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Bricard octahedra

An octahedron is called flexible if
its spatial shape can be changed
continuously due to changes of its
dihedral angles only, i.e. every face
remains congruent to itself during
the flex.

All flexible octahedra in E3, where
no two faces coincide permanently
during the flex, were firstly determi-
ned by Bricard [1].

There are 3 types of these so-called
Bricard octahedra:

Bricard octahedra of type I

All three pairs of opposite vertices are
symmetric with respect to a line.
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Bricard octahedra

Bricard octahedra of type II

Two pairs of opposite vertices are
symmetric with respect to a plane
through the remaining two vertices.

Bricard octahedra of type III

These octahedra possess two flat poses
and can be constructed as follows:

Habilitationskolloquium, Vienna June 27 2011, Austria 2



Different points of view

Kokotsakis mesh

Σ0

A Kokotsakis mesh is a polyhedral
structure consisting of a n-sided cen-
tral polygon Σ0 surrounded by a belt
of polygons.

Stewart Gough platform

A SGP is a parallel manipulator where
the platform is connected via three
Spherical-Prismatical-Spherical (SPS)
legs with the base.
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[1a] Motivation
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The relative motions Σi+1/Σi between consecutive systems are spherical four-bars.
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[1a] Transmission by a spherical four-bar mechanism

Under consideration of ti = tan(ϕi/2) the transmission ϕ1 7→ ϕ2 can be written
according to Stachel [2] as follows:

C : c22t
2
1t

2
2+c20t

2
1+c02t

2
2+c11t1t2+c00 = 0

c11 = 4 sα1 sβ1 6= 0,

c00 = N1 −K1 + L1 +M1,

c02 = N1 +K1 + L1 −M1,

c20 = N1 −K1 − L1 −M1,

c22 = N1 +K1 − L1 +M1,

K1 = cα1 sβ1 sδ1 , M1 = sα1 sβ1 cδ1 ,

L1 = sα1 cβ1 sδ1 , N1 = cα1 cβ1 cδ1 − cγ1 .
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[1a] Composition of two spherical four-bar linkages

The transmission between the angles ϕ1, ϕ2 and ϕ3 can be expressed by the two
biquadratic equations:

C : c22t
2
1t

2
2 + c20t

2
1 + c02t

2
2 + c11t1t2 + c00 = 0

D : d22t
2
2t

2
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2
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2
3 + d11t2t3 + d00 = 0

We eliminate t2 by computing the resultant
of C and D with respect to t2. This yields a
biquartic equation X = 0 where X equals:
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[1a] Reducible compositions

In the following we are interested in the conditions the cij’s and dij’s have to fulfill
such that X splits up into the product FG.

If at least one of the factors F or G corresponds to the transmission function of a
spherical coupler, i.e. for example

F : f22t
2
1t

2
3 + f20t

2
1 + f02t

2
3 + f11t1t3 + f00 = 0 with f11 6= 0,

we get a reducible composition with a spherical coupler component.

We denote the coefficients of ti1t
j
3 of Y := FG and X by Yij and Xij. By the

comparison of these coefficients we get the 13 equations Yij −Xij = 0 with

(i, j) ∈ {(4, 4), (4, 2), (4, 0), (3, 3), (3, 1), (2, 4), (2, 2), (2, 0), (1, 3), (1, 1), (0, 4), (0, 2), (0, 0)} .

This non-linear system of equations was solved explicitly by the resultant method.

Habilitationskolloquium, Vienna June 27 2011, Austria 8



Theorem 1 Nawratil [3]

If a reducible composition of two spherical four-bar linkages with a spherical coupler
component is given, then it is one of the following cases:

(a) One of the following four cases hold:

c00 = c22 = 0, d00 = d22 = 0, c20 = c02 = 0, d20 = d02 = 0,

(b) The following algebraic conditions hold for λ ∈ R \ {0}:

c00c20 = λd00d02, c22c02 = λd22d20,

c211 − 4(c00c22 + c20c02) = λ[d2
11 − 4(d00d22 + d20d02)],

(c) One of the following two cases hold:

c22 = c02 = d00 = d02 = 0, d22 = d20 = c00 = c20 = 0,

(d) One of the following two cases hold for A ∈ R \ {0} and B ∈ R:

• c20 = Ad02, c22 = Ad22, c02 = Bd22, c00 = Bd02, d00 = d20 = 0,

• d02 = Ac20, d22 = Ac22, d20 = Bc22, d00 = Bc20, c00 = c02 = 0.
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[1a] Geometric aspects of Theorem 1(a)

Spherical isogram

(i) c00 = c22 = 0 ⇐⇒ β1 = α1 and δ1 = γ1,
which determine a spherical isogram.

(ii) c20 = c02 = 0 ⇐⇒ β1 = π − α1 and
δ1 = π − γ1. Note that the couplers of
both isograms have the same movement
because we get item (ii) by replacing I20
of item (i) by its antipode.
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B1

α1 β1

δ1

γ1

Remark 1
The cosines of opposite angles in the spherical isograms (of both types) are equal.
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[1a] Geometric aspects of Theorem 1(b)
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Burmester’s focal mechanism:
A planar composition of two four-bars with a planar coupler component. Due to
Wunderlich [4] this composition is characterized by Dixon’s angle condition.
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[1a] Geometric aspects of Theorem 1(b)

Spherical mechanism of Dixon type

(i) In Nawratil & Stachel [5] it was
shown that the algebraic characterizati-
on of item (b) is equivalent with Dixon’s
angle condition. Therefore cχ1 = −cψ2

holds with χ1 = ∢I10A1B1 and ψ2 =
∢I30B2A2.

(ii) We get the case cχ1 = cψ2 from item
(i) by replacing either I30 or I10 by its
antipode.

I10
I20

I30

A1

B1

A2

B
2

ϕ1
ϕ2ϕ2

ϕ3

χ1

χ 1
ψ 2

α1

β1

γ1

δ1

α2

β2

γ 2

δ2

Habilitationskolloquium, Vienna June 27 2011, Austria 12



[1a] Geometric aspects of Theorem 1(c)

Spherical deltoid

⋆ c00 = c02 = 0 ⇐⇒ α1 = δ1 and β1 = γ1

By replacing I20 by its antipode, we get the
corresponding mechanism with:
δ1 = π − α1, β1 = π − γ1 ⇐⇒ c22 = c20 = 0

⋆ c22 = c02 = 0 ⇐⇒ α1 = γ1 and β1 = δ1

By replacing I10 by its antipode, we get the
corresponding mechanism with:
α1 = π − γ1, δ1 = π − β1 ⇐⇒ c00 = c20 = 0

I10 I20

A1

B1

γ1

β1
δ1

α1

Remark 2
The cosines of one pair of opposite angles in spherical deltoids are equal.
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[1a] Geometric aspects of Theorem 1(d)

Orthogonal spherical four-bars

Both couplers are so-called orthogonal spherical
four-bar mechanisms (cf. Stachel [2]), as
the diagonals of the spherical quadrangles are
orthogonal.

Moreover, the diagonals A1I20 and I20B2

coincide.

Remark 3
Especially, all spherical deltoid are orthogonal.
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[1b] The closure condition

The Kokotsakis mesh for n = 3 is flexible if
and only if the transmission of the composition
of the two spherical four-bar linkages C and D
equals the one of the single spherical four-bar
linkage R (= I10Ir0B3A3) which meets the
closure condition Ir0 = I30.

Octahedra where no pair of opposite vertices are
ideal points possess at least one finite face. We
can assume w.l.o.g. that this face is the central
polygon of the Kokotsakis mesh.
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[1b] No opposite vertices as ideal points

The closure condition Ir0 = I30 can only be fulfilled by spherical mechanisms of
Dixon type (ii) and by spherical isograms.

Theorem 2 Nawratil [6]

If an octahedron in the projective extension of E3 is flexible, where no pair of
opposite vertices are ideal points, then its spherical image is a composition of
spherical four-bar linkages C, D and R of the following type:

A. C and D, C and R as well as D and R form a spherical mechanism of Dixon
type (ii),

B. C and D form a spherical mechanism of Dixon type (ii) and R is a spherical
isogram,

C. C, D (⇒ and R) are spherical isograms.

Habilitationskolloquium, Vienna June 27 2011, Austria 16



[1b] All vertices are finite

Type A

V1

V2

V3

V5

V6V4

Bricard octahedron I
(cf. Kokotsakis [7])

Type B

V1

V2

V3

V5

V6V4

Bricard octahedron II
(cf. Kokotsakis [7])

Type C

V1

V2

V3

V5

V6V4

Bricard octahedron III
(cf. Kokotsakis [7])
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[1b] Central Triangles with one ideal point

The four faces of the octahedra through the ideal point form a 4-sides prism. Un-
der consideration of ti = tan(ϕi/2), the input angle ϕ1 and the output angle ϕ2 of a

planar four-bar linkage (= orthogonal
cross section of prism) are related by:

p22t
2
1t

2
2+p20t

2
1+p02t

2
2+p11t1t2+p00 = 0

p11 = −8ab 6= 0,

p22 = (a− b+ c + d)(a− b− c+ d),

p20 = (a+ b+ c+ d)(a + b− c + d),

p02 = (a+ b+ c− d)(a+ b− c− d),

p00 = (a− b+ c− d)(a− b− c− d).

ϕ1 ϕ2

a b

d

c

Lemma 1 Nawratil [6]

If a reducible composition of a planar and
a spherical four-bar linkage with a spherical
coupler component is given, then the same
conditions as in Theorem 1 are fulfilled.
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[1b] One vertex is an ideal point

Type A

V1

V2

V3∈ω

V5

V6V4

Thm 3 Nawratil [6]

There do not exist fle-
xible octahedra of type
A where only one ver-
tex is an ideal point.

Type B

V1

V2

V3∈ω

V5

V6V4

Thm 4 Nawratil [6]

Bricard octahedron II
where one vertex loca-
ted in the plane of sym-
metry is an ideal point.

Type C

V1

V2

V3∈ω

V5

V6V4

Thm 5 Nawratil [6]

Bricard octahedron III
where one vertex is an
ideal point (see also
Stachel [8]).
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[1b] Flexible octahedra with edge or face at infinity

Do there exist flexible octahedra with a finite face Σ0, where one edge or one face
is at infinity?

Theorem 6 Nawratil [9]

There do not exist flexible octahedron of type C with a finite face Σ0 and one edge
or face at infinity.

Based on Theorem 3 we can even generalize this result as follows:

Theorem 7 Nawratil [9]

In the projective extension of E3 there do not exist flexible octahedra with a finite
face Σ0 and one edge or face at infinity.
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[1c] One pair of opposite vertices are ideal points

Theorem 8 Nawratil [9]

The two pairs of opposite vertices (V1, V4) and (V2, V5) are symmetric with respect
to a common line as well as the edges of the prisms through the ideal points V3

and V6, respectively.

Type A

V1

V2

V3∈ω

V5

V6∈ωV4

V1

V4

V5

V2
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[1c] One pair of opposite vertices are ideal points

Theorem 9 Nawratil [9]

One pair of opposite vertices (V2, V5) is symmetric with respect to a plane, which
contains the vertices (V3, V6). Moreover, also the edges of the prisms through the
ideal points V1 and V4 are symmetric with respect to this plane.

Type B

V1∈ω

V2

V3

V5

V6
V4∈ω

V3

V6

V2

V5
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[1c] One pair of opposite vertices are ideal points

Theorem 10 Nawratil [9]

The vertices V1, V2, V4, V5 are coplanar and form an antiparallelogram and its plane
of symmetry is parallel to the edges of the prisms through the ideal points V3 and
V6, respectively.

Type B

V1

V2

V3∈ω

V5

V6∈ωV4

V1

V5

V4

V2

Habilitationskolloquium, Vienna June 27 2011, Austria 23



[1c] One pair of opposite vertices are ideal points

Theorem 11 Nawratil [9]

The vertices V1, V2, V4, V5 are coplanar and form a parallelogram. The ideal points
V3 and V6 can be chosen arbitrarily.

Type B

V1

V2

V3∈ω

V5

V6∈ωV4

V2

V4

V5

V1
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[1c] One pair of opposite vertices are ideal points

Theorem 12 Nawratil [9]

This type is characterized by the existence of two flat poses and consists of two
prisms through the ideal points V3 and V6, where the orthogonal cross sections are
congruent antiparallelograms. The construction can be done as follows:

Type C

V1

V2

V3∈ω

V5

V6∈ωV4

V1

V2

V4

V5
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[1c] One pair of opposite vertices are ideal points

Theorem 13 Nawratil [9]

The vertices V1, V2, V4, V5 are coplanar and form a deltoid and the edges of the
prisms through the ideal points V3 and V6 are orthogonal to the deltoid’s line of
symmetry.

Type D

V1

V2

V3∈ω

V5

V6∈ωV4
V2

V4 V5

V1
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[1d] Special cases

Theorem 14 Nawratil [9]

In the projective extension
of E3 any octahedron is
flexible where at least two
edges are ideal lines but
no face coincides with the
plane at infinity.

There are only two types of
octahedra fulfilling the re-
quirements of theorem 14.

V1

V4

V2

V5

V6

V3

V1

V4

V2

V5

V1

V1

V1

V6

V5

V3
V2

V4

V4

V2

V4

Habilitationskolloquium, Vienna June 27 2011, Austria 27



[1d] Application in robotics

A TSSM consists of a platform Σ, which is connected via three SPR legs with the
base Σ0, where the axes ri of the R-joints are coplanar.

Following was shown in Nawratil [10]:

Self-motions of TSSMs can only be:

⋆ circular translations,

⋆ pure rotations,

⋆ planar four-bar motions,

⋆ spherical four-bar motions,

⋆ self-motions of Bricard octahedra,

⋆ self-motions of flexible octahedra

with one vertex at infinity.

ΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣ

Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0
r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1 r3r3r3r3r3r3r3r3r3r3r3r3r3r3r3r3r3

r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2
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[2] Flexible 3 × 3 complexes

A 3 × 3 complex, which is also known as Neunflach, is a Kokotsakis mesh with a
quadrilateral as central polygon.

M denotes as polyhedral mesh with va-
lence 4 composed of planar quadrilaterals.

Bobenko, Hoffmann, Schief [11]:
M in general position is flexible ⇐⇒
all its 3 × 3 complexes are flexible

Application: architectural design of flexi-
ble claddings composed of planar quads.

V1

V2

V3

V4

Σ0

Σ1

Σ2

Σ3

Σ4
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[2a] Stachel’s conjecture

A 3× 3 complex is non-trivially flexible if
and only if the transmission ϕ1 7→ ϕ3 can
be decomposed in at least two different
ways into two spherical four-bars.

Stachel’s conjecture
All multiply decomposable compounds of
two spherical four-bars are reducible with
exception of the translatory type and
planar-symmetric type.

V1

V2

V3

V4

V1

V2V3

V4
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[2b] Classification of reducible compositions

Theorem 15 Nawratil [12]

If a reducible composition of two spherical four-
bar mechanisms C and D is given, then it is one
of the following cases:

I. One of the quadrangles C or D is an isogram.

II. C and D form a spherical mechanism of Dixon
type.

III. C and D are orthogonal four-bars and the
diagonals A1I20 and I20B2 coincide.

IV. One of the quadrangles C or D is a deltoid.

I10

I20
I30

A1 B1

β1

δ2

A2

B2

δ1

α1

α2 β2

γ1

γ2

The work on a complete classification of 3 × 3 complexes is in progress.
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[3] Stewart Gough Platform

The geometry of a SGP is given by the six
base anchor points Mi ∈ Σ0 and by the six
platform points mi ∈ Σ.

A SGP is called planar, if M1, . . . ,M6 are
coplanar and m,1 , . . . ,m6 are coplanar.

Mi and mi are connected with a SPS leg.

Merlet [13]
A SGP is singular (infinitesimal flexible,
shaky) if and only if the carrier lines of the
six SPS legs belong to a linear line complex.

Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0

ΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣ

MiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMi

mimimimimimimimimimimimimimimimimi
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[3a] Self-motions and the Borel Bricard problem

If all P-joints are locked, a SGP is in
general rigid. But, in some special cases the
manipulator can perform an n-parametric
motion (n > 0), which is called self-motion.

Note that in each pose of the self-motion,
the SGP has to be singular. Moreover, all
self-motions of SGPs are solutions to the
famous Borel Bricard problem.

Borel Bricard problem (still unsolved)

Determine and study all displacements of a
rigid body in which distinct points of the
body move on spherical paths.

Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0

ΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣ

MiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMiMi

mimimimimimimimimimimimimimimimimi
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[3a] Architecturally singular SGPs

SGPs which are singular in every configuration, are called architecturally singular.

Architecturally singular SGPs are well studied:

⋆ For the planar case see Röschel & Mick [14],

Karger [15], Nawratil [16], Wohlhart [17].

⋆ For the non-planar case see Karger [18] and

Nawratil [19].

It is well known, that architecturally singular
SGPs possess self-motions in each pose.

Therefore we are only interested in self-motions
of non-architecturally singular SGPs. Only a few
such motions are known.
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[3b] Redundant SGPs

According to Husty [20], the “sphere constraint” that mi is located on a sphere
with center Mi and radius Ri can be expressed by a homogeneous quadratic
equation Λi in the Study parameters.

Therefore the direct kinematic problem corresponds to the solution of the system
Λ1, . . . ,Λ6,Ψ where Ψ denotes the equation of the Study quadric.

If a planar SGP is not architecturally singular, then at least a one-parametric set of
legs Λ+ can be added without changing the direct kinematics (cf. Husty et al

[21]) and singularity surface (cf. Borras et al [22]):

Λ+ = λ1Λ1 + . . .+ λ6Λ6
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[3b] Redundant SGPs

Moreover, it was shown in Husty et al [21] that in general the base anchor
points Mi as well as the corresponding platform anchor points mi are located on
planar cubic curves C and c, which can also split up.

U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2U2

U3U3U3U3U3U3U3U3U3U3U3U3U3U3U3U3U3

U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1

u3u3u3u3u3u3u3u3u3u3u3u3u3u3u3u3u3

u2u2u2u2u2u2u2u2u2u2u2u2u2u2u2u2u2 u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1

Cubic C of the octahedral SGP

U4U4U4U4U4U4U4U4U4U4U4U4U4U4U4U4U4

U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6

U5U5U5U5U5U5U5U5U5U5U5U5U5U5U5U5U5

u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6

u4u4u4u4u4u4u4u4u4u4u4u4u4u4u4u4u4
u5u5u5u5u5u5u5u5u5u5u5u5u5u5u5u5u5

Cubic c of the octahedral SGP
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[3b] Darboux and Mannheim motion

The Darboux constraint that ui moves
in a plane ∈ Σ0 orthogonal to the
direction of the ideal point Ui is a
homogeneous quadratic equation Ωi
in the Study parameters (i = 1, 2, 3).

U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1U1

u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1

The Mannheim constraint that a plane
of Σ orthogonal to uj slides through
the point Uj ∈ Σ0 is a homogeneous
quadratic equation Πj in the Study
parameters (j = 4, 5, 6).

U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6U6

u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6u6
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[3b] Self-motions implied by Bricard octahedra I

It was shown in Nawratil [23], that the system Ω1,Ω2,Ω3,Π4,Π5,Π6 is redundant
=⇒ manipulator u1, . . . ,U6 is architecturally singular.

Moreover, if the underlying SGP is a Bricard octahedron of type I, then u1, . . . ,U6

has even a two-parametric self-motion (cf. Nawratil [23]).

By adding an arbitrary leg Λ to Ω1,Ω2,Ω3,Π4,Π5 we get an one-parametric
self-motion. Further legs Λ+ are determined by:

Λ+ = λΛ +

3∑

i=1

νiΩi +

5∑

j=4

µjΠj.
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[3b] Example
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Remark 4
All self-motions implied by Bricard octahedra of type I are line-symmetric motions.
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[3b] Future research

This approach can also be applied to general planar SGPs:

Definition 1 Nawratil [23]

Assume M is a 1-parametric self-motion of a non-architecturally singular SGP
m1, . . . ,M6. Then M is of type n DM (Darboux Mannheim) if the corresponding
architecturally singular manipulator u1, . . . ,U6 has an n-parametric self-motion U
(which includes M).

Moreover, it was shown in Nawratil [23], that all 1-parametric self-motions
of general planar SGPs (non-architecturally singular) are type I or type II DM
self-motions.

Based on the Darboux and Mannheim constraints we were able to present a set of
24 equations yielding a type II DM self-motion.
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[3b] Future research

Γ080 = F1[8]F2[18]
2
, Γ800 = (b2 − b3)

2
(L1 − g4)

2
F3[8],

Γ170 = F2[18]F4[283], Γ710 = (b2 − b3)(L1 − g4)F5[170],

Γ620[2054], Γ602[1646], Γ260[6126], Γ062[4916],

Γ026[5950], Γ116[3066], Γ530[4538], Γ512[4512],

Γ152[6514], Γ440[7134], Γ422[6314], Γ242[7622],

Γ044[6356], Γ314[6934], Γ224[7096], Γ134[6656],

Γ206[5950], Γ350[7166], Γ404[5766], Γ332[6982].

Based on these 24 equations Γijk = 0 (in 14 unknowns), we were already able to
compute first results for type II DM self-motions in Nawratil [24], which raise
the hope of giving a complete classification of these self-motions in the future.
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