
Selbstbewegliche Stewart-Gough-Manipulatoren

mit projektiv gekoppelter ebener Plattform und Basis

Georg Nawratil

Institut für Diskrete Mathematik und Geometrie

Technische Universität Wien, Österreich
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1. What is a self-motion of a SGP?

The geometry of a SGP is given by the six
base anchor points Mi ∈ Σ0 and by the six
platform points mi ∈ Σ for i = 1, . . . , 6.

A SGP is called planar, if M1, . . . , M6 are
coplanar and m1, . . . , m6 are coplanar. The
carrier planes are denoted by πM resp. πm.

Mi and mi are connected with a SPS leg.

If all P-joints are locked, a SGP is in ge-
neral rigid. But, under particular conditions,
the manipulator can perform an n-parametric
motion (n > 0), which is called self-motion.
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1. Planar projective SGPs

Definition 1

A planar SGP is called projective if Mi and mi are related by a non-singular
projectivity κ; i.e. miκ = Mi for i = 1, . . . , 6.

Theorem 1

A SGP is singular (infinitesimal flexible, shaky), if
and only if, the carrier lines of the six SPS legs
belong to a linear line complex.

A planar projective SGP is singular in every pos-
sible configuration (= architecturally singular), if
and only if, one set of anchor points is located on
a conic section (e.g. Chasles [1]). MiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMi

mimimimimimimimimimimimimimimimimi
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1. Related result

As architecturally singular SGPs are
redundant, they possess self-motions
in each pose (over C).
Therefore, we are only interested
in non-architecturally singular planar
projective SGPs with self-motions.

πM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πmπM = πm

Theorem 2 (Proof was given by Karger [2])

A singular configuration of a non-architecturally singular planar projective SGP
does not depend on the distribution of the anchor points in the platform and the
base, but only on the mutual position of the planes πM and πm and on κ.
The configuration is singular, if and only if, either one of the legs can be replaced
by a leg of zero length or two legs can be replaced by aligned legs.

Festkolloquium, TU Wien, 25.Oktober 2012 5



2. Basic results

Lemma 1 (Proof was given in [A])

A two-parametric set of additional legs mM with mκ = M can be attached to planar
projective SGPs without changing the direct kinematics and singularity surface.

Remark: Due to Lemma 1, it is clear why a singular configuration does not depend
on the distribution of the anchor points in πM and πm (cf. Theorem 2). ⋄

Theorem 3

A self-motion of non-architecturally singular planar projective SGPs can only be:

1. a spherical self-motion with rotation center mκ = m,

2. a Schönflies self-motion, where the direction of the rotation axis is parallel to
the planes πM and πm,

3. an elliptic self-motion.
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2. Basic results

Proof of Theorem 3

As in any pose of a self-motion of a planar projective SGP, the manipulator has to
be in a singular configuration, we can apply Theorem 2. Therefore, the manipulator
is singular, if and only if, one of the following cases hold:

a) πM and πm coincide:
⇒ ∃ real fixed point ⇒ case 1 or 2.

b) S = Sκ: This real fixed point (⇒
case 1 or 2) is the intersection point
of the line s := (πM, πm) and sκ.

πmπmπmπmπmπmπmπmπmπmπmπmπmπmπmπmπm

sκsκsκsκsκsκsκsκsκsκsκsκsκsκsκsκsκ

πMπMπMπMπMπMπMπMπMπMπMπMπMπMπMπMπM

sssssssssssssssss

SκSκSκSκSκSκSκSκSκSκSκSκSκSκSκSκSκ

SSSSSSSSSSSSSSSSS
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2. Basic results

hyperbolichyperbolichyperbolichyperbolichyperbolichyperbolichyperbolichyperbolichyperbolichyperbolichyperbolichyperbolichyperbolichyperbolichyperbolichyperbolichyperbolic

πmπmπmπmπmπmπmπmπmπmπmπmπmπmπmπmπm

πMπMπMπMπMπMπMπMπMπMπMπMπMπMπMπMπM parabolicparabolicparabolicparabolicparabolicparabolicparabolicparabolicparabolicparabolicparabolicparabolicparabolicparabolicparabolicparabolicparabolic

πmπmπmπmπmπmπmπmπmπmπmπmπmπmπmπmπm

πMπMπMπMπMπMπMπMπMπMπMπMπMπMπMπMπM ellipticellipticellipticellipticellipticellipticellipticellipticellipticellipticellipticellipticellipticellipticellipticellipticelliptic

πmπmπmπmπmπmπmπmπmπmπmπmπmπmπmπmπm

πMπMπMπMπMπMπMπMπMπMπMπMπMπMπMπMπM

c) s = sκ. If the restriction of κ to s is the identity, hyperbolic or parabolic, we
also get at least one real fixed point (⇒ case 1 or 2). The elliptic case yields:

Definition 2

A self-motion of a non-architecturally singular planar projective SGP is called
elliptic, if in each pose of this motion s exists with s = sκ and where the projectivity
from s onto itself is elliptic. �
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3. Spherical self-motions

If a planar projective SGP has a spherical self-motion about mκ = m, the spherical
image of this manipulator, with respect to the unit sphere S2 centered in mκ = m,
has to have a self-motion as well.

Therefore, the problem reduces to the deter-
mination of non-degenerated spherical 3-dof
RPR manipulators with self-motions, where
the base points M◦

1
, M◦

2
, M◦

3
and the platform

points m◦

1
, m◦

2
, m◦

3
are located on great circles.

Due to Nawratil [3], there exists only one
solution (after relabeling of anchor points and
interchange of platform and base).
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3. Spherical self-motions

This 3-dof RPR manipulator has a pu-
re rotational self-motion around the axis
a := [mκ = m,m◦

1
= m◦

3
= M◦

2
].

Therefore, we can only add an additional leg
m◦

4
M◦

4
without restricting the self-motion if

m◦

4 = m◦

1 or M◦

4 = M◦

2 holds.

Therefore, κ has to map all platform anchor
points /∈ a on points of a ⇒ κ is singular ⇒
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Theorem 4

Non-architecturally singular planar projective SGPs do not have spherical self-
motions with rotation center mκ = m.
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4. Schönflies self-motions

The Schönflies motion group consists of all translations combined with all rotations
about a fixed direction d, which in our case is parallel to πM and πm.

It is well known (e.g. Husty and Karger [4]), that platform points, being on lines
parallel to d, have congruent trajectories in a Schönflies motion. Therefore, every
leg can be translated in direction d without changing this motion.

mf

m

d

τ

me

g

h

τ

hκ hτ

gκ

meκ

d

mτ

mfκ

mκ
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4. Case hκ 6= hτ

Now, every point m ∈ h (with exception of me) can only rotate about the line
[mτ,mκ] ‖ d. Therefore, the platform cannot move in direction d during the
self-motion and the problem reduces to the following planar one:

Determine all non-degenerated 3-dof RPR manipulators with self-motions, where
the platform points m−

1
, m−

2
, m−

3
and base points M−

1
, M−

2
, M−

3
are collinear.

It is well known, that only two solutions exist:

• Planar analogue of the spherical self-motion:

The same arguments as in the spherical case
yield again a contradiction.
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4. Case hκ 6= hτ

• Circular translation:

If we choose the y-axis of the moving and
the fixed frame in direction of d, the matrix
P of the projectivity κ can be written as:
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P =





1 0 0
p21 1 0
p31 p32 p33



 with p33 ∈ R \ {0, 1} and p21, p31, p32 ∈ R. (1)

As ideal points are mapped onto ideal points, κ is an affinity.

Remark: For the proof of the matrix P see [A]. ⋄
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4. Case hκ = hτ

For this case, it can also be proven (cf. [A]) that κ has to be an affinity with the
following matrix P:

P =





1 0 0
p21 p22 0
p31 p32 1



 with p22 ∈ R \ {0} and p21, p31, p32 ∈ R. (2)

Theorem 5

A non-architecturally singular planar projective SGP can only have a Schönflies
self-motion with the direction d of the rotation axis parallel to πM and πm, if it
belongs to the subset of planar affine SGPs.
Moreover, if we choose the y-axis of the moving and the fixed frame in direction of
d, the affinity κ has to be of the form given in (1) or (2).
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4. Planar affine SGPs with self-motions

Theorem 6

Assume a non-architecturally singular planar affine SGP is determined by Mi =
a + Ami. Then, this manipulator has a self-motion, if and only if, the singular
values s1 and s2 of A with 0 < s1 ≤ s2 fulfill s1 ≤ 1 ≤ s2.

Proof of Theorem 6

First of all, we prove that planar affine SGPs cannot have elliptic self-motions: If
s = sκ is not the ideal line, then at least the ideal point of s = sκ is a fixed point.
Therefore, s = sκ has to be the ideal line during the whole elliptic self-motion.
Hence, the self-motion is a Schönflies motion with d orthogonal to πM ‖ πm.

As all points of πm have to run on spherical paths, this Schönflies motion can only be
the Borel Bricard motion due to Husty and Karger [4]. Therefore, the corresponding
points of πm and πM have to be related by an inversion (6= projectivity).
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4. Planar affine SGPs with self-motions

Therefore, planar affine SGPs with self-motions have to be of type (1) or (2). We
consider the image of the unit vectors c = (cos ϕ, sinϕ) ∈ πm for ϕ ∈ [0, 2π].
Clearly, the tie points of the vectors Ac are located on an ellipse k.

Now, it can easily be seen (cf. [A]), that the necessary and sufficient condition for
an affinity of type:

(1) is that k and c have a common tangent,

(2) is that k and c have a common point.

Clearly, we only get real common points and
tangents of k and the unit circle c, if the singular
values 0 < s1 ≤ s2 of A fulfill s1 ≤ 1 ≤ s2. �

d1
s1

s2

d1
d2

c

k
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4. Example

M1 = (0, 0)

M2 = (1, 0)

M3 = (0, 1)

m1 = (0, 0)

m2 = (1, 1)

m3 = (0, 1)

A =

(

1 0
−1 1

)

s1 = (
√

5 − 1)/2

s2 = (
√

5 + 1)/2

Type (1) self-motion

x′′′x′′′x′′′x′′′x′′′x′′′x′′′x′′′x′′′x′′′x′′′x′′′x′′′x′′′x′′′x′′′x′′′ y′′y′′y′′y′′y′′y′′y′′y′′y′′y′′y′′y′′y′′y′′y′′y′′y′′

y′y′y′y′y′y′y′y′y′y′y′y′y′y′y′y′y′

x′x′x′x′x′x′x′x′x′x′x′x′x′x′x′x′x′
xxxxxxxxxxxxxxxxx

yyyyyyyyyyyyyyyyy
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Type (2) self-motion

x′′′x′′′x′′′x′′′x′′′x′′′x′′′x′′′x′′′x′′′x′′′x′′′x′′′x′′′x′′′x′′′x′′′ y′′y′′y′′y′′y′′y′′y′′y′′y′′y′′y′′y′′y′′y′′y′′y′′y′′

y′y′y′y′y′y′y′y′y′y′y′y′y′y′y′y′y′

x′x′x′x′x′x′x′x′x′x′x′x′x′x′x′x′x′

Festkolloquium, TU Wien, 25.Oktober 2012 18



x′′x′′x′′x′′x′′x′′x′′x′′x′′x′′x′′x′′x′′x′′x′′x′′x′′

y′′y′′y′′y′′y′′y′′y′′y′′y′′y′′y′′y′′y′′y′′y′′y′′y′′

x′x′x′x′x′x′x′x′x′x′x′x′x′x′x′x′x′

y′y′y′y′y′y′y′y′y′y′y′y′y′y′y′y′y′

xxxxxxxxxxxxxxxxx

yyyyyyyyyyyyyyyyy
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4. Remarks on self-motions of planar affine SGPs

• As all self-motions of planar affine SGPs are pure translations (cf. Karger [2]),
the trajectories of all platform anchor points are congruent.

• For one-dimensional self-motions the trajectories are circles.
⇒ All one-parametric self-motions are circular translations.

• The self-motion is two-dimensional, if and only if, the platform and the base are
congruent and all legs have equal length.

• Theorem 6 also implies the result of Karger [5], that non-architecturally singular
planar equiform SGPs cannot have self-motions, as s1 = s2 6= 1 holds.
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5. Elliptic self-motions

It remains open, whether elliptic self-motions even exist, as no example is known.
In the case of existence the following theorem has to hold:

Theorem 7

A non-architecturally singular planar projective SGP possesses in each pose of an
elliptic self-motion exactly two instantaneous degrees of freedom.

Proof of Theorem 7

Due to Lemma 1 and the results of Borras et al. [6], we can replace the original
six legs miMi by a new set of six legs niNi without changing the direct kinematics
and singularity surface, if:

• niκ = Ni holds for i = 1, . . . , 6 and

• n1, . . . , n6 are not located on a conic section.

Festkolloquium, TU Wien, 25.Oktober 2012 21



5. Elliptic self-motions

N1

N2

N3

N5

N6

N4

n2 n3

n1 s = sκ

n4

n5

n6

πM

πm

Therefore, n1, . . . , n6 can be se-
lected as shown in the figure.

As the carrier lines of the legs
n1N1, n2N2 and n3N3 coincide,
the lines [ni, Ni] with i = 1, . . . , 6
can only span a linear congruence
of lines. �
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5. Basic quadrangles (a, b, c, d) and (A, B,C, D) of κ

yyyyyyyyyyyyyyyyy fffffffffffffffff

κ−1κ−1κ−1κ−1κ−1κ−1κ−1κ−1κ−1κ−1κ−1κ−1κ−1κ−1κ−1κ−1
κ−1

κκκκκκκκκκκκκκκκκ

xxxxxxxxxxxxxxxxx

bbbbbbbbbbbbbbbbb

ccccccccccccccccc

ooooooooooooooooo
aaaaaaaaaaaaaaaaa

ddddddddddddddddd

Wκ−1Wκ−1Wκ−1Wκ−1Wκ−1Wκ−1Wκ−1Wκ−1Wκ−1Wκ−1Wκ−1Wκ−1Wκ−1Wκ−1Wκ−1Wκ−1Wκ−1

πmπmπmπmπmπmπmπmπmπmπmπmπmπmπmπmπm πMπMπMπMπMπMπMπMπMπMπMπMπMπMπMπMπM

DDDDDDDDDDDDDDDDD FFFFFFFFFFFFFFFFF

XXXXXXXXXXXXXXXXX

BBBBBBBBBBBBBBBBB
OOOOOOOOOOOOOOOOO

AAAAAAAAAAAAAAAAAYYYYYYYYYYYYYYYYY

wκwκwκwκwκwκwκwκwκwκwκwκwκwκwκwκwκ

CCCCCCCCCCCCCCCCC

a = (1 : 0 : 0)
b = (0 : 1 : 0)
c = (1 : 0 : β)
d = (0 : 1 : 1)
f = (0 : 0 : 1)

A = (0 : 0 : 1)
B = (1 : 0 : 0)
C = (0 : 1 : 1)
D = (1 : α : 0)
F = (0 : 1 : 0)

w . . . ideal line of πm

W . . . ideal line of πM

(o, x, y) and (O,X,Y) are
Cartesian coordinate sy-
stems in πm resp. πM.

We can eliminate the
factor of similarity by
setting α = 1. Therefo-
re, the matrix P of κ only
depends on β ∈ R \ {0}.
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5. The special legs aA, bB, cC, dD, fF

• The attachment of the special leg aA (resp. cC)
corresponds with the so-called Darboux constraint (cf.
[7]), that the platform anchor point a (resp. c) moves
in a fixed plane orthogonal to A (resp. C).

• The attachment of the special leg bB (resp. dD)
corresponds with the so-called Mannheim constraint
(cf. [7]), that a plane of the moving system orthogonal
to b (resp. d) slides through the point B (resp. D).

• The attachment of the special leg fF corresponds with
the so-called angle constraint (cf. [B]), that the ideal
points f and F enclose a constant angle.

A

a

πm

πM

b

B

πm

πM
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5. Study parameters e0 : . . . : e3 : f0 : . . . : f3

They represent an Euclidean displacements, if Φ :
∑3

i=0
eifi = 0 and K = 1 hold

with K := e2
0 + e2

1 + e2
2 + e2

3. The rotational matrix is given by:

R := (rij) =





e2
0
+ e2

1
− e2

2
− e2

3
2(e1e2 − e0e3) 2(e1e3 + e0e2)

2(e1e2 + e0e3) e2
0 − e2

1 + e2
2 − e2

3 2(e2e3 − e0e1)
2(e1e3 − e0e2) 2(e2e3 + e0e1) e2

0
− e2

1
− e2

2
+ e2

3



 .

The translation vector t = (t1, t2, t3)
equals:

t1 : = 2(e0f1 − e1f0 + e2f3 − e3f2),

t2 : = 2(e0f2 − e1f3 − e2f0 + e3f1),

t3 : = 2(e0f3 + e1f2 − e2f1 − e3f0).

Moreover, we define the following 3
variables:

t1 : = 2(e0f1 − e1f0 − e2f3 + e3f2),

t2 : = 2(e0f2 + e1f3 − e2f0 − e3f1),

t3 : = 2(e0f3 − e1f2 + e2f1 − e3f0).
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5. Algebraic formulation of the constraints

With respect to the special coordinate systems (o, x, y) and (O,X,Y), introduced
in πm and πM, respectively, the constraints can be written as follows (cf. [B]):

Darboux constraint: Ωa
A : t2 + LaK = 0, La ∈ R,

Ωc
C : t1 + t2 + LcK + β(r12 + r22) = 0, Lc ∈ R,

Mannheim constraint: Πb
B : t1 + gbK = 0, gb ∈ R,

Πd
D : t1 + t2 + gdK − (r11 + r12) = 0, gd ∈ R,

Angle constraint: ∢
f
F : r12 − γK = 0 with γ ∈] − 1, 1[,

as arccos (γ) equals the enclosed angle.
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5. Orthogonal elliptic self-motions

Based on the six constraints Ωa
A, Ωd

C, Πb
B, Πd

D, ∢f
F, Φ we can prove the following:

Theorem 8 (Proof was given in [B])

An elliptic self-motion of a non-architecturally singular planar projective SGP has
to be a one-parametric motion.

We introduce a geometric classification of elliptic self-motions as follows:

Definition 3

An elliptic self-motion is called orthogonal, if the angle enclosed by the unique pair
of ideal points (f,F) with fκ = F equals π/2 (⇔ γ = 0).

Theorem 9

There does not exist a non-architecturally singular planar projective SGP with an
orthogonal elliptic self-motion.
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5. Proof of Theorem 9: classical approach

An elliptic self-motion corresponds with a common curve of the seven hyperquadrics
Ωa

A, Ωc
C, Πb

B, Πd
D, ∢f

F, Φ, Θm
M of the 7-dimensional projective Study parameter space.

Θm
M is the so-called sphere constraint (cf. Husty [8]), that m ∈ πm is located on a

sphere with radius R and center M := mκ in πM. In order to get a very compact
expression, we choose m = (1 : −β : 0) and M = (1 : 0 : −1), which yields:

Θm
M : (R2 − β2 − 1)K − 4(f2

0
+ f2

1
+ f2

2
+ f2

3
) − 2t2 + 2β(t1 + r21) = 0.

An elimination process yields the polynomial Υ[24685] of degree 16 in e1 and e2.
For an elliptic self-motion the coefficients of Υ[24685] have to vanish identically. We
were not able to solve the resulting system of 17 equations in La, Lc, gb, gd, β, R.
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5. Proof of Theorem 9: alternative approach

u . . . ideal point of πm \ {f} . . . u = (0 : 1 : u)

V . . . ideal point of πM \ {F} . . . V = (0 : v : 1)

u and V are the ideal points of s and sκ iff:

u = V ⇐⇒ u = −r31

r32

, v = −r23

r13

,

Vκ−1 ∈ πM ⇐⇒ Ξ1 : r12t3 − βr23r32 = 0,

uκ ∈ πm ⇐⇒ Ξ2 : r32t3 + r13r31 = 0.

πmπmπmπmπmπmπmπmπmπmπmπmπmπmπmπmπm

πMπMπMπMπMπMπMπMπMπMπMπMπMπMπMπMπM

VVVVVVVVVVVVVVVVV

uuuuuuuuuuuuuuuuu

uκuκuκuκuκuκuκuκuκuκuκuκuκuκuκuκuκ

Vκ−1Vκ−1Vκ−1Vκ−1Vκ−1Vκ−1Vκ−1Vκ−1Vκ−1Vκ−1Vκ−1Vκ−1Vκ−1Vκ−1Vκ−1Vκ−1Vκ−1

Ξ1, Ξ2 are quartic equations in the Study parameters, but only linear in f0, . . . , f3.

Ωa
A, Ωc

C, Πb
B, Πd

D, ∢f
F, Φ, Ξi =⇒ Υi[1960] of degree 12 in e1 and e2 for i = 1, 2

Coefficients imply a much more simpler system of 26 equations in La, Lc, gb, gd, β.
This system can be used to prove Theorem 9. For details see [B].
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5. Conjecture

Conjecture

Non-architecturally singular planar projective SGPs with an elliptic self-motion do
not exist.

Clearly, the first idea to prove this conjecture, is to do it similarly to Theorem 9.
There is only one more unknown, namely the variable γ:

The two corresponding polynomials Υ1 and Υ2 can be computed with Maple on
a high capacity computer (78GB RAM). Each of these two expressions has 8259
terms and is again of degree 12 in e1 and e2. We tried hard to solve the resulting
system of 26 equations, but we failed due to its high degree of non-linearity.

Remark: Note that with the classical approach, we were not even able to compute
Υ with Maple, as the high capacity computer ran out of memory. ⋄
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5. Historical results

In 1873, the following theorem was given by Henrici [9]:

Theorem 10

If the generators of a hyperboloid Φ of one sheet are constructed of rods, jointed
at the points of crossing in a way that at each intersection point one rod is
free movable about the other one, then the surface is not rigid, but permits a
deformation into a one-parametric set H of hyperboloids.

In 1899, Schur [10] presented a very elegant proof for Henrici’s theorem, which also
showed, that this theorem remains valid if the one-sheeted hyperboloid is replaced
by a hyperbolic paraboloid.

Based on these results, Wiener [11] made some deformable models of one-sheeted
hyperboloids and hyperbolic paraboloids.
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5. Proof of the Conjecture

N1

N2

N3

N5

N6

N4

n2 n3

n1 s = sκ

n4

n5

n6

πM

πm

G1

G2

G3

g1

g2

g3

Due to Lemma 1, we can add
the one-parametric set of legs
nN with n ∈ g1, N ∈ G1 and
nκ = N without disturbing the
elliptic self-motion.

The lines g1 and G1 are
skew (⇔ n1 6= N1), as the pro-
jectivity of s onto itself is elliptic.
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5. Proof of the Conjecture

N1

N2

N3

N5

N6

N4

n2 n3

n1 s = sκ

n4

n5

n6

πM

πm

G1

G2

G3

g1

g2

g3

Therefore, the one-parametric
set R1 of lines [n, N] is a regulus
of a regular ruled quadric Φ1.

Due to the results of Henrici
and Schur, we can add even
arbitrary lines of the associated
regulus R×

1
without restricting

the elliptic self-motion.

Festkolloquium, TU Wien, 25.Oktober 2012 33



5. Proof of the Conjecture

Intersection with a plane ε,

which contains s = sκ.

N1

N2

N3

N⋆
1

N⋆
2

N⋆
3

N5

N6

N4

n2
n3

n1

N⋆
5

N⋆
6 N⋆

4

s = sκ

n4

n5

n6

ε

G1

πM

G2

G3

g1
g2

g3
πm

G⋆
1

G⋆
2 G⋆

3
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5. Proof of the Conjecture

Lemma 2

There exists a non-singular projectivity κ⋆ with niκ
⋆ = N⋆

i for i = 1, . . . , 6.
Therefore, the manipulator with platform anchor points n1, . . . , n6 and base anchor
points N⋆

1
, . . . ,N⋆

6
is also a planar projective SGP with an elliptic self-motion.

Proof of Lemma 2

It can easily be seen that N⋆
1, N

⋆
2,N

⋆
4,N

⋆
5 always form a quadrangle. Therefore, the

mapping ni 7→ N⋆
i for i = 1, 2, 4, 5 uniquely defines a regular projectivity κ⋆, which

also yields n3κ
⋆ = N⋆

3
and n6κ

⋆ = N⋆
6
.

The elliptic self-motion of the manipulator n1, . . . , N6 is transmitted by the motion
of the reguli R1,R2,R3 onto the manipulator n1, . . . ,N

⋆
6
.

This resulting self-motion is elliptic too, as a fixed point of the restriction of κ⋆ on
s = sκ⋆ also has to be a fixed point of the restriction of κ on s = sκ. �
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5. Proof of the Conjecture

Construction for a special choice of ε:

S . . . finite point of s = sκ

α . . . plane spanned by [S, f, F]

β . . . plane orthogonal to f through S

t . . . intersection line of α and β

ε . . . plane spanned by t and s = sκ F

β
s = sκ

α

ε
St

f
πm

πM

fκ⋆ equals the ideal point of t and therefore, the self-motion of the planar projective
SGP n1, . . . , N

⋆
6

is orthogonal. Theorem 9 yields the contradiction. �
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6. Conclusion

Theorem 11

A planar projective SGP, which is not architecturally singular, can only have a
self-motion if the projectivity is an affinity Mi = a + Ami, where the singular
values s1 and s2 of the 2 × 2 transformation matrix A with 0 < s1 ≤ s2 fulfill the
condition s1 ≤ 1 ≤ s2.
All one-parametric self-motions are circular translations. Moreover, the self-motion
is a two-dimensional translation, if and only if, the platform and the base are
congruent and all legs have equal length.
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Geraden, Zeitschrift für Mathematik und Physik 44:62–64

[11] Wiener H (1907) Abhandlungen zur Sammlung mathematischer Modelle, Teubner, Leipzig

Festkolloquium, TU Wien, 25.Oktober 2012 38


