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Introduction

Review on self-motions of linear pentapods
Line-symmetric self-motions of linear pentapods
On the line-symmetry of Type 1 & 2 self-motions
On the reality of Type 1 & 2 self-motions

e

Krames’s construction and open problem
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The geometry of a linear pentapod (LP) is
given by the five base anchor points M; in
the fixed system and by the five collinear
platform anchor points m; in the moving
system (for:=1,...,5).

M; and m; are connected with a SPS leg.

If the geometry of the LP is given as well
as the lengths Rq,..., R5, then it has gene-
rically mobility 1, which corresponds to the
rotation about the carrier line p of the five
platform anchor points.
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As this rotational motion is irrelevant for
applications with axial symmetry

e 5-axis milling, e spray-based painting,
e laser cutting, e spot-welding, ...
these robots are of great practical interest.
Definition.
Any additional uncontrollable mobility beside

the rotational motion about p is referred as
self-motion of the LP.
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Self-motions of LPs represent interesting solutions to the still unsolved

Borel-Bricard problem.
Determine and study all displacements of a rigid body in which distinct points of
the body move on spherical paths.

For five collinear points the Borel-Bricard problem was studied by:
e DARBOUX [5] e MANNHEIM [6] e DuPORCQ [7] (see also BricarD [3])

A contemporary and accurate reexamination of these old results, which also takes
the coincidence of platform anchor points into account, was done by NaAwRATIL &
Scuicuo [1] yielding a full classification of LPs with self-motions.
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Beside e architecturally singular LPs (see Corollary 1 of [1])
e LPs with circular translational self-motions (see Theorem 1 of [1])

e LPs with pure rotational self-motions (Designs «, (5, v of [1])

‘ Design « Design (3 Design ~y

there only remain the following designs:
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Under a self-motion each point of the line p has a
spherical (or planar) trajectory.

The locus of the corresponding sphere centers is a

Straight Cubic Circle P.
This is a space curve of degree 3, which intersects

the ideal plane in one real point W and two conju- m \
gate complex points, where the latter ones are the P

cyclic points | and J of a plane orthogonal to the \ 2
direction of W. \

A

The mapping from p to P is named o. \\
9
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The following subcases can be distinguished:
e P is irreducible:

— Type 5 (according to [1]):

o maps the ideal point U of p to W.
— Type 1 (according to [1]):

o maps U to a finite point of P.

e Type 2 (according to [1]):
P splits up into a circle g and a line s, which
is orthogonal to the carrier plane € of q and
intersects g in a point Q. Moreover o maps U

to a point on q \ {Q}.

Advances in Robot Kinematics, June 26-30 2016, Grasse, France

Austrian Science Fund

LLIF



KRAMES [4,10] studied 1-parametric motions obtained by reflecting the moving
system in the generators of a ruled surface (basic surface) of the fixed system.

These so-called line-symmetric motions were also studied by BorreEma & RoTH
[8], who gave an intuitive algebraic characterization in terms of Study parameters

(60 €1 €2 €3¢ f() . fl . fg . fg) fU|fI”Ing v eof() -+ 61f1 + €2f2 + €3f3 = 0.

There always exists a moving frame (in dependence of a given fixed frame) in a way
that eg = fo = 0 holds for a line-symmetric motion. Then (e1 : ex : e3: f1: fo: f3)
are the Pliicker coordinates of the generators of the basic surface.

* Rotational and circular translational self-motions are trivially line-symmettric.
* Self-motions of Type 5 are also line-symmetric (cf. KramEs [4]).

Question.
Can all Type 1 & 2 self-motions of LPs be generated by line-symmetric motions?
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For computations we select special pairs of anchor points (incl. special fixed frame):

| M; eP m; € p Condition Leg Parameter
1| (1:A:0: C’) A#0 | o (My) | Sphere A R,
2 | 1=(0: 1 i:0) o (1) Darboux 2 D2
31J=0:1:—i:0) o t(J) Darboux Q3 D3
4 | W=(0: O :0:1) o (W) | Darboux €y D4
51 ocU)=(1:0:0:0) | U Mannheim II5 D5

The pose of p with respect to moving frame is parametrized as follows:

( CL1:O

as = a, + 1a,
as = @, — 1a,
as € R

m; =n+ (a; —a-)d fori=1,...,4 with < a, € R,a. € R*
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ms5 is the ideal point in direction of the unit-vector d = (dy, ds, d3)?, which obtains
the rational homogeneous parametrization of the unit-sphere, i.e.

di = 2hghy dy = 2hgho dy — hi+h3—h§
= 79 ,.,2.72 — 5 ,,2.572 — 5 02
hg+hi+hs’ hj+hi+hs’ ho+hi+h3

According to [1] the leg-parameters Ri,po,...,ps have to fulfill the following
necessary and sufficient conditions for the self-mobility (over C):

Aasv __ Aagv _ Cayv
(az3—aq)?’ P3 = Tag—ag)?’ P4 = Tas—as)(az—as)’

P2 =
(a2 — as)*(az — aq)” [2wps — vR* — (2w — vayg)as| + vw?(A® + C%) =0, (%)

with v := a9 + a3 — 2a4 and w := asa3 — aZ.

Remark: Due to (x) LPs of Type 1 & 2 have a 1-dim set of self-motions. o
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Main Theorem.
Each self-motion of a LP of Type 1 or 2 can be generated by a 1-dim set of

line-symmetric motions. For the special case p; = a4 = a, this set is even 2-dim.

Corollary: The self-motions of non-architecturally singular LPs are line-symmetric.

Proof: We can discuss Type 1 and Type 2 at the same time, just having in mind
that a4 # 0 # C has to hold for Type 1 and a4 = 0 = C for Type 2 (cf. [1]).

We are looking for the pose of p (determined by n and d) in a way that for the
self-motion e¢g = fy = 0 holds.

W.l.o.g. we can set ey = 0 as any two directions d of p can be transformed into
each other by a half-turn about their enclosed bisecting line. Note that this line is
not uniquely determined if and only if the two directions are antipodal.
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W, s, Q3, 4, 115 are homogeneous quadratic in the Study parameters and especially
linear in fq,..., f3. W.l.o.g. we can solve V¥, {25, Q3, Q4 for fo, f1, fo, f3.

cubic expression F'(eq,es, e3)

quartic expression G(ey, e, e3)

The numerator of { ﬁ) yields a homogeneous {
5

General Case (a4 # a.): The condition G = 0 already expresses the self-motion
as GG equals Ay if we solve (%) for R;.

GG has to split into F' and a homogeneous linear factor L in ey, es, €3.

As L = 0 cannot correspond to a self-motion of the LP (yields contradiction), it
has to arise from the ambiguity in representing a direction of p. As a consequence
we can set L = die; + dses + dses.
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= A: AMLF-G=0

The resulting set of four equations arising from
the coefficients of ejes, ejes, ere3 and eges of

A has the unique solution: A = 2(h3 + h% + h3),

ny = acd27 ng = _acdla ng — (ar—a4)d3. (O)

= A (e% + e% — e%)%h% 4+ h% + h%)[—[ = 0, H = 0 can be solved linearly for ps.
The corresponding graph is illustrated
where H (hg, h1, ho) = 0 is planar quartic curve.  in dependency of hi, hy for hg = 1.

Special Case (a4 = a,): Then (%) implies p5; = a4 = a,. Now G is fulfilled
identically and the self-motion is given by A1 = 0, which is of degree 4 in eq, €5, e3.
Moreover for this special case F' = 0 already holds for n given in (o). []
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We denote real points of p by p; with ¢ € R and coordinate vector p; = n+(t—a,.)d.

As L = 0 corresponds with one configuration of the self-motion, we can compute
the locus &; of p; under the one-parametric set of self-motions by the variation of
(ho : h1 : ho) within L = 0. Due to the mentioned
ambiguity we can select any solution (eg : e1 : e2)
for L = 0 fulfilling €? + €5 +e3 = 1; e.g.:

ho h1 0
61 — 9 62 — — ) 63 — .
2 2 2 2
V hi+ h3 / hi+ h5
Remark: This implies a rational quadratic parame- For hg = 1 the hi- and hs-
trization of &; in dependency of (ho chy hg) & parameter lines are displayed.
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Remark: This approach is also valid for the special case (a4 = a,-) as there always
exists a value for R% in dependency of (hg: hy : hs) in a way that Ay = 0 holds. ©

e For t = a4 all & are ellipsoids of rotation,
which have the same center point P. € P and
axis c of rotation through W (= P,,).

* For a4 # a, the only sphere within the set
of ellipsoids is &..

* For ay = a, no such sphere exists as ¢ = 0o
holds (= P. = Mj5).

o &,, Is a circular disc in the Darboux plane
2z = py centered in P,.
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Remark: The existence of these ellipsoids was already known to Durorcq [7], who
used them to show that the spherical trajectories are quartic space curves. O

Trajectory of p; = intersection cur- This intersection procedure fails Quintic basic surface
ve of £; and sphere ®; around P;. for the trajectories of p. and pg,. (cf. NAWRATIL [13]).
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Based on this geometric property, recovered by line-symmetric motions, we can
formulate the condition for the self-motion to be real as follows:

e M; # P.. We can reduce the problem to a
planar one by intersecting the plane o spanned
by My (= Pg) and ¢ with & and the sphere
with radius R centered in Mj.

There exists an interval Iy =|I_, I, | such that
for Ry € Iy the two resulting conics have at
least two distinct real intersection points. The limits I_ and I, can be com-
= real self-motion & R, € Ip. puted explicitly. Fy,...,F4 are the

pedal points of the ellipse w.r.t. M;.

e My = P.: The interval collapses to the single
value Rl = |CL4|.
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= Any LP of Type 1 & 2 has real self-motions if leg-parameters are chosen properly.

Result of [1].
LPs with self-motions have at least a quartically solvable direct kinematics.

It is possible to use this advantage (closed form solution) of LPs with self-motions
without any risk, by designing LPs of Type 1 & 2, which are guaranteed free of
self-motions within their workspace.

A sufficient condition for that is that (at least) for one of the five legs p;P; of the
LP the corresponding reality interval I; is disjoint with the interval of the maximal
and minimal leg length implied by the mechanical realization.

This condition for a self-motion free workspace gets very simple if p.P.. is this leg.
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Assume that p is in an arbitrary pose of
the self-motion u, where g denotes the
corresponding generator of the basic surface.
Moreover p and P are obtained by the
reflexion of p and P with respect to g.

During 1 the points of P are located on sphe-
res with centers on the line p (cf. Krames [4]).

Remark: A general point of the moving sy-
stem (as well as one of the cubic P) has a
trajectory of degree 6 (cf. NaAwrATIL [13]). ©

P
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Krames's construction yields for each line-symmetric motion of the Main Theorem,
a new solutions for the Borel Bricard problem, with the exception of one special
case where W € p holds, which was already given by BoreL [2].

Remark: For this special case Borel noted that beside p and P only two imaginary
planar cubic curves (€ isotropic planes through p) run on spheres. This also holds
true for a general example (cf. NawraTiL [13]). o

Open problem: Determine all line-symmetric motions of the Main Theorem where
additional real points (beside those of p and P) run on spheres.

Until now the only known examples with this property are the Borel-Bricard Il
motions (cf. HARTMANN [9], KrRAMES [10]).

Remark: References refer to the list of publications given in the presented paper. ¢

Advances in Robot Kinematics, June 26-30 2016, Grasse, France Austrian Science Fund LLIF 20



