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Abstract

Based on a kinematic mapping for the group SE(4) of displacements of Euclidean 4-space, we show that the map-
ping of basic elements (points, oriented lines, oriented planes, oriented hyperplanes, instantaneous screws) can be
written compactly in terms of 2 × 2 quaternionic matrices. Moreover we discuss the kinematics on velocity level by
investigating instantaneous screws and their geometric parameters.
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1. Introduction

The elegance of the quaternion based analytical treatment of kinematics in Euclidean spaces of dimension 2 and 3
was pointed out and used by various authors (e.g. Blaschke [3], Müller [21], Ströher [29]). The quaternionic approach
does not only yield a more compact notation in comparison with matrices (which also implies some computational
advantages used in robotics [26, 33]), but it also provides an easier access to the geometry of motions.

Motivated by this circumstance, the author wants to extend this quaternionic kinematic to the Euclidean 4-space
E4 in the tradition of the above cited works [3, 21, 29]. As we are dealing with fundamentals of kinematics in E4, it
is clear that not all results presented in this work are totally novel (seen from the view point of linear algebra or Lie
algebra), but they also require a quaternionic formulation in order to present a complete theory.

A first step in this direction was already done by the author in [23], where a kinematic mapping for the group of
displacements (= orientation preserving congruence transformations) in E4 was introduced, which can be seen as the
generalization of the Blaschke-Grünwald parameters of E2 and the Study parameters of E3. This quaternion based
kinematic parameters of E4 are repeated in Section 2 of the paper. Moreover the notation of [23] is slightly modified
in order to get more suitable formulas and representations.

We go on with a detailed study of rotations in terms of quaternions in Section 3. In Section 4 we show that the
displacements of points, oriented hyperplanes, oriented lines and oriented planes can be embedded into the algebra
of 2 × 2 quaternionic matrices, which allows a very compact and elegant notation. Finally in Section 5 we study
fundamentals of the velocity analysis; namely instantaneous screws and their geometric parameters.

But before we can plunge in medias res, we have to provide some basics on quaternions as well as a literature
review.

1.1. Basics on quaternions

Q := q0 + q1i+ q2j+ q3k with q0, . . . , q3 ∈ R is an element of the skew field of quaternions H, where i, j,k are the
so-called quaternion units, which are multiplied according to the following rules:

ij = −ji = k, jk = −kj = i, ki = −ik = j, ii = jj = kk = −1

It can be seen within this first formula, that we write quaternions just side by side for multiplication instead of
introducing an extra multiplication sign. By this way the notation gets more compact without yielding confusions, as
only quaternions are printed in bold letters.

q0 is the so-called scalar part of the quaternion and q1i+q2j+q3k its pure part. By denoting the pure part by small
letters q, the quaternion can also be written as Q := q0 + q. Moreover Q is called a pure quaternion for q0 = 0 (⇔
Q = q) and a scalar quaternion for q = o (⇔ Q = q0), where o denotes the zero pure quaternion. Therefore the scalar
multiplication is just the quaternionic multiplication by a scalar quaternion. We call the scalar quaternion with scalar
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part 1 the identity quaternion. The zero quaternion O = 0 + o is the only quaternion, which is a scalar one and a pure
one at the same time.

The conjugated quaternion to Q is given by Q̃ := q0 − q1i− q2j− q3k, which implies q̃ = −q for a pure quaternion
q. Moreover the calculation rule (PQ)∼ = Q̃P̃ holds.

We can project any quaternion Q onto its pure and scalar part by the following mappings:

Q 7→
Q − Q̃

2
= q and Q 7→

Q + Q̃
2
= q0. (1)

Moreover the multiplication of two quaternions commutes if the corresponding pure parts differ only by a scalar
multiplication factor; i.e.

PQ = QP ⇐⇒ ∃(p, q) , (0, 0) with pp + qq = o.

Quaternions with this property are also known as coaxial quaternions.
The scalar product of two quaternions, which is defined by:

〈P,Q〉 :=
PQ̃ +QP̃

2
= p0q0 + p1q1 + p2q2 + p3q3,

induces the norm:

‖Q‖ =
√
〈Q,Q〉 =

√
QQ̃ =

√
q2

0 + q2
1 + q2

2 + q2
3.

Quaternions P and Q with 〈P,Q〉 = 0 are called orthogonal and quaternions with a norm of 1 are called unit-
quaternions.

Moreover every quaternion Q , O has a (left or right) multiplicative inverse Q−1, which is given by Q̃‖Q‖−2.
Especially if Q is a unit-quaternion, we get Q−1 = Q̃.

For the differentiation of quaternions P and Q the following rules are valid:

(P +Q). = Ṗ + Q̇, (PQ). = ṖQ + PQ̇, ˙̃Q = ˜̇Q, (2)

which can easily be checked by direct computations.

1.2. Literature review
It can easily be shown by applying elementary linear algebra (see also Berger [1, Chapter 9] and Bottema and Roth

[5, Chapter I]) that two different poses of a rigid body in E4 can be mapped onto each other by one of the following
displacements:

1. rotation about a plane Λ with angle λ,

2. rotation about two total-orthogonal planes Λ and Γ with angles λ and γ, respectively,

3. translation,

4. composition of a rotation about a plane Λ with angle λ and a translation parallel to this plane.

Moreover it is known (e.g. [6]) that each rotation is a composition of rotations about two total-orthogonal planes.
These planes (and the corresponding angles of rotation) are determined uniquely with exception of so-called (left or
right) isoclinic rotations, which can be written in terms of quaternions as follows:

X 7→ X′ = EX, X 7→ X′ = XF̃,

where E and F are unit-quaternions. These special rotations are also known as (left and right) Clifford translations. In
this case every plane through the origin spanned by X and X′ and its total-orthogonal plane remain fixed. Therefore
every isoclinic rotation can be decomposed in ∞2 many ways into rotations about two total-orthogonal planes (with
the same angle of rotation). More details on the geometric parameters of a rotation in E4 (and their computation) are
given in Section 3.

Beside these fundamental results only few kinematic studies are known to the author (cf. Pottmann [24]), which
deal explicitly with the Euclidean 4-space.
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• Basics of geometric kinematics of Euclidean 4-space were already given by Bottema and Roth [5, §2 of Chapter
XII] based on the representation of a displacement by an orthogonal matrix plus a translation vector.

• Wunderlich [37] studied the screw motions of E4 .

• Vogler [32] gave three examples of 2-parametric Euclidean motions, where all points run on 2-spheres/ellipsoids.

Beside the Chapters I and II of [5], where basics of displacements and instantaneous kinematics of n-dimensional
Euclidean spaces are given, the following works are to the author’s knowledge:

• Müller [22] showed for even dimensions that in general a fixed and a moving polode exist, which are rolling on
each other without sliding during a constrained motion.

In the non-general case (even dimensions) and in Euclidean spaces of odd dimensions there exist at each time
instant of a constrained motion a so-called axis-space, which generates the fixed and moving axoide during the
motion. Note that according to Tölke [31] this axis-space can be characterized as the location of all points, which
have a minimum velocity.

As these axoids are rolling and sliding1 upon each other during the constrained motion, we have a so-called in-
stantaneous helical motion (Schrotung in German). The work on the axoids and the implied instantaneous helical
motions was furthered by Frank [8] and finally extensively studied by Friedrich and Spallek [9].

• By means of Lie groups, Karger studied the Darboux motions of En [18] and a further class of special motions,
which can be characterized as follows according to Frank [8]: The Frenet frames of the pole curves resp. the Frenet
frames of the unit-vectors in the generating lines of the instantaneous axoids correspond to each other under the
motion.

• Drabek showed in [7] that points of the moving n-dimensional space, whose i-th velocity vector2 is collinear with
the connecting line of these points and a given point, are located on an algebraic curve of degree n in the generic
case.

2. Kinematic mappings of SE(2), SE(3) and SE(4)

A kinematic mapping of SE(n) is a bijective mapping between the group of displacements of En and a set S of
points in a certain space. Well known examples of these mappings are the one of Blaschke [2] and Grünwald [13] for
E2 and the one of Study [30] for E3, which are reviewed within the next two subsections.

2.1. Study mapping of SE(3)

We can embed the points X of E3 with Cartesian coordinates (x1, x2, x3) into the set of pure quaternions by the
following mapping:

ι3 : R3 → H with (x1, x2, x3) 7→ x := x1i + x2j + x3k. (3)

Classically the Study mapping is introduced by the usage of dual quaternions H + εH, where ε is the dual unit
with the property ε2 = 0. An element E + εT of H + εH is called dual unit-quaternion if E is a unit-quaternion and
following condition holds:

e0t0 + e1t1 + e2t2 + e3t3 = 0. (4)

Based on the usage of dual unit-quaternions E+ εT it can be shown (e.g. [14, Section 3.3.2.2] or [5, Chapter XIII,
§8]) that the mapping of points X ∈ E3 to X′ ∈ E3 induced by any element of SE(3) can be written as follows (by
using ι3 of Eq. (3)):

x 7→ x′ with x′ := ExẼ +
(
TẼ − ET̃

)
. (5)

1If no sliding takes place, we have again an instantaneous rolling motion.
2For i = 1 we get the ordinary velocity vector, for i = 2 the acceleration vector, etc.
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Remark 1. Note that x′ is again a pure quaternion, where the first summand ExẼ is the rotational component and
the remaining part corresponds to a translation, for which different conventions can be found in the literature. If the
expression in the brackets is multiplied by the factor 1

2 we obtain for example Study’s soma coordinates (cf. Study
[30] or [5, Example 68]). �

Moreover it can be shown that the mapping of Eq. (5) is an element of SE(3) for any dual unit-quaternion E + εT. As
both dual unit-quaternions ±(E + εT) correspond to the same Euclidean motion of E3, we consider the homogeneous
8-tuple (e0 : . . . : e3 : t0 : . . . : t3). These so-called Study parameters can be interpreted as a point of a projective
7-dimensional space P7. Therefore there is a bijection between SE(3) and all real points S of P7 located on the so-
called Study quadric Φ ⊂ P7, which is given by Eq. (4) (⇒ the signature of Φ is (4+, 4−, 00)) and is sliced along the
3-dimensional generator-space e0 = e1 = e2 = e3 = 0, as the corresponding quaternion E cannot be normalized.

2.2. Blaschke-Grünwald mapping of SE(2)
The Blaschke-Grünwald mapping can be obtained from the Study mapping by restricting ourselves to planar

Euclidean displacements within a plane, which corresponds to a 3-dimensional generator-space of Φ. If we choose
the plane x1 = 0, it can easily be seen (cf. Remark 3.38 of [14]) that the corresponding generator-space of Φ is given
by e2 = e3 = t0 = t1 = 0. Therefore there is a bijection between SE(2) and all real points (e0 : e1 : t2 : t3) of a
projective 3-dimensional space P3, with exception of the points located on the line e0 = e1 = 0. The corresponding
mapping reads as follows:

x′2j + x′3k = (e0 + e1i)(x2j + x3k)(e0 − e1i) + (t2j + t3k)(e0 − e1i) + (e0 + e1i)(t2j + t3k).

Remark 2. Note that the multiplication of the above equation by −j from the right yield the complex coordinates of
a planar motion, which provide in combination with the exponential map a very compact and elegant notation for the
study of planar kinematics (e.g. Wunderlich [36]). �

2.3. Klawitter-Hagemann mapping of SE(4)
Until now the author is only aware of one explicitly given kinematic mapping of SE(4), namely the one of Klawit-

ter and Hagemann [19]. They presented a unified concept based on Clifford algebras, for constructing kinematic
mappings for certain Cayley-Klein geometries. Especially for E2 and E3, they demonstrated that their approach
yields the Blaschke-Grünwald mapping and the Study mapping, respectively. For the latter see also Selig [28, Section
9.3]. The algebraic structure of the Study parameters (resp. Blaschke-Grünwald parameters) corresponds to the Spin
group of the Clifford algebra with signature (3+, 0−, 10) (resp. (2+, 0−, 10)).

The Spin group of the Clifford algebra with signature (4+, 0−, 10) implies a mapping between displacements of
SE(4) and all real points S of P15 with homogeneous coordinates (a0 : . . . : a7 : c0 : . . . : c7), located in the
intersection of nine quadrics Ri (i = 1, . . . , 9), which is additionally sliced along the quadric N. The explicit equations
read as follows:

R1 : a2c6 − a3c5 + a4c0 − c1c4 = 0, R2 : a5c0 − c1c7 + c2c5 − c3c6 = 0,
R3 : a1c5 − a2c7 + a7c0 − c3c4 = 0, R4 : a1c6 − a3c7 + a6c0 − c2c4 = 0,
R5 : a0c0 − a1c1 + a2c2 − a3c3 = 0, R6 : a0c7 − a1a5 − a6c3 + a7c2 = 0,
R7 : a0c4 − a1a4 + a2a6 − a3a7 = 0, R8 : a0c6 − a3a5 − a4c2 + a6c1 = 0,

R9 : a0c5 − a2a5 − a4c3 + a7c1 = 0, N : a2
0 + . . . + a2

7 + c2
0 + . . . + c2

7 = 0.

A computation of the degree of S by the Hilbert polynomial shows that this 10-dimensional variety is of degree 12.
As a consequence the Klawitter-Hagemann mapping is not suited for performing computational algebraic kinematics
and kinematical geometry in E4. Therefore we are interested in a simplified kinematic mapping of SE(4).

Remark 3. Note that the usage of Clifford algebra for the representation of motions within metric geometries was
already treated by Schröder [27]. Following his approach some classical geometries of low dimension were explicitly
studied by Jurk [16] and Windelberg [35]. Inter alia they already have shown that this method yields the Blaschke-
Grünwald mapping for E2 and the Study mapping for E3, respectively. But they did not discuss E4. �
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2.4. Quaternion based kinematic mapping of SE(4)
We start by embedding the points X of E4 with Cartesian coordinates (x0, x1, x2, x3) into the set of quaternions by

the mapping:
ι4 : R4 → H with (x0, x1, x2, x3) 7→ X := x0 + x1i + x2j + x3k. (6)

Moreover we need the classical quaternion representation theorem for SO(4), which has many fathers (Euler, Cayley,
Salmon, Elfrinkhof, Stringham, Bouman) according to Mebius [20] and states the following:

Theorem 1. The mapping of points X ∈ E4 to X′ ∈ E4 induced by any element of SO(4) can be written as follows (by
using ι4 of Eq. (6)):

X 7→ X′ with X′ := EXF̃, (7)

where E and F is a pair of unit-quaternions, which is determined uniquely up to the sign. Moreover the mapping of
Eq. (7) is an element of SO(4) for any pair of unit-quaternions E and F.

Due to the free choice of sign in Theorem 1, the decomposition into a left unit-quaternion E and a right unit-quaternion
F yields a double cover of SO(4). Therefore we consider again the homogeneous 8-tuple (e0 : . . . : e3 : f0 : . . . : f3),
which can be seen as a point in P7. Hence there is a bijection between SO(4) and all real points S of P7, which are
located on the quadric Ψ ⊂ P7 given by

(e2
0 + e2

1 + e2
2 + e2

3) − ( f 2
0 + f 2

1 + f 2
2 + f 2

3 ) = 0, (8)

(⇒ the signature ofΨ is (4+, 4−, 00)) sliced along the 3-dimensional space e0 = e1 = e2 = e3 = 0, as the corresponding
quaternion E cannot be normalized. But this 3-space does not have a real intersection with Ψ and therefore no point
of Ψ has to be removed. Note that Eq. (8) can be rewritten as EẼ − FF̃ = 0, which expresses the fact that F is also
normalized if E is a unit-quaternion.

Remark 4. If we identify E3 with the hyperplane x0 = 0, all points of the 3-dimensional generator-space fi = ei for
i = 0, . . . , 3 (⇔ F = E) of Ψ, map the hyperplane x0 = 0 onto itself. Therefore this 3-dimensional generator-space is
the well-known Euler-Rodrigues parameter space (e0 : . . . : e3) of SO(3). �

The extension of this kinematic mapping of SO(4) with respect to translations of E4 can be done as follows:

Theorem 2. The mapping of points X ∈ E4 to X′ ∈ E4 induced by any element of SE(4) can be written as follows (by
using ι4 of Eq. (6)):

X 7→ X′ with X′ := EXF̃ − 2ET̃. (9)

Moreover the mapping of Eq. (9) is an element of SE(4) for any triple of quaternions E,F,T, where E and F are
unit-quaternions.

P: Due to Theorem 1, we only have to show that there is a bijection between the coordinates of the translation
vector (v0, v1, v2, v3)T and the entries t0, . . . , t3 of T for a given unit-quaternion E. If we set V := v0 + v1i + v2j + v3k
we get immediately the relation T = − 1

2 ṼE from V = −2ET̃. �

As both triples of quaternions ±(E,F,T), where E and F are unit-quaternions, correspond to the same Euclidean
motion of E4, we consider the homogeneous 12-tuple (e0 : . . . : e3 : f0 : . . . : f3 : t0 : . . . : t3). These 12 homogeneous
motion parameters for E4 can be interpreted as a point of a projective 11-dimensional space P11. Therefore there
is a bijection between SE(4) and all real points S of P11 located on the cylinder Ξ over Ψ, which is also given by
Eq. (8) (⇒ the signature of Ξ is (4+, 4−, 40)) and is sliced along the 7-dimensional space e0 = e1 = e2 = e3 = 0,
as the corresponding quaternion E cannot be normalized. But the real intersection of this 7-space and Ξ equals the
3-dimensional generator-space e0 = e1 = e2 = e3 = f0 = f1 = f2 = f3 = 0 of Ξ. Therefore only the points of this
3-space have to be removed from Ξ.

Remark 5. If we identify E3 with the hyperplane x0 = 0, all points of the 7-dimensional generator-space fi = ei for
i = 0, . . . , 3 (cf. Remark 4) of Ξ, which additionally fulfill the condition that no translation is done in direction of
x0 (⇔ v0 = 0), map the hyperplane x0 = 0 onto itself. As the condition v0 = 0 equals the Study condition (4), the
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7-dimensional generator-space of Ξ is the Study parameter space of SE(3). This shows that the Study parameters and
subsequently the Blaschke-Grünwald parameters can be obtained from the 12 homogeneous motion parameters for
E4. Note that the exceptional quadric of this parameter space is given by e2

0 + e2
1 + e2

2 + e2
3 = 0 and therefore it is also

quasi-elliptic (cf. [12]) like the kinematic image spaces named after Study and Blaschke-Grünwald. Finally it should
be mentioned that the quaternion based kinematic mapping of SE(4) allows rational motion design by constructing
rational curves on hyperquadrics [11] (as for SE(3) on the Study quadric). �

One can ask the question why the translational part in Theorem 2 is given by −2ET̃ and not by any other (left
or right) product of T or T̃ with E, Ẽ, F or F̃? The reason for using −2ET̃ is that we get the direct connection to
the Study parameters (cf. Remark 5), which is quite nice. This property has also the translational part 2TẼ, but the
resulting kinematic mapping would imply a quartic hypersphere condition, contrary to the one given in Theorem 2,
where the hypersphere condition is quadratic (cf. [23]).

2.4.1. On the composition of displacements
After the publication of [23] the author has been referred to the work of Wilker [34] on the quaternion formalism

for Möbius groups in four dimensions, which also contains the Euclidean motion group of E4 as special case. For
reasons of completeness it should be noted that within this framework the translation part is given by TF̃. Wilker’s
approach shed light on the formal composition of two displacements δi of E4, which are given by the triples (Ei,Fi,Ti)
for i = 1, 2. Now the mapping X′ = δ2(δ1(X)) is written as:

X′ = E2E1XF̃1F̃2 − 2E2E1T̃1F̃2 − 2E2T̃2.

This equals the displacement given by the triple (G,H,U) with

G := E2E1, H := F2F1, U := T2E1 + F2T1.

This shows together with the following equation that the composition of two displacements corresponds to the multi-
plication of lower triangular 2 × 2 quaternionic matrices (cf. Wilker [34]); i.e.:(

E2 O
T2 F2

) (
E1 O
T1 F1

)
=

(
G O
U H

)
.

Therefore this map from SE(4) to the group of lower triangular 2 × 2 quaternionic matrices with unit-quaternions in
the diagonal is a so-called representation (cf. [10]). Under consideration of F = E (and the matrix representation
of dual numbers) this quaternion-matrix representation shows again that SE(3) can be expressed in terms of dual
unit-quaternions (cf. Section 2.1).

3. Spherical displacements in terms of quaternions

As the translational component of the displacement given in Theorem 2 can easily be handled, we restrict ourselves
to the study of the rotational one in this section, which is divided into two parts. In the first one (Section 3.1) we
consider a rotation given by its geometric parameters and want to determine the quaternions E and F needed for the
representation given in Theorem 1. The second part (Section 3.2) deals with the inverse problem.

3.1. Rotation defined by its geometric parameters

First of all we want to study the rotation about a plane Λ through the origin about the angle λ. Let this plane
be spanned by two linear independent unit-vectors, which we write as unit-quaternions M and N with 〈M,N〉 , ±1.
Then the mapping:

δΛ : X 7→ X′ with X′ := NM̃XÑM

keeps the points of the plane Λ fixed, as

NM̃MÑM =M and NM̃NÑM = N (10)
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hold. Due to Theorem 1 the mapping δΛ is either a rotation about the plane Λ or the identity. In the following we show
that it is a rotation about two times the angle λ2 enclosed by M and N; i.e. λ2 = arccos 〈M,N〉 with 0◦ ≤ ^(M,N) =
λ
2 ≤ 180◦. Without loss of generality we can choose the coordinate system in a way that:

M = 1 and N = cos λ2 + sin λ2 i,

holds. Then computation of X′ = NM̃XÑM yields:

X′ = x0 + xii + (x2 cos λ − x3 sin λ) j + (x2 sin λ + x3 cos λ) k,

which already proves the next theorem.

Theorem 3. The mapping δΛ is a rotation about the plane Λ through the origin spanned by M and N, where the
rotation angle λ is two times the angle enclosed by M and N; i.e. 0◦ ≤ ^(M,N) = λ

2 ≤ 180◦. For 〈M,N〉 = 1 (⇔
λ
2 = 0◦) and 〈M,N〉 = −1 (⇔ λ

2 = 180◦) the mapping δΛ equals the identity.

We only have to keep in mind that there are two unit-quaternions N and N in Λ, which enclose with M the angle λ2 .
They correspond with the two different orientations of rotations about that plane. How can we identify the correct
unit-quaternion N? out from

{
N,N

}
? This can be done by constructing the following Cartesian right system: We

identify M with the x0-axis, and the x1-axis is chosen within the plane Λ in the way that it encloses with N? an angle
< π2 . Now we can select any unit-quaternion orthogonal to Λ as x2-axis. This also determines the x3-axis uniquely.
As λ is positive it implies a mathematical positive rotation in the x2, x3-plane (x2 is rotated in direction x3).

Therefore we can fix the rotation about the plane Λ by orienting the plane. The oriented triangle O,M,N implies
an orientation for Λ, which is denoted by

−→
Λ =

−−−−→
OMN. Note that the opposite oriented plane

←−
Λ is implied by the

oriented triangle O,M,N. Moreover it should be noted that the pairs (M,N) and (M,−N) imply the same mapping
δΛ.

Theorem 3 allows us to construct the quaternions E and F used in Theorem 1 as follows: Given are two total-
orthogonal planes Λ and Γ through the origin, which are spanned by M,N and Q,R respectively. Under consideration
of

δΓ : X 7→ X′ with X′ := RQ̃XR̃Q.

the mapping δΓ(δΛ(X)) = δΛ(δΓ(X)) shows:

E = RQ̃NM̃ = NM̃RQ̃, F = Q̃RM̃N = M̃NQ̃R. (11)

But we can even express X′ in dependence of M,N,Q,R in a more suitable form (less quaternion are multiplied in
series; five instead of nine) than by EXF̃ with E,F according to Eq. (11).

Theorem 4. The image X′ of X under the rotations δΓ(δΛ(X)) = δΛ(δΓ(X)) determined by M,N,Q,R can be written
as:

X′ = δΛ(X) + δΓ(X) − X = NM̃XÑM + RQ̃XR̃Q − X.

P: We decompose X as follows:
X = xMM + xNN + xQQ + xRR.

As we rotate about total-orthogonal planes we have:

X′ = δΛ(xQQ + xRR) + δΓ(xMM + xNN).

Moreover δΛ(X) + δΓ(X) yields under consideration of Eq. (10)

NM̃(xQQ + xRR)ÑM + RQ̃(xMM + xNN)R̃Q + (xMM + xNN + xQQ + xRR) = X′ + X,

which already proves the theorem. �
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3.2. Geometric parameters of a rotation
In this section we study the inverse problem of the last section; i.e. we want to compute the geometric parameters

of the rotation EXF̃. Using the notation:

E = cos α2 + sin α2 e0, F = cos β2 + sin β2 f0,

with unit-quaternions e0 =
e
‖e‖ and f0 =

f
‖f‖ , this can be done as follows:

Theorem 5. If the quaternions E and F are not coaxial, the geometric parameters of the rotation X 7→ EXF̃ are as
follows: The total-orthogonal planes Λ and Γ through the origin are spanned by:

M =
e0 + f0

√
2 − e0f0 − f0e0

, M⊥ =
e0f0 − 1

√
2 − e0f0 − f0e0

, (12)

and
Q =

f0 − e0
√

2 + e0f0 + f0e0
, Q⊥ =

e0f0 + 1
√

2 + e0f0 + f0e0
, (13)

respectively. Moreover by setting

N = cos
α + β

4
M + sin

α + β

4
M⊥, R = cos

α − β

4
Q + sin

α − β

4
Q⊥ (14)

the relations given in Eq. (11) hold. Therefore the rotation angles about the oriented planes
−→
Λ =

−−−−→
OMN and

−→
Γ =
−−−−→
OQR

equal |α+β2 | and |α−β2 |, respectively.

P: A straightforward computation shows that RQ̃NM̃ equals E and that Q̃RM̃N equals F. �

Theorem 5 is a more detailed version of Theorem 9.1 of [6], which also corrects the cited theorem with respect to
the orientation of the involved planes (see Appendix).

Theorem 5 does not hold for the case of coaxial quaternions, which is the content of the next theorem, for whose
proof we need the following lemma:

Lemma 1. The quaternions M,M⊥,Q,Q⊥ (resp. Q,Q⊥,M,M⊥) of Eqs. (12) and (13) form a Cartesian right system.

P: As all four involved quaternions are unit-quaternions, which are pairwise orthogonal, we only have to check if
the given order forms a right system. Therefore we compute the determinantsof the matrices

m0 m1 m2 m3
m⊥0 m⊥1 m⊥2 m⊥3
q0 q1 q2 q3
q⊥0 q⊥1 q⊥2 q⊥3

 and


q0 q1 q2 q3
q⊥0 q⊥1 q⊥2 q⊥3
m0 m1 m2 m3
m⊥0 m⊥1 m⊥2 m⊥3

 ,
respectively, which shows that they are equal to 1. �

Theorem 6. Assume that the quaternions E and F of the rotation X 7→ EXF̃ are coaxial. If e0 = f0 = o holds the
mapping equals either the identity or the central inversion with respect to the origin. In both cases all linear subspaces
through the origin are fixed. For the remaining cases the geometric parameters of the rotation are as follows:

1. e0 = f0 , o or f0 = o , e0: In this case the plane Λ through the origin is spanned by M = e0 and M⊥ = −1.
Now Q denotes any unit-quaternion orthogonal to Λ and the unit-quaternion Q⊥ is chosen in a way that
M,M⊥,Q,Q⊥ forms a Cartesian right system.

2. e0 = −f0 , o or e0 = o , f0: In this case the plane Γ through the origin is spanned by Q = f0 and Q⊥ = 1.
Now M denotes any unit-quaternion orthogonal to Γ and the unit-quaternion M⊥ is chosen in a way that
Q,Q⊥,M,M⊥ forms a Cartesian right system.
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With respect to these points M,M⊥,Q,Q⊥ the quaternions N and R of Eq. (14) fulfill the relations given in Eq. (11).
Therefore the rotation angles about the oriented planes

−→
Λ =

−−−−→
OMN and

−→
Γ =
−−−−→
OQR equal |α+β2 | and |α−β2 |, respectively.

P: For these special cases we only have to insert into the formula of the general case, which shows for item 1
(resp. item 2) that Λ (resp. Γ) is spanned by M = e0 and M⊥ = −1 (resp. Q = f0 and Q⊥ = 1).

The general formula cannot be used for the remaining plane Γ (resp. Λ) as it either collapse into the origin or
coincides with Λ (resp. Γ).

Due to Lemma 1 and the usage of Cartesian right systems within the formulation of Theorem 6 the given geomet-
ric interpretation of the special cases is the same as in Theorem 5. �

Note that the cases f0 = o , e0 and e0 = o , f0 yield isoclinic rotations. Therefore the above theorem only notes
one pair of total-orthogonal planes together with their angle of rotation.

Finally it should be noted that the rotation angles of Theorems 5 and 6 with respect to the oriented planes
−→
Λ =

−−−−−−→
OMM⊥ and

−→
Γ =
−−−−−→
OQQ⊥ are given by α+β2 and α−β2 , respectively.

4. Representation of displacements of basic geometric elements

In the following we want to embed the quaternion X of a point X ∈ E4 into a 2 × 2 quaternionic matrix in a way
that its multiplication with quaternionic matrices (see Section 2.4.1) gives the point coordinates X′; i.e. an analogue
to the 3-dimensional case, where we can embed x and x′, respectively, into the set of dual unit-quaternions in a way
that:

1 + εx′ = (E + εT) (1 + εx)
(
Ẽ − εT̃

)
holds. By introducing the following notation

D =
(
E O
T F

)
, D̃

T
=

(
Ẽ T̃
O F̃

)
, X′ =

(
−1 X′
O 1

)
, X =

(
−1 X
O 1

)

and under consideration that D̃
−T

with

D̃
−T
=

(
E −ET̃F
O F

)
denotes the (left or right) multiplicative inverse of D̃

T
, this can be done as follows:

Theorem 7. The mapping of points X ∈ E4 to X′ ∈ E4 induced by any element of SE(4) can be written as follows:

X 7→ X′ with X′ := D̃
−T

X D̃
T
.

It is also possible to formulate the displacements of lines and planes of E3 within the dual quaternion calculus
(e.g. Blaschke [3]). Therefore also the displacements of lines of E2 can be formulated within the Blaschke-Grünwald
parameters (e.g. [2, 4, 13]).

In the following we show that the displacement of lines, planes and hyperplanes in E4 can also be written by 2× 2
quaternionic matrices.

4.1. Hyperplanes

All points X ∈ E4 with coordinates (x0, x1, x2, x3) located in a hyperplane (3-space) fulfill a linear equation, which
can be written in the Hesse normal form as

x0w0 + x1w1 + x2w2 + x3w3 + w = 0 with w2
0 + w2

1 + w2
2 + w2

3 = 1.

Thus a hyperplane can be fixed by a unit-quaternion W = w0 + w1i + w2j + w3k and a real number w. Therefore −w
gives the oriented distance of the footpoint on the hyperplane (with respect to the origin) to the origin with respect to
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the direction of W. Applying a rotation about the origin the footpoint has still the distance −w, but now in direction of
EWF̃. This distance is only changed by the component of the translational vector, which is orthogonal to the rotated
hyperplane; i.e. 〈−2ET̃,EWF̃〉. Summed up we have:

W 7→ EWF̃ and w 7→ w + 〈2ET̃,EWF̃〉.

The scalar product can be simplified as follows, where the multiplications from the left and right are written on the
respective sides:

Ẽ | 〈2ET̃,EWF̃〉 = E
(
T̃FW̃ +WF̃T

)
Ẽ | E

T̃−1 | 〈2ET̃,EWF̃〉 = T̃FW̃ +WF̃T | T−1

〈2ET̃,EWF̃〉‖T‖−2 = FW̃T−1 + T̃−1WF̃

Multiplying both sides with the scalar ‖T‖2 = TT̃ yields:

〈2ET̃,EWF̃〉 = FW̃T̃ + TWF̃. (15)

Having in mind that (W,w) also assigns an orientation we can state the following theorem under consideration of the
notation:

W′ =

(
O W′

W̃′ w′

)
, W =

(
O W
W̃ w

)
.

Theorem 8. The mapping of oriented hyperplanes (W,w) of E4 to oriented hyperplanes (W′,w′) of E4 induced by
any element of SE(4) can be written as follows:

W 7→W′ with W′ := D W D̃
T
.

4.2. Lines
Now we discuss the set of oriented lines of E4. Geometrically we can characterize a line by its footpoint C

with respect to the origin and by its direction, which can be written as a unit-quaternion Y. Clearly this direction
is transformed by an arbitrary displacement into Y′ = EYF̃. Now it only remains to calculate the footpoint C′ of
the displaced line, which is composed of the rotated footpoint ECF̃ plus the component of the translational vector
orthogonal to Y′. Under consideration of Eq. (15) the latter can be written as

−2ET̃ + EYF̃
(
FỸT̃ + TYF̃

)
,

which yields:
C′ = ECF̃ − ET̃ + EYF̃TYF̃.

Due to the last term we do not represent the line by the pair (Y,C) but by (Y, ỸC) as the following holds:

Ỹ′C′ = FỸCF̃ − FỸT̃ + TYF̃.

Note that in the 3-dimensional case ỸC equals the crossproduct of the footpoint and the direction vector. Therefore
(Y, ỸC) is the 4-dimensional analogue of the spear coordinates (oriented line coordinates) of E3. As ỸC is a pure
quaternion, the spear coordinates (Y, ỸC) of E4 have 7 entries. Moreover the expression ỸC can be computed from
any point X = C + ξY of the oriented line as follows:

ỸX − X̃Y
2

=
ỸC + ξ − C̃Y − ξ

2
= ỸC. (16)

By introducing the following notation:

Y′ =
(

O Y′

−Ỹ′ Ỹ′C′

)
, Y =

(
O Y
−Ỹ ỸC

)
,

we can sum up our results in the next theorem:

Theorem 9. The mapping of oriented lines (Y, ỸC) of E4 to oriented lines (Y′, Ỹ′C′) of E4 induced by any element
of SE(4) can be written as follows:

Y 7→ Y′ with Y′ := D Y D̃
T
.
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4.3. Planes
We describe a finite plane by a finite point X and two unit-vectors, which are orthogonal to each other. The latter

can be written as unit-quaternions by Y and Z, respectively. Instead of these two directions one can compute the
oriented Plücker coordinates (l,̂ l) of the planes ideal line with respect to the ideal 3-space according to Müller [21,
§6] as

l :=
ZỸ + ỸZ

2
, l̂ :=

ZỸ − ỸZ
2

.

Note that (l,̂ l) expresses the ideal line oriented from the ideal point in direction Y to the ideal point in direction Z.
This can be proven by direct computation as

l = l01i + l02j + l03k, l̂ = l23i + l31j + l12k,

hold, where li j := yiz j − z jyi are the Plücker coordinates (cf. [25, Section 2.1.1]).
Moreover the ideal 3-space is the elliptic space described in [21], where an oriented line can alternatively be

described by the left and right direction vector l+ and l−, which read as:

l+ = ZỸ, l− = ỸZ.

l+ and l− can be seen as points on the so-called left and right unit-sphere, respectively. Now a displacement of E4

implies a displacement within the elliptic ideal 3-space of the form EXF̃. Then l+ and l− are transformed by:

l+ 7→ El+Ẽ, l− 7→ Fl−F̃, (17)

i.e. which are rotations of the left and right unit-sphere, respectively.
Clearly one can compute the Grassmann coordinates pi jk of the plane (cf. [25, Section 2.2]) based on these Plücker

coordinates; i.e. we have to compute the wedge product of these Plücker coordinates with the homogeneous point
coordinates (x0 : x1 : x2 : x3 : 1) of any finite point X of the plane. Computation shows that pi j4 = li j holds and that
the remaining four Grassmann coordinates p321, p012, p031, p023 read as follows:

p321 = −x1l23 − x2l31 − x3l12, p023 = x3l02 − x2l03 + x0l23, (18)
p031 = x1l03 − x3l01 + x0l31, p012 = x2l01 − x1l02 + x0l12, (19)

which can be expressed within the quaternionic formulation as:

L : = p321 + p023i + p031j + p012k

=
ZỸX − XỸZ

2
=

l+X − Xl−
2

.
(20)

Therefore the ten Grassmann plane coordinates can abstractly be represented by the quaternionic triple (l : l̂ : L). In
order to avoid the loss of the information on the plane’s orientation, we can use normalized Grassmann coordinates,
where the normalization is done with respect to the Plücker coordinates of the ideal line. As already l201 + l202 + l203 +

l223 + l231 + l212 = 1 holds, the normalized Grassmann coordinates of the plane can be written as (l,̂ l,L).
Under a displacement the quaternion L is transformed to L′ with:

2L′ = Z′Ỹ′X′ − X′Ỹ′Z′

= EZỸXF̃ − 2EZỸT̃ − EXỸZF̃ + 2ET̃FỸZF̃.

Instead of the triple (l,̂ l,L), we can also use the representation (l + l̂, l − l̂,L) = (l+, l−,L). This is the most suitable
form for our purpose, as we can state the following theorem under consideration of the notation:

L′ =
(
−l′+ L′
O −l′−

)
, L =

(
−l+ L
O −l−

)
.
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Theorem 10. The mapping of oriented planes (l+, l−,L) of E4 to oriented planes (l′+, l′−,L′) of E4 induced by any
element of SE(4) can be written as follows:

L 7→ L′ with L′ := D̃
−T

L D̃
T
.

Within this section we showed that the displacements of the basic geometric elements can be treated in a unified way
using 2 × 2 quaternionic matrices. As for the differentiation of these matrices P and Q the following hold:

(P +Q). = Ṗ + Q̇, (PQ). = ṖQ + PQ̇, ˙̃Q = ˜̇Q, (21)

this notation is also suited for writing differential geometric properties in a very compact way, which is also demon-
strated in Section 5.

5. Instantaneous kinematics

Now X contains the coordinates of X with respect to the moving coordinate frameC and X⊕τ denotes the coordinates
of X with respect to the fixed frame C⊕ in dependency of the time τ of the constrained motion. According to Eq. (9)
the following relation holds:

X⊕τ = EτXF̃τ − 2EτT̃τ, (22)

where Eτ, Fτ and Tτ are functions of the time τ. Eq. (22) can be rewritten in terms of 2 × 2 quaternionic matrices (cf.
Section 4) as follows:

X⊕τ = D̃
−T
τ X D̃

T
τ .

W.l.o.g. we can change the fixed frame from the old C⊕ into the new one C⊗ in a way that at the time instance
τ = ∗ the moving frame C and C⊗ coincide. This is achieved by the transformation:

X⊗τ = D̃
T
∗

X⊕τ D̃
−T
∗
.

By introducing the notation Bτ := D−1
∗

Dτ with

Bτ =
(
Gτ O
Uτ Hτ

)
=

(
Ẽ∗Eτ O

−F̃∗T∗Ẽ∗Eτ + F̃∗Tτ F̃∗Fτ

)
the constrained motion with respect to the system C⊗ is written as:

X⊗τ = B̃
−T
τ X B̃

T
τ ⇐⇒ X⊗τ = GτXH̃τ − 2GτŨτ. (23)

Note that B̃τ evaluated at τ = ∗ equal the 2× 2 identity matrix. The advantage of this coordinate transformation is that
the geometric properties can be studied in a more compact way.

5.1. Velocity quaternion and instantaneous screw
According to the calculation rules for the differentiation of quaternions (see Eq. (2)) the time derivative of the

normalizing condition GτG̃τ = 1 and the equation GτG̃τ −HτH̃τ = 0 of the cylinder Ξ with respect to τ yields:

ĠτG̃τ +Gτ
˙̃Gτ = 0 and ĠτG̃τ +Gτ

˙̃Gτ − ḢτH̃τ −Hτ
˙̃Hτ = 0,

respectively, where the superior dot denotes the time derivative. Evaluation of these formulas at τ = ∗ implies
ġ0(∗) = ḣ0(∗) = 0 (⇒ Ġ∗ = ġ∗ and Ḣ∗ = ḣ∗). Moreover by differentiation of Eq. (23) according to Eq. (21) and Eq.
(2), respectively, we get:

Ẋ⊗τ =
˙̃B
−T

τ X B̃
T
τ + B̃

−T
τ X ˙̃B

T

τ ⇐⇒ Ẋ⊗τ = ĠτXH̃τ +GτX
˙̃Hτ − 2ĠτŨτ − 2Gτ

˙̃Uτ.

Its evaluation at time instance τ = ∗ yields:

Ẋ⊗∗ = ġ∗X − Xḣ∗ − 2 ˙̃U∗, (24)

which we call the velocity quaternion of X implied by the constrained motion at the time instance τ = ∗ with respect
to the fixed coordinate system C⊗. Its norm gives the corresponding velocity.
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Remark 6. Note that in a similar way also the acceleration/lurch/snap/crackle/pop/lock/drop/. . . quaternions can be
computed, but they are not of interest for the remainder of the paper. Moreover we can also compute in an analogous
way the instantaneous motion of an oriented line, plane and hyperplane as Ẏ⊗

∗
, L̇⊗
∗

and Ẇ⊗

∗
, respectively, which is left

to the reader. �

It can easily be checked that the affine mapping X 7→ Ẋ⊗∗ of Eq. (24) is singular if and only if ġ∗ġ∗ − ḣ∗ḣ∗ = 0
holds, which implies the following notation.

Definition 1. The triple (ġ∗, ḣ∗, U̇∗) is called the instantaneous screw $⊗∗ of the motion (Gτ,Hτ,Uτ) at time instance
τ = ∗ with respect to the fixed coordinate system C⊗. The instantaneous screw $⊗∗ is called singular if ġ∗ġ∗ − ḣ∗ḣ∗ = 0
holds; otherwise regular.

Remark 7. Note that in the singular case $⊗∗ is located on Ξ given by Eq. (8). Moreover it should be noted that the
linear space of instantaneous screws is nothing but the Lie algebra se4 (e.g. [28, Section 4]). �

As Ẋ⊗∗ represents a vector (and no point) its transformation into the initial fixed coordinate system C⊕ reads as follows:

Ẋ⊕∗ = E∗Ẋ⊗∗ F̃∗. (25)

In contrast to this, the instantaneous screw $⊗∗ is transformed in the following way into $⊕∗ = (ġ⊕∗ , ḣ⊕∗ , U̇⊕∗ ):

$⊕
∗
= D̃

−T
∗

$⊗
∗

D̃
T
∗

with

$⊕
∗
=

−ġ⊕∗
˙̃U
⊕

∗

O ḣ⊕∗

 , $⊗
∗
=

−ġ∗
˙̃U∗

O ḣ∗

 .
This can easily be proven by showing that the expression of Eq. (25) equals the corresponding expression of Eq. (24),
which reads as:

Ẋ⊕∗ = ġ⊕∗X⊕∗ − X⊕∗ ḣ⊕∗ − 2 ˙̃U
⊕

∗ .

Therefore also the displacement of screws can be embedded into the algebra of 2 × 2 quaternionic matrices, which is
the content of the next theorem:

Theorem 11. The mapping of an instantaneous screw $ of E4 to an instantaneous screw $′ of E4 induced by any
element of SE(4) can be written as follows:

$ 7→ $′ with $′ := D̃
−T

$ D̃
T
.

5.2. Quaternionic characterization of instantaneous screws
Within the following two subsections we compute the geometric criteria for the classification of instantaneous

screws in terms of quaternions.

5.2.1. Instantaneously fixed ideal lines and angular velocities
We are interested in those ideal lines, which are instantaneously fixed with respect to a given instantaneous screw

$⊗∗ = (ġ∗, ḣ∗, U̇∗). We describe an oriented ideal line by its left and right direction vector l+ and l− (cf. Section 4.3).
According to Eq. (17) a constrained motion implies:

l⊗+,τ = Gτl+G̃τ, l⊗−,τ = Hτl−H̃τ.

Differentiation with respect to τ and evaluation at time instance τ = ∗ yields:

l̇⊗+,∗ = ġ∗l+ − l+ġ∗ l̇⊗−,∗ = ḣ∗l− − l−ḣ∗. (26)

The ideal lines which are instantaneously fixed have to fulfill l̇⊗+,∗ = l̇⊗−,∗ = o and ‖l+‖ = ‖l−‖ = 1. We have to
distinguish the following cases:
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1. ġ∗ , o , ḣ∗: The solutions for l+ and l− are

±ġ0 := ±
ġ∗
‖ġ∗‖
, ±ḣ0 := ±

ḣ∗
‖ḣ∗‖
, (27)

respectively. We orient these lines as follows:

L1 : (l+, l−) = (ġ0, ḣ0), L2 : (l+, l−) = (ġ0,−ḣ0), (28)

which are the ideal lines of the instantaneous planes of rotation Ω1 and Ω2, respectively.

2. ġ∗ , o = ḣ∗: According to Eq. (26) we can take any pure unit-quaternion for l−. Therefore there exists a
2-dimensional set of instantaneously fixed ideal lines (⇒ instantaneously isoclinic left rotation). For the special
choice l− = ±ġ0 we get the following oriented lines:

L1 : (l+, l−) = (ġ0, ġ0), L2 : (l+, l−) = (ġ0,−ġ0). (29)

3. ġ∗ = o , ḣ∗: In this case we have an instantaneously isoclinic right rotation. Analogous considerations for the
special choice l+ = ±ḣ0 yield the following oriented lines:

L1 : (l+, l−) = (ḣ0, ḣ0), L2 : (l+, l−) = (ḣ0,−ḣ0). (30)

4. ġ∗ = o = ḣ∗: Each line of the ideal 3-space remains fixed which corresponds to an instantaneous translation or
standstill.

Lemma 2. The angular velocity ω1 (resp. ω2) of the instantaneous rotation about the plane Ω1 (resp. Ω2), whose
orientation is implied by the one of its ideal line L1 (resp. L2) given in Eqs. (28-30), equals ‖ġ∗‖+‖ḣ∗‖ (resp. ‖ġ∗‖−‖ḣ∗‖).

P: We only prove the case ġ∗ , o , ḣ∗ as the isoclinic cases can be done in a similar fashion. We choose a
special coordinate system in a way that

−→
Ω1 equals the positively oriented x0x1-plane and that

−→
Ω2 equals the positively

oriented x2x3-plane. Therefore ġ0 = ḣ0 = i holds.
In order to identify the angular velocity of the rotations about the plane Ω1 we can compute for example the

velocity of the point j as:
ġ∗j − jḣ∗ = ‖ġ∗‖ ġ0 j − jḣ0 ‖ḣ∗‖ =

(
‖ġ∗‖ + ‖ḣ∗‖

)
k. (31)

Otherwise we can consider a continuous rotation of the point j around the plane Ω1 with the rotation angle ϕ(τ) ≥ 0,
which reads as follows according to Section 3.1:(

cos ϕ2 + sin ϕ2 i
)

j
(
cos ϕ2 − sin ϕ2 i

)
= cosϕi + sinϕk.

Differentiation with respect to τ and evaluation at τ = ∗ yields ϕ̇k as ϕ(∗) = 0 holds. Comparing this formula with
Eq. (31) shows that the angular velocity ω1 = ϕ̇ of the instantaneous rotation about the oriented plane

−→
Ω1 equals

‖ġ∗‖ + ‖ḣ∗‖.
Analogue considerations can be done for the point, which is represented by the identity quaternion, with respect

to the plane Ω2. �

5.2.2. Velocity pole and axis-plane
All points of the moving system, which have instantaneously a zero velocity, constitute the so-called velocity

pole.3 Therefore we want to compute the point P with Ṗ⊗∗ = O according to Eq. (24). The solution of this quaternionic
linear equation reads as follows (cf. [15, Section ”General solution to linear problems in quaternion variables”]):

P =
2

ġ∗ġ∗ − ḣ∗ḣ∗

(
ġ∗

˙̃U∗ +
˙̃U∗ḣ∗

)
, (32)

3Note that only the velocity pole has a geometric meaning, as poles of higher derivatives (acceleration/lurch/snap/. . . pole) depend on the
parametrization of the motion.
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if the instantaneous screw is regular.
The singular case implies that ω2 = 0 holds (cf. Lemma 2). If we do not have an instantaneous translation or

standstill, the instantaneous motion is a rotation about a plane, which can additionally be composed with a translation
parallel to this plane. Note that this plane is the axis-space mentioned in the review of known results given in Section
1.2.

In order to fix this axis-plane, we only have to compute one point of it; preferable the footpoint A with respect to
the origin of the fixed frame. In the following we show how this can be done in a pure quaternionic way.

It can easily be checked4 that the ideal points of the directions determined by the following two orthogonal unit-
quaternions:

S =
ḣ0 − ġ0√

2 + ġ0ḣ0 + ḣ0ġ0

, S⊥ =
ġ0ḣ0 + 1√

2 + ġ0ḣ0 + ḣ0ġ0

,

are located on the ideal line L2 of Eq. (28). Therefore we can set:

A = ςS + ς⊥S⊥. (33)

Now we decompose ˙̃U∗ in a component ˙̃U
‖

∗ parallel to Ω1 and a component ˙̃U
⊥

∗ orthogonal to it with

˙̃U
⊥

∗ = 〈
˙̃U∗,S〉S + 〈

˙̃U∗,S⊥〉S⊥.

Then A can be computed as the point, which has zero velocity with respect to the instantaneous screw (ġ∗, ḣ∗, U̇⊥∗ ).
Under consideration that

ġ∗ = ‖ġ∗‖S⊥S̃, ḣ∗ = −‖ḣ∗‖S̃S⊥

hold, which can be checked by direct computations, the corresponding condition (cf. Eq. (24)) can be written as:

‖ġ∗‖S⊥S̃
(
ςS + ς⊥S⊥

)
+

(
ςS + ς⊥S⊥

)
‖ḣ∗‖S̃S⊥ = 2 ˙̃U

⊥

∗

which simplifies to

ω1

(
ςS⊥ + ς⊥S⊥S̃S⊥

)
= 2 ˙̃U

⊥

∗ .

As we have no instantaneous standstill or translation we can divide by ω1. Moreover we multiply by S̃⊥ from the right
side which yields:

ς + ς⊥ġ0 = 2ω−1
1

˙̃U
⊥

∗ S̃⊥.

Decomposition of this equation into the scalar part and pure part according to Eq. (1) implies the desired formulas:

ς = ω−1
1

(
˙̃U
⊥

∗ S̃⊥ + S⊥U̇⊥∗
)
, ς⊥ = −ω−1

1 ġ0

(
˙̃U
⊥

∗ S̃⊥ − S⊥U̇⊥∗
)
. (34)

Now we are able to sum up the results of Section 5.2 within the next theorem.

Theorem 12. For an instantaneous screw $⊗∗ = (ġ∗, ḣ∗, U̇∗) of Definition 1, which differs from the instantaneous
standstill (o, o,O), we can distinguish the following cases, where the oriented planes are given by the triple (l+, l−,L)
according to Section 4.3:

1. $⊗∗ is regular:

(a) ġ∗ , o , ḣ∗: Instantaneously there is a rotation with angular velocities ω1,2 = ‖ġ∗‖ ± ‖ḣ∗‖ about the
total-orthogonal planes (

ġ0,±ḣ0,
1
2 (ġ0P ∓ Pḣ0)

)
with P of Eq. (32) and ġ0 and ḣ0 according to Eq. (27).

4One only has to verify that L given in Eq. (20) equals the zero quaternions.
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(b) ḣ∗ = o: Instantaneously there is an isoclinic left rotation. One pair of total-orthogonal rotation planes
with angular velocities ω1,2 = ‖ġ∗‖ is given by(

ġ0,±ġ0,
1
2 (ġ0P ∓ Pġ0)

)
.

(c) ġ∗ = o: Instantaneously there is an isoclinic right rotation. One pair of total-orthogonal rotation planes
with angular velocities ω1,2 = ±‖ḣ∗‖ is given by(

ḣ0,±ḣ0,
1
2 (ḣ0P ∓ Pḣ0)

)
.

2. $⊗∗ is singular:

(a) ġ∗ = ḣ∗ = o: There is an instantaneous translation given by −2 ˙̃U∗.

(b) ġ∗ , o , ḣ∗ and ˙̃U
‖

∗ = O: Instantaneously there is a rotation with angular velocity ω1 = ‖ġ∗‖+ ‖ḣ∗‖ about
the plane (

ġ0, ḣ0,
1
2 (ġ0A − Aḣ0)

)
(35)

where A is given by Eqs. (33) and (34).

(c) ġ∗ , o , ḣ∗ and ˙̃U
‖

∗ , O: Instantaneously there is a composition of a rotation with angular velocity

ω1 = ‖ġ∗‖ + ‖ḣ∗‖ about the plane given in Eq. (35) and a translation −2 ˙̃U
‖

∗.

Remark 8. If the instantaneous screw $⊗∗ is regular we can define its pitch by ω2
ω1

. As a consequence of a result of
Wunderlich [37, §10] the singular instantaneous screws $⊗∗ can be seen as an extension of the instantaneous screws
of E3 to E4. Therefore we can assign to the singular instantaneous screws the screw parameter of the corresponding
instantaneous screws in E3, which yield for item 2a and item 2b the value ∞ and 0, respectively. For item 2c we get

±2‖ ˙̃U
‖

∗‖ω
−1
1 . �

6. Conclusion

Within this paper we showed that the action of SE(4) on the basic geometric elements in E4 leads to a quaternion-
matrix representation of SE(4). The odd-dimensional elements (oriented hyperplanes, oriented lines) of E4 induce the
representation ∗ 7→ D ∗ D̃

T
(cf. Theorems 8 and 9) and the even-dimensional elements (points, oriented planes) of E4

yield the dual (contragredient) representation as ∗ 7→ D̃
−T
∗ D̃

T
(cf. Theorems 7 and 10) holds. In the latter way also

the instantaneous screws are displaced (cf. Theorem 11), which are studied in detail in Section 5 (cf. Theorems 12).
Finally it should be noted that the algebra of 2 × 2 quaternionic matrices is isomorphic to the Clifford algebra

with signature (1+, 3−, 00), which shows again the difference to the Klawitter-Hagemann construction (cf. Section 2.3)
based on the Spin group of the Clifford algebra with signature (4+, 0−, 10).
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[9] Friedrich, K., Spallek, K.: Kinematik in n-dimensionalen Räumen. BI Wissenschaftsverlag (1993)
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Appendix

Adopted to our notation Theorem 9.1 of Coxeter [6] reads as follows:

Theorem 9.1 of [6]. The general displacement X 7→ EXF̃ is the double rotation through angles α ± β about planes
O, e0 ± f0, 1 ∓ e0f0.

Analogously to Coxeter’s notation of vectors, the order of the above points also imply an orientation for these planes.
Therefore we can set:

M =
e0 + f0

√
2 − e0f0 − f0e0

, M⊥ =
1 − e0f0

√
2 − e0f0 − f0e0

, (36)

and
Q =

e0 − f0
√

2 + e0f0 + f0e0
, Q⊥ =

1 + e0f0
√

2 + e0f0 + f0e0
, (37)

respectively. Moreover with the formulas of N and R given in Eq. (14) with respect to M,M⊥,Q,Q⊥ of Eqs. (36) and
(37), we can compute RQ̃NM̃ and Q̃RM̃N, respectively. We get Ẽ and F̃ instead of E and F (cf. Eq. (11)), which
shows that the orientation of the planes is not correct.
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