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An octahedron is called flexible if
its spatial shape can be changed
continuously due to changes of its
dihedral angles only, i.e. every face
remains congruent to itself during
the flex.

All flexible octahedra in E2, where
no two faces coincide permanently
during the flex, were firstly determi-
ned by BRICARD [1].

There are 3 types of these so-called
Bricard octahedra:
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Bricard octahedra of type |

All three pairs of opposite vertices are
symmetric with respect to a line.




Bricard octahedra of type Il Bricard octahedra of type Il
Two pairs of opposite vertices are These octahedra possess two flat poses
symmetric with respect to a plane and can be constructed as follows:

through the remaining two vertices.
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Kokotsakis mesh Stewart Gough platform

A Kokotsakis mesh is a polyhedral A SGP is a parallel manipulator where
structure consisting of a n-sided cen- the platform is connected via three
tral polygon ¥ surrounded by a belt Spherical-Prismatical-Spherical (SPS)
of polygons. legs with the base.
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The relative motions ;1 1/3; between consecutive systems are spherical four-bars.
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Under consideration of ¢; = tan(p;/2) the transmission ¢ — @9 can be written
according to STACHEL [2] as follows: |-

C: ngtitg—|—C20t%—|—C02t§—|—C11t1t2—|—C00 =0

c11 = 4saq 8B # 0,

coo = N1 — K1+ L1 + My,
co2 = N1+ Ky + Ly — My,
coo = N1 — Ky — Ly — My,
co2 = N1+ K1 — Ly + My,

K, = co1 8061801, M, = saqsf1 coy ,
L1 = sa1 ¢31 801, N1 = caqcfBicdy —cyr .
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The transmission between the angles ¢, ©o and ¢3 can be expressed by the two

biquadratic equations:

C . ngt%t% —+ CQOt% —+ C()th + Clltltg + Coo — 0

D . dggt%t% —|— dg()t% —|— dogt% —|— d11t2t3 —|— d()() — O

We eliminate t5 by computing the resultant
of C and D with respect to ¢5. This yields a
biquartic equation X = 0 where X equals:

022t%-+-002
0

d22t§-+-d20
0

c11t1
022t%-+-002

di1ts
doot3 + dag

CQOt%'+'COO
c11t
do2t3 + doo
di1ts
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0
CQOt%'+'COO
0
d02t§-+ doo




In the following we are interested in the conditions the c;;'s and d;;'s have to fulfill
such that X splits up into the product FG.

If at least one of the factors F or G corresponds to the transmission function of a
spherical coupler, i.e. for example

F . fggtitg + fgot% + fozt% + fiitits +fgo = 0 with  fq3 7é 0,

we get a reducible composition with a spherical coupler component.

We denote the coefficients of tit} of Y := FG and X by Y;; and X,;. By the
comparison of these coefficients we get the 13 equations Y;; — X;; = 0 with

(?’7]) E {(47 4)7 (47 2)7 (47 0)7 (37 3)7 (37 1)7 (27 4)7 (27 2)7 (270)7 (]‘7 3)7 (17 1)7 (074)7 (07 2)7 (07 O)} .

This non-linear system of equations was solved explicitly by the resultant method.
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Theorem 1 NawraTIL [3]

If a reducible composition of two spherical four-bar linkages with a spherical coupler
component is given, then it is one of the following cases:

(a) One of the following four cases hold:

cop =Cc22 =0, dog=doa =0, co0=co2=0, dgg=dg=0,

(b) The following algebraic conditions hold for A € R\ {0}:

cooC20 = Adpodp2, C22C02 = Adaadap,
ci; — 4(coocaz + ca0co2) = Ad3, — 4(doodaz + daodo2)],
(c) One of the following two cases hold:

Coo = co2 = dop = do2 =0, dog = dog = cog = c29 = 0,

(d) One of the following two cases hold for A € R\ {0} and B € R:
® cog = Adpa, c22 = Adaa, coa = Bdaa, coo = Bdp2, dog = dag =0,

® doo = Acog, dog = Acaoe, dog = Bceas, dog = Bceag, cog = co2 = 0.
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Spherical isogram

(I) Cop = Co2 = 0 <— ﬁl = (1 and (51 = V1,
which determine a spherical isogram.

(II) Cogp = Copo = 0 <— 61 — 7™ — a7 and
01 = ™ — 1. Note that the couplers of
both isograms have the same movement
because we get item (ii) by replacing I
of item (i) by its antipode.

Remark 1
The cosines of opposite angles in the spherical isograms (of both types) are equal.
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Burmester’s focal mechanism:
A planar composition of two four-bars with a planar coupler component. Due to
WUNDERLICH [4] this composition is characterized by Dixon's angle condition.
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Spherical mechanism of Dixon type

(i)

(ii)

In NAWRATIL & STACHEL [5] it was
shown that the algebraic characterizati-
on of item (b) is equivalent with Dixon's
angle condition. Therefore cy; = —ci)y
holds with xy; = <l10A1B; and Yoy =
<U30B2As.

We get the case cy; = ciy from item
(i) by replacing either I3q or I1g by its
antipode.
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Spherical deltoid
* CQ():COQ:O<:)>041:51 and ﬁlz’yl

By replacing I>g by its antipode, we get the
corresponding mechanism with:
01 =m—aq, f1 =7 — 1 <= ca2 = cz0 =0

*6222602:O<:>Of1:’}/1 andﬁlzdl

By replacing I1g by its antipode, we get the
corresponding mechanism with:
a1 =mT—"71, 01 =7 — 31 <= coo = c20 =0

Remark 2
The cosines of one pair of opposite angles in spherical deltoids are equal.
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Orthogonal spherical four-bars

Both couplers are so-called orthogonal spherical
four-bar mechanisms (cf. STACHEL [2]), as
the diagonals of the spherical quadrangles are
orthogonal.

Moreover, the diagonals Allgo and IQ()BQ
coincide.

Remark 3
Especially, all spherical deltoid are orthogonal.
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The Kokotsakis mesh for n = 3 is flexible if
and only if the transmission of the composition
of the two spherical four-bar linkages C and D
equals the one of the single spherical four-bar
linkage R (= I19l,0B3A3) which meets the
closure condition I, = I3g.

Octahedra where no pair of opposite vertices are
ideal points possess at least one finite face. We
can assume w.l.o.g. that this face is the central
polygon of the Kokotsakis mesh.
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The closure condition I, = I3¢ can only be fulfilled by spherical mechanisms of
Dixon type (ii) and by spherical isograms.

Theorem 2 NAWRATIL [6]

If an octahedron in the projective extension of E3 is flexible, where no pair of
opposite vertices are ideal points, then its spherical image is a composition of
spherical four-bar linkages C, D and ‘R of the following type:

A. C and D, C and R as well as D and R form a spherical mechanism of Dixon
type (ii),

B. C and D form a spherical mechanism of Dixon type (ii) and R is a spherical
iIsogram,

C. C, D (= and R) are spherical isograms.
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Bricard octahedron | Bricard octahedron |l
(cf. KOKOTSAKIS [7]) (cf. KOKOTSAKIS [7])
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Bricard octahedron IlI
(cf. KOKOTSAKIS [7])
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The four faces of the octahedra through the ideal point form a 4-sides prism. Un-
der consideration of t; = tan(y;/2), the input angle 1 and the output angle 5 of a
planar four-bar linkage (= orthogonal
cross section of prism) are related by:

p22t%t%‘|‘p20t%+p02t%+p11t1t2—|—poo =0

P11 — —8ab # O,

peo=(a—b+c+d(a—b—c+d), Lemmal NawraTIL [6]

o = (a+b+ct+d)(atb—ctd), If a red.uable compo.smon of. a planar z.md
a spherical four-bar linkage with a spherical

poz = (a+b+c—d)la+b—c—d), coupler component is given, then the same

poo=(a—b+c—d)(a—b—c—d). conditions as in Theorem 1 are fulfilled.
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Thm 3 NawraTIL [6]
There do not exist fle-
xible octahedra of type
A where only one ver-
tex is an ideal point.

Thm 4 NAWRATIL [6]

Bricard octahedron |l
where one vertex loca-
ted in the plane of sym-
metry is an ideal point.
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Thm 5 NawraTIL [6]
Bricard octahedron Il
where one vertex is an
ideal point (see also
STACHEL [8]).

N



Do there exist flexible octahedra with a finite face X, where one edge or one face
iIs at infinity?

Theorem 6 NawRATIL [9]

There do not exist flexible octahedron of type C with a finite face >y and one edge
or face at infinity.

Based on Theorem 3 we can even generalize this result as follows:

Theorem 7 NAWRATIL [9]

In the projective extension of E? there do not exist flexible octahedra with a finite
face Yo and one edge or face at infinity.
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Theorem 8 NawrATIL [9]

The two pairs of opposite vertices (V1, V) and (Vo, V) are symmetric with respect

to a common line as well as the edges of the prisms through the ideal points V3
and Vg, respectively.

Type A
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Theorem 9 NawraTIL [9]

One pair of opposite vertices (V5, V5) is symmetric with respect to a plane, which
contains the vertices (V3, V). Moreover, also the edges of the prisms through the
ideal points V7 and Vy are symmetric with respect to this plane.

Type B
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Theorem 10 NawrATIL [9]

The vertices Vi, Vs, Vi, V5 are coplanar and form an antiparallelogram and its plane

of symmetry is parallel to the edges of the prisms through the ideal points V3 and
Vi, respectively.

Type B
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Theorem 11 NawrATIL [9]

The vertices Vi, V5, V4, V5 are coplanar and form a parallelogram. The ideal points
V3 and Vg can be chosen arbitrarily.

Type B
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Theorem 12 NawraATiL [9]
This type is characterized by the existence of two flat poses and consists of two

prisms through the ideal points V3 and Vi, where the orthogonal cross sections are
congruent antiparallelograms. The construction can be done as follows:
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Theorem 13 NawrATIL [9]

The vertices Vi, V5, V4, V5 are coplanar and form a deltoid and the edges of the

prisms through the ideal points V3 and Vg are orthogonal to the deltoid’s line of
symmetry.
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Theorem 14 NawrATIL [9]
In the projective extension
of E2 any octahedron is
flexible where at least two
edges are ideal lines but
no face coincides with the
plane at infinity.

There are only two types of
octahedra fulfilling the re-
quirements of theorem 14.
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Va
V3
Vy
Vs
Vi
Va
Ve
Vy
Vs




A TSSM consists of a platform 32, which is connected via three SPR legs with the
base Xy, where the axes r; of the R-joints are coplanar.

Following was shown in NAWRATIL [10]:

Self-motions of TSSMs can only be:

*

b R S D N o

circular translations,

pure rotations,

planar four-bar motions,

spherical four-bar motions,
self-motions of Bricard octahedra,

self-motions of flexible octahedra
with one vertex at infinity.
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A 3 x 3 complex, which is also known as Neunflach, is a Kokotsakis mesh with a

quadrilateral as central polygon.

M denotes as polyhedral mesh with va-
lence 4 composed of planar quadrilaterals.

BOBENKO, HOFFMANN, SCHIEF [11]:
M in general position is flexible <=
all its 3 x 3 complexes are flexible

Application: architectural design of flexi-
ble claddings composed of planar quads.
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A 3 x 3 complex is non-trivially flexible if
and only if the transmission ¢ — 3 can
be decomposed in at least two different
ways into two spherical four-bars.

Stachel’s conjecture
All multiply decomposable compounds of
two spherical four-bars are reducible with
exception of the translatory type and
planar-symmetric type.
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Theorem 15 NawraTiL [12]

If a reducible composition of two spherical four-
bar mechanisms C and D is given, then it is one
of the following cases:

|. One of the quadrangles C or D is an isogram.

[1. C and D form a spherical mechanism of Dixon
type.

[1l. C and D are orthogonal four-bars and the
diagonals A5y and I59Bs coincide.

V. One of the quadrangles C or D is a deltoid.

The work on a complete classification of 3 X 3 complexes is in progress.
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The geometry of a SGP is given by the six
base anchor points M; € >3 and by the six
platform points m; € ..

A SGP is called planar, if Mq,..., Mg are
coplanar and m,;, ..., mg are coplanar.

M, and m; are connected with a SPS leg.

MERLET [13]

A SGP is singular (infinitesimal flexible,
shaky) if and only if the carrier lines of the
six SPS legs belong to a linear line complex.

Habilitationskolloquium, Vienna June 27 2011, Austria



If all P-joints are locked, a SGP is in
general rigid. But, in some special cases the
manipulator can perform an n-parametric
motion (n > 0), which is called self-motion.

Note that in each pose of the self-motion,
the SGP has to be singular. Moreover, all
self-motions of SGPs are solutions to the
famous Borel Bricard problem.

Borel Bricard problem (still unsolved)
Determine and study all displacements of a
rigid body in which distinct points of the
body move on spherical paths.
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SGPs which are singular in every configuration, are called architecturally singular.

Architecturally singular SGPs are well studied:

* For the planar case see ROScHEL & Mick [14],
KARGER [15], NAWRATIL [16], WOHLHART [17].

* For the non-planar case see KARGER [18] and
NAWRATIL [19].

It is well known, that architecturally singular
SGPs possess self-motions in each pose.

Therefore we are only interested in self-motions
of non-architecturally singular SGPs. Only a few
such motions are known.
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According to HUSTY [20], the “sphere constraint” that m; is located on a sphere

with center M; and radius R; can be expressed by a homogeneous quadratic
equation A; in the Study parameters.

Therefore the direct kinematic problem corresponds to the solution of the system
Aq, ..., Ag, ¥ where ¥ denotes the equation of the Study quadric.

If a planar SGP is not architecturally singular, then at least a one-parametric set of
legs A+ can be added without changing the direct kinematics (cf. HUSTY ET AL
[21]) and singularity surface (cf. BORRAS ET AL [22]):

A+:)\1A1—|—...—|—)\6A6
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Moreover, it was shown in HUSTY ET AL [21] that in general the base anchor
points M; as well as the corresponding platform anchor points m; are located on
planar cubic curves C and ¢, which can also split up.

us uj

Uy

Cubic C of the octahedral SGP
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!

Cubic ¢ of the octahedral SGP
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The Darboux constraint that u; moves
in a plane € Xy orthogonal to the
direction of the ideal point U; is a
homogeneous quadratic equation (2,
in the Study parameters (i = 1, 2, 3).
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The Mannheim constraint that a plane
of X orthogonal to u; slides through
the point U; € Xy is a homogeneous
quadratic equation II; in the Study
parameters (j = 4,5,6).




It was shown in NAWRATIL [23], that the system Q1, o, Q3, T4, IT5, I1g is redundant
—> manipulator uq, ..., Ug is architecturally singular.

Moreover, if the underlying SGP is a Bricard octahedron of type |, then uq,..., Ug
has even a two-parametric self-motion (cf. NAWRATIL [23]).

By adding an arbitrary leg A to 1,9, Q3,114,115 we get an one-parametric
self-motion. Further legs A, are determined by:

3 5)
A_|_ p— )\A —|— Z V,,;Qz' —|— Z/L]HJ
1=1 71=4

Habilitationskolloquium, Vienna June 27 2011, Austria é 38



25 Ml
my
8,
201
6,
151
4 ms
10 Ms
2 M
5 uz us
Mg Mo 0 u m1
1
Us M7 Ug ms
0] Uy ]
My
Mges M9
~20 -15 -10 -5 0 5 10 -80 —60 —40 20 0
Remark 4

All self-motions implied by Bricard octahedra of type | are line-symmetric motions.
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This approach can also be applied to general planar SGPs:

Definition 1 NawraTiL [23]
Assume M is a 1l-parametric self-motion of a non-architecturally singular SGP
my,...,Mg. Then M is of type n DM (Darboux Mannheim) if the corresponding

architecturally singular manipulator uq,...,Ug has an n-parametric self-motion U/
(which includes M).

Moreover, it was shown in NAWRATIL [23], that all 1-parametric self-motions

of general planar SGPs (non-architecturally singular) are type | or type Il DM
self-motions.

Based on the Darboux and Mannheim constraints we were able to present a set of
24 equations yielding a type |l DM self-motion.
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Toso = F1[8] F2[18]%, Tsoo = (b2 — b3)* (L1 — g4)° F3[8],
['70 = F[18] Fy4[283], ['710 = (b — b3) (L1 — g4) F5[170],
T620[2054], T602[1646], To60[6126], To62[4916],
T06[5950], I"116[3066], Ts50[4538], Ts10[4512],
T152[6514], T 410[7134], T400[6314], Tou0[7622],
T014[6356], ['5,[6934], T04[7096], I'154[6656],
T06[5950], [450[7166], T 404[5766], [45,[6982].

Based on these 24 equations I';;;, = 0 (in 14 unknowns), we were already able to
compute first results for type |l DM self-motions in NAWRATIL [24], which raise
the hope of giving a complete classification of these self-motions in the future.
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