgay(as— 1) — bscf,
0300="0, Qi02=bsCa(2a4—1), Qoro=—Ca(85—az+b5—2bgbs), Qogo= —agca(az—1),

and .
R=2 gjelese, for j.kle{0,1,2}, te {56}

jrkH=2

’The exceptional case given in Eq. (9) is discussed sepgiat8ection 3.4.
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with

Jooz = @bsCa(a — 1) — bxCa(ag + b5 — by — ag) + baci(as — a — bj) — baci(ag — a5 — b3),
Jo20 = &3Ca(a — 1) — agCabr(az — 1) + agbai(az — 1) — asbsci(as — 1) — bacaci(cs — &),
G200 = bsCi (CaC; — €5 — 03 + baba) — bgbxCa(bs —br),  go11 = 2bsCaci (b — ),

110 = 2b3brCsa(ag — a) — 2b3bac(az —a4), G101 = 203C4Ct(4 —a).

Remark 4 One has to check as well whether €an always be computed by means of resultant.
This is the case, if the coefficient &f the highest exponent of & P does not vanish. As the bonds
do not depend on the leg lengths,&s to vanish independently from,R ., Rs. It can easily be
seen that this cannot be the case without contradicting esuenptions. o

Now the necessary condition for the existence of a bond ighieacubicF; and the two conics
Fs andFg in the projective plane spanned by, e, e3 have a point in common. Due to the number
of variables and the degree of the involved equations, tiheegponding algebraic conditions for
the existence of a common point cannot be computed expgl(@ty. by applying a reslutant based
elimination method), and therefore it seems that we canmiggthe theorem.

But due to Theorem 1, we conjecture that bonds can only ekidgte six anchor points are
located on a cylinder of revolution. Therefore we considher $ystem of equationg, Q,, ..., Qg
given in Egs. (4) and (5) with respect to the six anchor poMis distinguish three cases:

3.1. General casesze; # 0

W.l.0.g. we can solv&’, Q,, Q3, which are linear iry,t,t3 for these unknowns. We plug the ob-
tained expressions inQ4, Qs, Qg and consider their numerators, which are homogeneous @olyn
mialsGg, Gs, Gg. After the substitutios; by g fori = 1, 2,3 the polynomial$,, Gs, Gg are denoted
by Hy, Hs, Hg. These three polynomials are related withFs, Fs as follows:

Fi=H4, Fs=(csHs—c4Hs)/€3, Fs= (CsHa—CqHs)/€s3.
Therefore the existence of a cylinder of revolution vath# 0 through the six anchor points implies
the existence of a bond witly - 0 and vice versa.

3.2. Special casess =e3=0and e, # 0

W.l.0.g. we can solv®’, Qo, Q4 for t1,tr, t3. We plug the obtained expressions ifi2g, Qs, Qg and
consider their numerators, which are homogeneous polyaie@s, Gs, Gg. After the substitution
s by e fori = 1,2 the polynomial$s, Gs, Gg are denoted biis, Hs, Hg. These three polynomials
are related with, Fs, Fg as follows:

F1=exCsHs, Fs=(baCs—bsca)Hz+bsHs, Fg= (bacs —beca)Hz+ bsHs.

Therefore the existence of a cylinder of revolution vaih= 0, s, # 0 through the six anchor points
implies the existence of a bond wigg = 0, &> # 0 and vice versa.

3.3. Very special cases; =s3=e=e3=0

If e = 0 holds, the platform has the same orientation during thelevkeelf-motion. As a con-
sequence we can only end up with a translational self-mptacontradiction. Therefore we can
assumes; # 0.
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Moreover we can also assureg+# 0, because otherwise the direction vector of the cylinder
axiss equals the zero-vector (a contradiction). W.l.o.g. we aauesY, Q3, Q4 for t1,t,t3. If we
plug the obtained expression infy, we see that it is fulfilled identically. Therefore we coresid
the numerators d2s, Qg, Which are homogeneous polynomiés, Gg. After the substitutiors; by
e1 the polynomialsGs, Gg are denoted b¥is, Hg. As for e, = e3 = 0 the polynomial; is already
fulfilled identically, we get the following relation betweéls, Hg andFs, Fs:

Fs = bsHs, Fe = bsHs.

Therefore the existence of a cylinder of revolution wath= s3 = 0, 51 # 0 through the six anchor
points implies the existence of a bond wéh= e3 = 0, e; # 0 and vice versa.

3.4. Exceptional case

Due to the above given study, we are left with the exceptioaaé of Eq. (9). We distinguish the

following two cases:

e e # 0: Under this assumption we can solve the linear system ohteans¥,A, 1 for fo, f;
w.l.o.g.. We plug the obtained expressions f@rf; into Az 1,A4 1 and consider their numerators,
which are homogeneous polynomi&sandPy, respectively.

We eliminatees from B, andN = 0 by computing the resulta; of these two expressions for
i = 3,4. Now Q3 can only vanish without contradiction for:

(ager +bsep) (azer —e1 +bzex) = 0.

In both cases we can solve the linear equatiorefor.l.0.g.. If we plug the obtained expression
into Q4 we see thala‘l3 factors out and that the remaining expression, which onpedds on the
design parameters, decomposes in two quadratic factonsr@spect tay. The computation of
a4 from each of these factors can be done w.l.0.g. and showsdmat of the obtained solutions
for a4 can be real. Therefore no bond exists; thus there cannot be-&ranslational self-motion
in this case.

e e, = 0: If & = 0 holds, the platform has the same orientation during thdewealf-motion. As a
consequence we can only end up with a translational selfemathich has to be a 1-dimensional
circular translation due to Theorem 2. Therefore we canmssy # 0.

Under this assumption we can solve the linear system of emsa¥, Az 1 for fo, f2 w.l.0.g.. We
plug the obtained expressions ffy; f, into A4 1 and consider its numerator, which is a homoge-
neous polynomiaP;. Now we eliminatees by computing the resultar@@, of P, andN, which
equals

1603655 + ¢)[(bs — ba)?+ ).

This resulting expression cannot vanish without conttémticoverR, thus also this case cannot
yield a non-translational self-motion.

One also has to check in this exceptional case@haan always be computed by means of resultant.
It can easily be verified that Remark 4 (with respeatmstead ofy) also holds for the exceptional
case, which closes the proof of Theorem 3. O

Finally it should be noted that in contrast to non-planargraent SG platforms (cf. Theorem
1) nothing is known about the sufficiency of this common nsagscondition (cf. Theorem 3) for
the equiform case.
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4. Examples

As translational self-motions of reflection-congruent S@nipulators are trivial (circular transla-
tions), we focus on equiform SG manipulators with non-tlangnal self-motions. Until now only
the following examples are known to the author, which areettpgiform analogous (and therefore
generalizations) of the examples given in Section 5 of [12]:

e Four anchor points are located on a line (architecture simgase). In this case the self-motions
are the motions of the 5-legged manipulator, which resutfthe removal of one of the four
legs, whose anchor points are collinear (cf. Lemma 1). Fexctrresponding cylinders of revo-
lution please see Section 4.3 of [12].

e The anchor points split up into two triples of collinear psinin this case the self-motions are
butterfly motions. For the corresponding cylinders of ratioh please see Sections 4.2 and 5.1
of [12].

e The manipulator is plane-symmetric; i.e. the fourth, fiftidaixth anchor point are obtained by
reflecting the first, second and third one on a plan€&herefore there always exists a cylinder of
revolution® of type 1 with generators orthogonaldo
W.l.0.g. we can assume thais thexy-plane and that the rotation axis®fis thez-axis. Moreover
we can choose the scale in away that the radigs@duals 1. Finally we can rotate the coordinate
system about the-axis that the first and second anchor point have the sacoerdinate, which
results in the following coordinatization:

ap = a4 = sin(H), a = ag = sin(—u), ag = ag = Sin(A ),
by = by = cos(p), by = bs = cos(u), bs = bg = cos(A ),

€1 =—-C4#0,c0=—C5 #0,c3=—Cg # 0 and the angleg € (0, 1) andA € [0,2m). The coor-
dinates of the corresponding base anchor points are detedrby Eq. (2). For the corresponding
cylinders of revolution besid® please see Section 5.2 of [12].

These plane-symmetric equiform SG manipulators have thewimg non-translational self-
motions characterized lgg = 0, which are new to the best knowledge of the author: We coenput
the unknownsfy, f1, fo, f3 from W, A 1,A31,A4 1. If we plug the obtained expressions ifig1,

it can easily be seen that it vanishes for

R= (R -RR)+RS.

C1
Moreover, if additionally

R = o) (RG—RY) + RS

holds,Ag 1 is fulfilled identically. Therefore only the conditiol; = 0 remains, which is a ho-
mogeneous equation of degree 6 in th& ER parametersy, e;,e. Hence for given five design
parameters;, Cy, C3, U, A, this sextic implies a 4-parametric set of self-motionsf depends on
the four leg length&y, Ry, Rz, Ry.

We close the paper by giving the following concrete example.

Example 1 The geometry of the plane-symmetric equiform SG manipukattetermined by:

p=m/4, A=-3m/4, cp=cp=c3=-1
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(@) (b)
Figure 3: We identifyeg = 0 with the line at infinity and illustrate the affine part of thextic; i.e.
we seteg = 1 and plote; horizontally ande, vertically for (a)p = —1 and (b)p = 2, respectively.

For the following choice of leg lengths
R%:67 R%:47 R§:67 R£21:97 Ré:77 Ré:97

the sextic is displayed fgr = —1 andp = 2in Fig. 3. Animations of the corresponding self-motions
can be downloaded as supplementary data from the authoneepage (cf. footnote 8). o

5. Conclusions and outlook

In this paper we showed that the necessary condition of hemap congruent SG manipulators
for possessing non-translational self-motions (cf. Theod) also holds for non-planar equiform
SG manipulators (cf. Theorem 3). In contrast to non-plamergecuent SG platforms nothing is
known about the sufficiency of this common geometric charagition for the equiform case. This
problem remains open and is dedicated to future research.

All known examples of equiform SG manipulators with nomgkational self-motions are given
in Section 4, where also a set of new self-motions is prederittreover we proved in Theorem
2 that an equiform SG manipulator has translational selfions, if and only if it is a so-called
reflection-congruent one.

Finally it should be noted that we are interested in the gdization of this study with respect
to the linear coupling of the non-planar platform and badeis problem is still open for the case
where this mapping is an affinity or even a projectivity.

Acknowledgement This research is funded by Grant No. | 408-N13 of the Aust8aience Fund
FWF within the project “Flexible polyhedra and frameworkgdifferent spaces”, an international
cooperation between FWF and RFBR, the Russian Foundatiddafsic Research. Moreover the
author is supported by Grant No. P 24927-N25 for the FWF ptdfgtewart Gough platforms with
self-motions”.

8Note that the input datau(A,ci,co,c3,Ry,...,Re) is identical with the example given in the supplemen-
tary data (including animations) of the publication [12]hiesh can be downloaded from the author's homepage
http://ww. geonmetrie.tuw en.ac.at/nawatil.
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