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1. Introduction

The geometry of a linear pentapod (LP) is
given by the five base anchor points Mi in
the fixed system and by the five collinear
platform anchor points mi in the moving
system (for i = 1, . . . , 5).

Mi and mi are connected with a SPS leg.

If the geometry of the LP is given as well
as the lengths R1, . . . , R5, then it has gene-
rically mobility 1, which corresponds to the
rotation about the carrier line p of the five
platform anchor points.
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1. Introduction

As this rotational motion is irrelevant for
applications with axial symmetry

• 5-axis milling, • spray-based painting,

• laser cutting, • spot-welding, . . .

these robots are of great practical interest.

Definition.
Any additional uncontrollable mobility beside
the rotational motion about p is referred as
self-motion of the LP.
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2. Review on self-motions of LPs

Self-motions of LPs represent interesting solutions to the still unsolved

Borel-Bricard problem.
Determine and study all displacements of a rigid body in which distinct points of
the body move on spherical paths.

For five collinear points the Borel-Bricard problem was studied by:

• Darboux [5] • Mannheim [6] • Duporcq [7] (see also Bricard [3])

A contemporary and accurate reexamination of these old results, which also takes
the coincidence of platform anchor points into account, was done by Nawratil &

Schicho [1] yielding a full classification of LPs with self-motions.
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2. Review on self-motions of LPs

Beside • architecturally singular LPs (see Corollary 1 of [1])

• LPs with circular translational self-motions (see Theorem 1 of [1])

• LPs with pure rotational self-motions (Designs α, β, γ of [1])

Design αDesign αDesign αDesign αDesign αDesign αDesign αDesign αDesign αDesign αDesign αDesign αDesign αDesign αDesign αDesign αDesign α Design βDesign βDesign βDesign βDesign βDesign βDesign βDesign βDesign βDesign βDesign βDesign βDesign βDesign βDesign βDesign βDesign β Design γDesign γDesign γDesign γDesign γDesign γDesign γDesign γDesign γDesign γDesign γDesign γDesign γDesign γDesign γDesign γDesign γ

there only remain the following designs:
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2. Review on self-motions of LPs

Under a self-motion each point of the line p has a
spherical (or planar) trajectory.

The locus of the corresponding sphere centers is a

Straight Cubic Circle P.
This is a space curve of degree 3, which intersects
the ideal plane in one real point W and two conju-
gate complex points, where the latter ones are the
cyclic points I and J of a plane orthogonal to the
direction of W.

The mapping from p to P is named σ.
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2. Review on self-motions of LPs

The following subcases can be distinguished:

• P is irreducible:

− Type 5 (according to [1]):
σ maps the ideal point U of p to W.

− Type 1 (according to [1]):
σ maps U to a finite point of P.

• Type 2 (according to [1]):
P splits up into a circle q and a line s, which
is orthogonal to the carrier plane ε of q and
intersects q in a point Q. Moreover σ maps U
to a point on q \ {Q}.

σ−1(W)

σ−1(J)

σ−1(I)

p

U I J
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σ(U) P

σ−1(J)
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q

ε
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3. Line-symmetric self-motions of LPs

Krames [4,10] studied 1-parametric motions obtained by reflecting the moving
system in the generators of a ruled surface (basic surface) of the fixed system.

These so-called line-symmetric motions were also studied by Bottema & Roth

[8], who gave an intuitive algebraic characterization in terms of Study parameters
(e0 : e1 : e2 : e3 : f0 : f1 : f2 : f3) fulfilling Ψ : e0f0 + e1f1 + e2f2 + e3f3 = 0.

There always exists a moving frame (in dependence of a given fixed frame) in a way
that e0 = f0 = 0 holds for a line-symmetric motion. Then (e1 : e2 : e3 : f1 : f2 : f3)
are the Plücker coordinates of the generators of the basic surface.

⋆ Rotational and circular translational self-motions are trivially line-symmetric.
⋆ Self-motions of Type 5 are also line-symmetric (cf. Krames [4]).

Question.
Can all Type 1 & 2 self-motions of LPs be generated by line-symmetric motions?
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4. On the line-symmetry of Type 1 & 2 self-motions

For computations we select special pairs of anchor points (incl. special fixed frame):

i Mi ∈ P mi ∈ p Condition Leg Parameter

1 (1 : A : 0 : C) A 6= 0 σ−1(M1) Sphere Λ1 R1

2 I = (0 : 1 : i : 0) σ−1(I) Darboux Ω2 p2
3 J = (0 : 1 : −i : 0) σ−1(J) Darboux Ω3 p3
4 W = (0 : 0 : 0 : 1) σ−1(W) Darboux Ω4 p4
5 σ(U) = (1 : 0 : 0 : 0) U Mannheim Π5 p5

The pose of p with respect to moving frame is parametrized as follows:

mi = n+ (ai − ar)d for i = 1, . . . , 4 with















a1 = 0
a2 = ar + iac
a3 = ar − iac
a4 ∈ R

ar ∈ R, ac ∈ R
∗
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4. On the line-symmetry of Type 1 & 2 self-motions

m5 is the ideal point in direction of the unit-vector d = (d1, d2, d3)
T , which obtains

the rational homogeneous parametrization of the unit-sphere, i.e.

d1 =
2h0h1

h2
0+h2

1+h2
2
, d2 =

2h0h2

h2
0+h2

1+h2
2
, d3 =

h2
1+h2

2−h2
0

h2
0+h2

1+h2
2
.

According to [1] the leg-parameters R1, p2, . . . , p5 have to fulfill the following
necessary and sufficient conditions for the self-mobility (over C):

p2 =
Aa3v

(a3−a4)2
, p3 =

Aa2v

(a2−a4)2
, p4 = − Ca4v

(a2−a4)(a3−a4)
,

(a2 − a4)
2(a3 − a4)

2
[

2wp5 − vR1
2 − (2w − va4)a4

]

+ vw2(A2 + C2) = 0, (⋆)

with v := a2 + a3 − 2a4 and w := a2a3 − a24.

Remark: Due to (⋆) LPs of Type 1 & 2 have a 1-dim set of self-motions. ⋄
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4. On the line-symmetry of Type 1 & 2 self-motions

Main Theorem.
Each self-motion of a LP of Type 1 or 2 can be generated by a 1-dim set of
line-symmetric motions. For the special case p5 = a4 = ar this set is even 2-dim.

Corollary: The self-motions of non-architecturally singular LPs are line-symmetric.

Proof: We can discuss Type 1 and Type 2 at the same time, just having in mind
that a4 6= 0 6= C has to hold for Type 1 and a4 = 0 = C for Type 2 (cf. [1]).

We are looking for the pose of p (determined by n and d) in a way that for the
self-motion e0 = f0 = 0 holds.

W.l.o.g. we can set e0 = 0 as any two directions d of p can be transformed into
each other by a half-turn about their enclosed bisecting line. Note that this line is
not uniquely determined if and only if the two directions are antipodal.
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4. On the line-symmetry of Type 1 & 2 self-motions

Ψ,Ω2,Ω3,Ω4,Π5 are homogeneous quadratic in the Study parameters and especially
linear in f0, . . . , f3. W.l.o.g. we can solve Ψ,Ω2,Ω3,Ω4 for f0, f1, f2, f3.

The numerator of

{

f0
Π5

yields a homogeneous

{

cubic expression F (e1, e2, e3)
quartic expression G(e1, e2, e3)

General Case (a4 6= ar): The condition G = 0 already expresses the self-motion
as G equals Λ1 if we solve (⋆) for R1.

G has to split into F and a homogeneous linear factor L in e1, e2, e3.

As L = 0 cannot correspond to a self-motion of the LP (yields contradiction), it
has to arise from the ambiguity in representing a direction of p. As a consequence
we can set L = d1e1 + d2e2 + d3e3.
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4. On the line-symmetry of Type 1 & 2 self-motions

⇒ ∆ : λLF −G = 0

The resulting set of four equations arising from
the coefficients of e31e2, e

3
1e3, e1e

3
3 and e2e

3
3 of

∆ has the unique solution: λ = 2(h2
0+h2

1+h2
2),

n1 = acd2, n2 = −acd1, n3 = (ar−a4)d3. (◦)

⇒ ∆ : (e21 + e22 + e23)
2(h2

0 + h2
1 + h2

2)H = 0,

where H(h0, h1, h2) = 0 is planar quartic curve.

h2

h1

H = 0 can be solved linearly for p5.

The corresponding graph is illustrated

in dependency of h1, h2 for h0 = 1.

Special Case (a4 = ar): Then (⋆) implies p5 = a4 = ar. Now G is fulfilled
identically and the self-motion is given by Λ1 = 0, which is of degree 4 in e1, e2, e3.
Moreover for this special case F = 0 already holds for n given in (◦). �
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5. On the reality of Type 1 & 2 self-motions

We denote real points of p by pt with t ∈ R and coordinate vector pt = n+(t−ar)d.

As L = 0 corresponds with one configuration of the self-motion, we can compute
the locus Et of pt under the one-parametric set of self-motions by the variation of
(h0 : h1 : h2) within L = 0. Due to the mentioned
ambiguity we can select any solution (e0 : e1 : e2)
for L = 0 fulfilling e21 + e22 + e23 = 1; e.g.:

e1 =
h2

√

h2
1 + h2

2

, e2 = −
h1

√

h2
1 + h2

2

, e3 = 0.

Remark: This implies a rational quadratic parame-
trization of Et in dependency of (h0 : h1 : h2). ⋄

Et

Ec

Ea4

For h0 = 1 the h1- and h2-

parameter lines are displayed.
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5. On the reality of Type 1 & 2 self-motions

Remark: This approach is also valid for the special case (a4 = ar) as there always
exists a value for R2

1 in dependency of (h0 : h1 : h2) in a way that Λ1 = 0 holds. ⋄

• For t 6= a4 all Et are ellipsoids of rotation,
which have the same center point Pc ∈ P and
axis c of rotation through W (= Pa4).

⋆ For a4 6= ar the only sphere within the set
of ellipsoids is Ec.

⋆ For a4 = ar no such sphere exists as c = ∞
holds (⇒ Pc = M5).

• Ea4 is a circular disc in the Darboux plane
z = p4 centered in Pc.

Et

Ec

Ea4

Pt

Pc

P∞

P
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5. On the reality of Type 1 & 2 self-motions

Remark: The existence of these ellipsoids was already known to Duporcq [7], who
used them to show that the spherical trajectories are quartic space curves. ⋄

Et

Φt Pt

Pc

P

Trajectory of pt = intersection cur-

ve of Et and sphere Φt around Pt.

Ec

Ea4

Pc

P

This intersection procedure fails

for the trajectories of pc and pa4.

pc

pa4

pt

p

g

P∞

P

Pt

Pc

Quintic basic surface

(cf. Nawratil [13]).
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5. On the reality of Type 1 & 2 self-motions

Based on this geometric property, recovered by line-symmetric motions, we can
formulate the condition for the self-motion to be real as follows:

• M1 6= Pc: We can reduce the problem to a
planar one by intersecting the plane α spanned
by M1 (= P0) and c with E0 and the sphere
with radius R1 centered in M1.

There exists an interval I0 =]I−, I+[ such that
for R1 ∈ I0 the two resulting conics have at
least two distinct real intersection points.
⇒ real self-motion ⇔ R1 ∈ I0.

• M1 = Pc: The interval collapses to the single
value R1 = |a4|.

M1

F1

F4 F2

F3

Lagrange curve

E0 ∩ α

The limits I− and I+ can be com-

puted explicitly. F1, . . . , F4 are the

pedal points of the ellipse w.r.t. M1.
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5. On the reality of Type 1 & 2 self-motions

⇒ Any LP of Type 1 & 2 has real self-motions if leg-parameters are chosen properly.

Result of [1].
LPs with self-motions have at least a quartically solvable direct kinematics.

It is possible to use this advantage (closed form solution) of LPs with self-motions
without any risk, by designing LPs of Type 1 & 2, which are guaranteed free of
self-motions within their workspace.

A sufficient condition for that is that (at least) for one of the five legs ptPt of the
LP the corresponding reality interval It is disjoint with the interval of the maximal
and minimal leg length implied by the mechanical realization.
This condition for a self-motion free workspace gets very simple if pcPc is this leg.
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6. Krames’s construction and open problem

Assume that p is in an arbitrary pose of
the self-motion µ, where g denotes the
corresponding generator of the basic surface.

Moreover p and P are obtained by the
reflexion of p and P with respect to g.

During µ the points of P are located on sphe-
res with centers on the line p (cf. Krames [4]).

Remark: A general point of the moving sy-
stem (as well as one of the cubic P) has a
trajectory of degree 6 (cf. Nawratil [13]). ⋄

pc

pa4

p

g

P

Pt

Pc

Pc

Pt

P

P∞

P∞

pt

pc
pt

pa4
p
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6. Krames’s construction and open problem

Krames’s construction yields for each line-symmetric motion of the Main Theorem,
a new solutions for the Borel Bricard problem, with the exception of one special
case where W ∈ p holds, which was already given by Borel [2].

Remark: For this special case Borel noted that beside p and P only two imaginary
planar cubic curves (∈ isotropic planes through p) run on spheres. This also holds
true for a general example (cf. Nawratil [13]). ⋄

Open problem: Determine all line-symmetric motions of the Main Theorem where
additional real points (beside those of p and P) run on spheres.
Until now the only known examples with this property are the Borel-Bricard II
motions (cf. Hartmann [9], Krames [10]).

Remark: References refer to the list of publications given in the presented paper. ⋄
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