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Our aim

Mechanism

I aesthetic transformation under functional aspects (e.g.
shading)

I 1-parameteric mobility (time t of the day)

I invertible loop (no need for returning in the night)

I rational motion for synthesis

Design focusing on architectural and artistic application

I An easy-to-use package (Rhino/Grasshopper plug-in)

I Interaction
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Transformable loop

(a) Awning

(b) Sarrus linkage

I Only straight-line motion
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Ivertible cube

(a) Schatz invertible cube
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Our invertible loop
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Sketching the workflow

Motion Design

−→

Motion

Factorization

−→

Linkage

Design
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Basic notations

SE(3)

I Special Euclidean group SE(3)(R) is defined as the group of
all maps from R3 to itself preserving distance and orientation.

DH
I DH (dual quaternions): 8-dimensional real vector space

generated by 1, i, j, k, ε, εi, εj, εk, where ε2 = 0.

I Study quadric Ψ = {h ∈ DH| h h̃ ∈ R} and

G = {h ∈ S | h h̃ = 0}.
I The complement Ψ− G can be identified with SE(3) by an

isomorphism :

α : (Ψ− G )/R∗ → SE(3)
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Back projection

Points of the ambient space can be projected onto the Study
quadric with a mapping

φ : P7 \ G → Ψ \ G

maps a dual quaternion P + εD with PP̃ = 1 to the following
unit dual quaternion:

P + ε
[
D− 1

2

(
DP̃ + PD̃

)
P
]
.
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Motion polynomials

Definition
A dual quaternion polynomial M(t) ∈ DH[t] with a (nonzero)

norm polynomial M(t) M̃(t) ∈ R[t] is called motion polynomial.

We restrict ourselves to monic motion polynomials, motion passes
through the idendity for t =∞.

Factorization
A generic monic motion polynomial M(t) of degree n admits at
most n! factorizations of the shape

(t − A0) . . . (t − An−1) with Ai = ai + ai and ai ∈ R (1)

for i = 0, . . . , n − 1, where the term “generic” means that the
primal part of M(t) has no real polynomial factors.
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Factorization for our tool

Remark 1: Cubic motion polynomials

Remark 2: Six factorizations exist by Bennett flip, i.e.,

M(t) = (t − A1)(t − A2)(t − A3)

= (t − A1)(t − A′2)(t − A′3)

= (t − A′1)(t − A′′2)(t − A3).
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Loops combination

(a) Schematic (b) Illustration

Links are not yet determined
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Target poses and metric

T6

T5

T4

T3 T2

T1

T0 = 1

Ce
6

Ce
5

Ce
4 Ce

3 Ce
2

Ce
1

Assuming uniform mass distribution, the metric is simplified to:

dist2 :=
1

6

6∑
i=1

‖σ1(vi )− σ2(vi )‖2,

where vi (i = 1, . . . , 6) are the six vertices of inertia ellipsoid, in our
case, it is based on the moving object e.g. the shading element.
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Four pose interpolation

(a) Input

(b) Output
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Four pose interpolation

(a) Input (b) Output
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Four pose interpolation

I Two families solution (all 1-dof)

I Visit order might be wrong

I Exclude motions with singularities (based on a univariate
polynomial)

I Rhino/Grasshopper tool Galapagos (applies evolutionary logic)
for optimization
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More than four poses: Evolution

T6

T5

T4

T3 T2

T1

T0 = 1

Ce
6
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Curve evolution algorithm

1. Initial guess:

(a) Four pose interpolation
(b) Random quaternions

2. Guiding poses:

(a) Closest pose projection:
(b) Proportionally spaced:

3. Curve Evolution:

• Initial stage: Guiding poses by (2b) with back projection

t − x0 + x1i + x2j + x3k + ε(x5i + x6j + x7k)

• Middle stage: Guiding poses by (2a) with back projection
• Final stage: Guiding poses by (2a) without back projection

t − x0 + x1i + x2j + x3k + ε(x5(x2i− x1j) + x6(x3i− x1k))
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Statistic of curve evolution

Figure: Statistic validation of the curve evolution.
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Loop phenomenon of curve evolution

Figure: The loop phenomenon (left) can be avoided by a more costly
modification of the curve evolution algorithm (right).
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Curve evolution: comments

1. The four pose interpolation as a good initial guess.

2. Rhino/Grasshopper tool Galapagos for finding a good step size.

3. If the correct visit order is damaged or not achieved then we
proceed with random initial guess.

4. Exclude rational cubic motions with singularities based on a
univariate polynomial.

22 / 36



Introduction

Kinematic concepts

Motion design

Linkage design

Results and Discussion

Conclusion

23 / 36



Realization ideas

E1

S2

E2

S3

E3

S4

E4S5

E5

S0
E0

S1 E0 = S1

E1 = S2

E2 = S3

L
R

P

E3 = S4

E4 = S5

E5 = S0

Figure: Line segments and end-effector

I Gray line segments denote rotation axes

I Colored line segments denote links
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Offsetting

−→a i

−→a i

−→a i

−→a i

−→a i

−→a i

Figure: The three ways of offsetting.
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Realization algorithm

1. Initialization :

E0E1
2

+ E1E2
2

+ . . .+ E5E0
2 → min,

2. Collision check: nine pairs of line-segments (0, 2), (0, 3), (0, 4),
(1, 3), (1, 4), (1, 5), (2, 4), (2, 5), (3, 5)

3. Search strategy: resulting 36−f − 1 linkages to be checked for
collision

4. Link offsetting and thickening: 42 edge-edge collision checks
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Realization

S3 L

R

E3

Figure: Realization integrated (yellow disc), or not.
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Generating the link-design spaces
Post-processing algorithm:

(a) For each link, the user defines a potential link-design space
(e.g. a cylinder ).

(b) Each potential link-design space is trimmed by the other
line-segments of the moving linkage.

(c) The boolean difference between each pair of the trimmed
link-design spaces is performed over the complete motion cycle.
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Loop grounding

Figure: Extending one of the adjacent R-joints and fixing it to the ground.
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Summary for linkage design

1. Realization Algorithm (succeeded in each of the 2000 validation
tests)

2. Generation of collision-free link-design spaces (from
line-segments)

3. Solution of the loop grounding problem
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Design & Workflow

Difficulty

I Never been used

I No established design method

I How to proceed?

We did

I Linked master-level studio course and model making class in
architecture (12 students)

I Task: use the presented tool to design a kinetic structure with
focus on sculptural qualities and/or functional aspects (e.g.
shading)

I Built complementary physical models
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Chaotic Relay

Figure: A series of target poses from the motion of the sun using
evolution algorithm and symmetry.
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Artificial Trees

Figure: Visualization (left) and model photo (right) of an Artificial Tree
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Conclusion

We gave an interactive tool (in Rhino/Grasshopper):

I Invertible paradoxic loops with six rotational joints

I Motion design via a 4 pose interpolation or motion evolution

I Self-collision-free over the complete motion cycle

I Used in a Master-level studio course

I Two results were fabricated

Future work

• extension for Bennett mechanisms and Goldberg linkages

• extension to paradoxic loop structures with prismatic (P) joints

• development for networks linkages

• classification of singularities of such 6R loops

• comparison of the evolution algorithm based different norms

Thank you!
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