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Abstract. The number of applications of parallel robots, ranging from
medical surgery to astronomy, has increased enormously during the last
decades due to their advantages of high speed, stiffness, accuracy, load/
weight ratio, etc. One of the drawbacks of these parallel robots are their
singular configurations, where the manipulator has at least one uncon-
trollable instantaneous degree of freedom. Furthermore, the actuator
forces can become very large, which may result in a breakdown of the
mechanism. Therefore singularities have to be avoided. As a consequence
the kinematic/robotic community is highly interested in evaluating the
singularity closeness, but a geometric meaningful distance measure be-
tween a given manipulator configuration and the next singular configura-
tion is still missing. We close this gap for parallel manipulators of Stewart
Gough type by introducing such measures. Moreover the favored metric
has a clear physical meaning, which is very important for the acceptance
of this index by mechanical/constructional engineers.
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1 Introduction

Under the term ”parallel manipulators of Stewart Gough (SG) type” we subsume
the following three robot architectures (cf. Fig. 1) within this paper:

(A) Hexapod: The moving platform is connected via six spherical-prismatic-
spherical (SPS) legs with the base. A hexapod is in a singular configuration1

if and only if the six lines l1, . . . , l6 spanned by the centers of corresponding
spherical joints belong to a linear line complex [10].

(B) Linear pentapod: In this case the platform degenerates to a line, which is
connected via five SPS-legs to the fixed base. The linear pentapod is shaky
if and only if the five lines l1, . . . , l5 belong to a congruence of lines.

(C) 3-RPR manipulator: The moving platform is connected via three rotational-
prismatic-rotational (RPR) legs with the base. It is well known that this
planar analogue of the hexapod is infinitesimal movable if and only if the
three lines l1, l2, l3 belong to a pencil of lines.

1Also known as shaky configuration or infinitesimal movable configuration.
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Fig. 1. Sketch of a hexapod (left), linear pentapod (center) and 3-RPR manipulator
(right). For the planar mechanism as well as the spatial mechanical devices the anchor
points of the legs are denoted by Bi (at the base) and Pi (at the platform). For all
three parallel manipulators only the prismatic joints are active.

From the given geometric characterizations of shakiness an algebraic one (i.e. the
equation of the singularity variety) can be obtained over the linear dependence
of the Plücker coordinates of the involved n lines2, which form also the rows
of the manipulator’s Jacobian matrix J. Note that beside this line-geometric
criterion one can also characterize singular poses as multiple solutions of the
direct kinematic problem.

1.1 Review on the closeness to singular configuration

In the following we give a literature review on works dealing with the determi-
nation of the closest singular configuration to a given non-singular one:

• For 3-RPR manipulators the following two approaches has to be mentioned:
⋆ Li et al [8] determined singularity-free zone around a non-singular configu-
ration as follows: They parametrized the 3-dimensional configuration space
by x, y, ζ, where x, y are the two position variables and ζ the orientation
angle. Then point (x, y, ζ) of the singularity variety which minimizes the
function

d := (x− x0)
2 + (y − y0)

2 (1)

where (x0, y0) corresponds with the position of the given non-singular config-
uration. Note that the orientation of the given configuration is not taken into
account thus

√
d is the radius of the circular directrix centered in (x0, y0)

of the ”singularity-free cylinder”. This concept was also used in [1].
⋆ Zein et al [20] presented a procedure for the determination of a maximal
singularity-free cube in the joint space centered in (ρ1, ρ2, ρ3), where ρi is
the length of the i-th leg in the given non-singular configuration. But the
edge length e of this cube is not very well suited as a closeness index due to

2Note that in the context of hexapods n = 6 holds and that we have n = 5 and
n = 3 for linear pentapods and 3-RPR manipulators, respectively.
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the fact that the mapping from the configuration space to the joint space
is 6 to 1 (cf. [4]). As in general not all six configurations, which correspond
to a point on the singularity variety in the joint space, are singular ones, it
can be the case that even in a non-singular configuration e equals zero.

• For hexapods Li et al [9] computed the ”maximally singularity-free hyper-
sphere” around a non-singular configuration as follows: They parametrized
the 6-dimensional configuration space by x, y, z, θ, ϕ, ψ, where x, y, z are the
three position variables and θ, ϕ, ψ the Euler angles representing the orienta-
tion. Then the authors of [9] are looking for the point (x, y, z, θ, ϕ, ψ) of the
singularity variety which minimizes the function

D :=W
[

(x− x0)
2 + (y − y0)

2 + (z − z0)
2
]

+

(1−W )
[

(tan θ
2
− tan θ0

2
)2 + (tan ϕ

2
− tan ϕ0

2
)2 + (tan ψ

2
− tan ψ0

2
)2
]

where (x0, y0, z0, θ0, ϕ0, ψ0) corresponds with the given non-singular configura-
tion andW ∈ [0, 1] is a weighting coefficient, which can be used by the designer
to ”favour either the position workspace or the orientation workspace”.
Li, Gosselin and Richard were aware of the drawbacks of their objective func-
tion [9, page 500]: ”. . . the above formulation poses the problem of defining a
distance in the 6-D workspace in order to find the ’closest’ point on the singu-
larity manifold. Clearly, an Euclidean distance cannot be defined in this space
since it is composed of mixed dimensions (position coordinates and orientation
coordinates). Therefore, the above index D cannot be called a distance in the
mathematical sense of the term and the singularity-free region obtained cannot
properly speaking be termed a hyper-sphere.”

Computing the distance to the next singularity for fixed orientation [9, 5]
and position [9, 13], respectively, are further concepts known in kinematics but
from these two separated informations no conclusion about the closeness to the
next singular configuration within the n-dimensional configuration space can be
drawn. Thus the question of a suitable distance function arises.

2 Distance function

It is well known (cf. Park [16] and Murray et al [12, page 427]), that there
does not exist a bi-invariant3 (positive-definite) metric on SE(3). Therefore it
is not possible to define a geometric meaningful distance between two poses,
which reasons the following statement in [11, page 275]: ”Measuring closeness
between a pose and a singular configuration is a difficult problem: there exists
no mathematical metric defining the distance between a prescribed pose and a
given singular pose. Hence, a certain level of arbitrariness must be accepted in
the definition of the distance to a singularity . . . ”

3A metric is called bi-invariant if it is invariant with respect to changes of the fixed
frame (left invariant) and the moving frame (right invariant), respectively.
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Fig. 2. A linear pentapod in the given (green) configuration and the closest singularity
(red). The yellow configuration is the closest singularity under equiform motions.

Due to Park [16], there is an approach to come up with a geometric mean-
ingful distance function, as he mentioned an alternative to distance metrics on
SE(3) by changing the point of view as follows: One can consider the distance
between two poses of the same rigid body, which yields so-called object depended
metrics firstly studied by Kazerounian and Rastegar [6].

As the moving platform has n exceptionally points (i.e. platform anchor
points) it suggests itself to measure the distance between two poses of the moving
platform (given pose Pi and transformed pose P

α
i ) by the distance measure

dn :=

√

√

√

√

1

n

n
∑

i=1

〈Pαi − Pi,Pαi − Pi〉 (2)

where 〈 , 〉 denotes the standard scalar product and α ∈ SE(3). A similar metric
was introduced by Pottmann et al [17] within the context of motion design,
which was also used by the author [14, Section 2] or Schröcker and Weber [19].

The considerations, done in this section so far, do not only hold for the
configuration space SE(3) of hexapods, but also for the configuration space SE(2)
of 3-RPR manipulators as well as the set of oriented line elements of R3, which
is the configuration space of linear pentapods (cf. [15]).

2.1 Singularity distance

The distance function of Eq. (2) has been used by Rasoulzadeh and Nawratil
[18] to compute the distance of linear pentapods to the next singularity (cf. Fig.
2). It turns out that the determination of the pedal points on the singularity
variety with respect to the given configuration is an algebraic problem of degree
80, which can be relaxed by allowing α ∈ equiform motion group4. Then the

4The composition of Euclidean displacements and uniform scalings yields the group
of equiform transformations.
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degree drops to 28 and the corresponding solution is also drawn in Fig. 2. As
the obtained distance of the relaxed problem is less or equal the distance of the
original problem, it can be used as the radius of a hypersphere, which is guaran-
teed singularity-free. These results motivate the following systematic procedure
for defining distance measures for parallel manipulators of SG type.

(A) For hexapods the set of transformations (α belongs to) can be extended
step by step from the Euclidean group to

⋆ equiform transformations
⋆ affine transformations
⋆ projective transformations
⋆ general transformations which denote the mapping Pi 7→ P

α
i for i = 1, . . . , n.

The distance measure given in Eq. (2) has the following drawback: Assume we
compute the distance p of a given configuration to the closest singularity in the
sense of Eq. (2). Then we change our point of view by considering the platform
as fixed and the base as moving part (i.e. platform and base are changing their
roll) and compute again the distance to the next singularity according to Eq.
(2). We get a second distance b which differs from p in the general case. This
circumstance is less satisfactory from the geometric point of view.

Clearly, an ad hoc solution of this point of criticism would be (b + p)/2.
Another more sophisticated approach is based on the idea to transform base
and platform anchor points simultaneously and use the distance function

Dn :=

√

√

√

√

1

2n

n
∑

i=1

[

〈Pαi − Pi,Pαi − Pi〉+ 〈Bβi − Bi,B
β
i − Bi〉

]

(3)

where B
β
i denote the transformed base points by the base transformation β.

Remark 1. Alternatively one can consider the shape space (e.g. [7]) of the n
oriented line segments PiBi. Then Dn is a metric on this shape space, which is
implied by the distance function between oriented line segments PiBi and P

α
i B

β
i

given in [15, Section 4.2]. From this point of view one can also use the distance

function between oriented line segments BiPi and P
α
i B

β
i introduced by Chen and

Pottmann [3]5, which results in the following metric
√

√

√

√
1

3n

[

n
∑

i=1

〈Pαi − Pi,Pαi − Pi〉+ 〈Bβi − Bi,B
β
i − Bi〉+ 〈Pαi − Pi,B

β
i − Bi〉

]

(4)

on the mentioned shape space. But this metric does not fit with the kinematic
reasoning of a singularity, as a singular configuration only depends on the pose of
the base points and platform points but not on the leg itself; i.e. the connection
between the two spherical joints has not to be a straight line segment but can
have an arbitrary shape. ⋄

5This distance metric equals the square root of the mean of the squared distances
of corresponding points over the entire line-segment (see also [15, Section 4.1]).
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Then the singularity distance equals the minimizer of Dn under the side con-
dition that the configuration of n lines [Pαi ,B

β
i ] is singular. Clearly, the obtained

singularity distance depends on the set (Euclidean, equiform, affine, projective or
general transformation) both transformations α and β belong to. These singu-
larity distances decrease (or remain unchanged) with respect to every extension
step of the transformation set. Therefore all of them can be used as radius of a
hypersphere, which is guaranteed singularity-free.

Let Gn denote the minimizer of Eq. (3), where the platform and the base
transformations are both general ones. Due to the following important physi-
cal interpretation we favor this singularity distance Gn over all others possible
singularity distances mentioned in this section.

Theorem 1. If the radial clearance of the 2n passive joints is smaller than Gn
then the parallel manipulator is guaranteed to be not in a singular configuration.

Remark 2. The set of affine/projective/general transformations equipped with
the metric dn is an Euclidean space, thus in these three cases dn is a geodesic
distance. In contrast the embedding of the group of Euclidean/equiform trans-
formations into the group of affine transformations yields a curved space C, thus
in these two cases dn does not give the geodesic distance with respect to C (it
gives the geodesic distance in the ambient space).

The same considerations hold for the metric Dn and the involved transfor-
mations α and β (belonging to the same set of transformations). ⋄

(B) For linear pentapods the singular distance G5 can be defined as above for
n = 5 and Theorem 1 holds too. Note that in this case the general transformation
of the base is a projectivity if the base is non-planar. Moreover, euqiform and
affine transformations affect the linear platform in the same way.

(C) For 3-RPR manipulators the singular distance G3 can be defined as
above for n = 3 and Theorem 1 holds too. In this case the general transformation
of the base/platform is an affinity if the base/platform points are not collinear.
Note that in context of Remark 2 planar equiform transformations imply geodesic
distances (in contrast to the spatial case).

3 Results

The presented singularity distances are demonstrated on the basis of a 3-RPR
manipulator as it is very well-suited for a graphical representation. The coordi-
nates of the base/platform points with respect to the fixed/moving frame are:

B1 = P1 = (0, 0)T , B2 = (11, 0)T , B3 = (5, 7)T , P2 = (3, 0)T , P3 = (1, 2)T .

We consider the following one-parametric motion with parameter ϕ ∈ [0, 2π[:

Pi 7→
(

cosϕ − sinϕ
sinϕ cosϕ

)

Pi +
1

2

(

11− 6 sinϕ
3− 3 cosϕ

)

. (5)
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For this 3-RPR manipulator we can extend the planar Euclidean motion
group SE(2) only in the following two steps:

⋆ planar equiform motion group
⋆ group of planar affine transformations

We denote the singularity distance with respect to SE(2) and d3 (resp. D3) by
s3 (resp. S3). Moreover we denote the singularity distance with respect to the
equiform motion group and d3 (resp. D3) by e3 (resp. E3). Finally the singularity
distance with respect to the affine motion group and d3 (resp. D3) is denoted by
g3 (resp. G3). This notation is summarized in the following table:

Euclidean group Equiform group Affine group

d3 s3 e3 g3
D3 S3 E3 G3

The constrained optimization problem is solved by the Lagrange approach.
For its formulation we use the following notation:

P
α
i = (xi, yi)

T
B
β
i = (Xi, Yi)

T (6)

If α and β are affine transformations then we have i = 1, 2, 3. For an equiform
transformation we set i = 1, 2 and

P
α
3
= P

α
1
+
(−−−→
P
α
1
P
α
2

−−−→
P
α
1
P
α
2

⊥

)

−−−→
P1P3

P1P2

B
β
3
= B

β
1
+

(−−−→
B
β
1
B
β
2

−−−→
B
β
1
B
β
2

⊥

) −−−→
B1B3

B1B2

(7)

where the ⊥ sign indicates the rotation of the vector by 90◦. Then the Lagrange
function L for the computation of e3, g3 and E3, G3, respectively, can be written
as

L : d2
3
− λV3 = 0 L : D2

3
− λV3 = 0 (8)

where V3 denotes the algebraic condition that the three legs of the transformed
3-RPR manipulator belong to a pencil of lines. If we add the conditions

M : Pα
1
Pα
2

2 − P1P2

2

= 0 N : B
β
1
B
β
2

2

− B1B2

2

= 0 (9)

to the ansatz of Eq. (7), we end up with Euclidean displacements. Thus the
Lagrange function L for computing s3 and S3, respectively, can be formulated
as

L : d2
3
− λV3 − µM = 0 L : D2

3
− λV3 − µM − νN = 0 (10)

In the following table the number u of unknowns (incl. the Lagrange multipliers)
within the Lagrange function L are given:

singularity distance s3 e3 g3 S3 E3 G3

u 6 5 7 11 9 13
# local extrema 32 19 22 88 34 50
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Fig. 3. For reasons of layout we rotated the four figures by 90◦. The dots indicate the
pose of the platform points and the end points of the attached lines correspond to
the platform points of the closest singular configuration in the sense of (a) s3, (b) e3
and (c) g3. In (d) the closest singular configuration with respect to G3 is visualized.
In the end-points of the attached lines we added orthogonal arrows indicating the
direction of the leg in the closest singular configuration. The pedal points on these legs
with respect to the corresponding base points Bi equal the base points of the closest
singular configuration.
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Fig. 4. Comparison of the singularity distances computed for the 3-RPR manipulator.

The system of u partial derivatives Li (i = 1, . . . , u) of L is solved using the
Gröbner base method. For the case of G3 the pseudo Maple code reads e.g. as:

[> B := Basis([L1, . . . , L13], tdeg(λ, x1, y1, X1, Y1, . . . x3, y3, X3, Y3)) :

[> E := Basis([op(B)], plex(λ, x1, y1, X1, Y1, . . . x3, y3, X3, Y3)) :

The degree of the univariate polynomial (given by E[1] in the Maple code) equals
the number of local extrema over C listed in the table above. Within this set of
local extrema we pick out the one causing the smallest singularity distance.

For the illustration given in Fig. 3 the motion of Eq. (5) is discretized into
90 poses, where two of them are singular ones. In these two poses the legs
are displayed in yellow and magenta, respectively. One has to point out the
discontinuity of the closest singular pose in Fig. 3 (a,b), which is caused by
passing through the cut locus6 of the singularity variety.

A comparison of all proposed singularity distances is displayed in Fig. 4. In
this context it should be noted that the replacement of 1

n
by 1

2n
in Eq. (2) for the

computation of s3, e3, g3 yields also an upper bound of S3, E3, G3, respectively.

4 Conclusion and future research

We presented measures for evaluating the distance of a parallel manipulator of
SG type to the next singularity and demonstrated them based on the 3-RPR
manipulator. For the case of hexapods and linear pentapods the computation
of the local extrema of the Lagrange function is in general no longer doable by
Gröbner base method (due to the degree and number of unknowns). Therefore
our future studies will use the homotopy continuation method (e.g. Bertini

[2]). Clearly the proposed distance functions can also be adopted for redundant
designs or other mechanisms (e.g. spherical 3-RPR manipulator).

Acknowledgments. The author is supported by Grant No. P 30855-N32 of
the Austrian Science Fund FWF.

6The cut locus consists of all poses with more than one closest singular configuration
with respect to the used distance function.
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