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Abstract. There exists a bijection between the configuration space of a linear
pentapod and all points (u,v,w, px, py, pz) ∈ R6 located on the singular quadric
Γ : u2 +v2 +w2 = 1, where (u,v,w) determines the orientation of the linear plat-
form and (px, py, pz) its position. Then the set of all singular robot configurations
is obtained by intersecting Γ with a cubic hypersurface Σ in R6, which is only
quadratic in the orientation variables and position variables, respectively. This ar-
ticle investigates the restrictions to be imposed on the design of this mechanism
in order to obtain a reduction in degree. In detail we study the cases where Σ is
(1) linear in position variables, (2) linear in orientation variables and (3) quadratic
in total. Finally we propose three kinematically redundant designs of linear pen-
tapods with a simple singularity surface.
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1 Introduction and Review

A linear pentapod is defined as a five degree-of-freedom (DOF) line-body component
of a Gough-Stewart platform consisting of a linear motion platform ` with five identical
spherical-prismatic-spherical (SPS) legs, where the prismatic joints are active and the
rest are passive [1]. The pose of ` is uniquely determined by a position vector p ∈
R3 and an orientation given by a unit-vector i ∈ R3. The coordinate vector m j of the
platform anchor point m j of the j-th leg is defined by the equation m j = p+ r ji with
r j ∈ R and the base anchor points M j of the j-th leg has coordinates M j = (x j,y j,z j)

T

for j = 1, . . . ,5. In the following we list the results relevan It turns out that this kind
of manipulator is an interesting alternative to serial robots handling axis-symmetric
tools. The singularity analysis of linear pentapods, which are interesting alternatives
to serial robots handling axis-symmetric tools, has undergone an acceptable level of
investigations over the past few years. In the following sum up the relevant results for
the paper at hand:

There exists a bijection between the configuration space of a linear pentapod and
all points (u,v,w, px, py, pz) ∈ R6 located on the singular quadric Γ : u2 + v2 +w2 = 1,
where (u,v,w) determines the orientation of the linear platform ` and (px, py, pz) its po-
sition. Then the set of all singular robot configurations is obtained as the intersection of
Γ with a cubic hypersurface Σ of R6, which can be written as Σ : det(S) = 0 (according
to [2]), which from now on will be called singularity polynomial, with
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S =



1 u v w px py pz
0 px py pz 0 0 0
0 0 0 0 u v w
r2 x2 y2 z2 r2x2 r2y2 r2z2
...

...
...

...
...

...
...

r5 x5 y5 z5 r5x5 r5y5 r5z5


. (1)

under the assumption that x1 = y1 = z1 = r1 = 0. Note that this assumption can always
be made without loss of generality as the fixed/moving frame can always be chosen in
a way that the first base/platform anchor point is its origin.

Remark 1. Until now the relation between the 7× 7 matrix S and the five 6-tuples of
homogenous Plücker coordinates implied by the legs of the linear pentapod is not well
explained in the literature (cf. [3], [4] and [5]). For the interested reader this gap is
closed in the Appendix. �

A further well-studied field within the singularity analysis of linear pentapods are
designs, which are singular in any configuration. These so-called architecture singular
designs are completely classified in [6, Section 1.3]. Finally it should be noted, that
Borràs and Thomas have studied how to move the leg attachments in the base and the
platform of 5-SPS linear pentapod without altering the robot’s singularity locus (for a
planar base see [5] and for a non-planar one see [2]).

1.1 Motivation and outline

Using a parallel manipulator with a simple singularity variety (with respect to the po-
sition variables) was first proposed by Karger [7] for the case of Stewart-Gough plat-
forms1. This work was furthered in [8] and [9], where the necessary conditions for the
design of Stewart-Gough platforms with linear or quadratic singularity surface with
respect to positioning variables are determined.

It can easily be seen that the equation of the cubic hypersurface Σ is only quadratic
in position as well as in orientation variables. Therefore the intention here is to find
necessary conditions for the linear pentapods such that det(S) = 0 is:

• linear in position variables (cf. Section 2.1),
• linear in orientation variables (cf. Section 2.2),
• quadratic in total (cf. Section 2.3).

Clearly, due to the degree reduction it becomes easier to obtain closed form informa-
tion about singular poses. But the main motivation for our research is the computational
simplification of singularity-free zones (cf. [10]). The designs computed in Section 2
imply a degree reduction of the polynomials associated with the problem of determining
singularity-free zones and even lead to singularity distances computable in closed form

1For Stewart-Gough platforms the singularity loci is in general cubic in the position variables.
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[10], which offers interesting new concepts and strategies concerning path optimization
[11] and singularity avoidance. In the latter context we propose three kinematic redun-
dant linear pentapods with a simplified singularity variety (cf. Section 3) as the optimal
reconfiguration of the base (regarding the distance from the singularity) can easily be
obtained by the closed form solution.

1.2 Notation and preparatory work

The following notations are used in the rest of the paper:

• The compact notations X=(x2,x3,x4,x5)
T , Y=(y2,y3,y4,y5)

T , Z=(z2,z3,z4,z5)
T

are introduced for the coordinates related to base anchor points.
• The compact notation r = (r2,r3,r4,r5)

T is used for the coordinates related to plat-
form anchor points.

• The component-wise product of two vectors is given as rX=(r2x2,r3x3,r4x4,r5x5)
T

and rY as well as rZ are defined analogously.
• For the sake of simplicity in notation as well as interpretation, we use the bracket:

[A1,A2,A3,A4] = det(A1,A2,A3,A4) with Ai ∈ {r,X,Y,Z,rX,rY,rZ}. (2)

It is noteworthy that in the coming sections, the Roman letters inside the bracket
are interpreted as points in projective space while the bold letters denote the corre-
sponding homogeneous coordinates expressed as a vector.

A linear pentapod is an architecturally singular manipulator if for every position
and orientation, the matrix of det(S) (cf. [3]) becomes rank deficient. By defining the
architecture matrix of linear pentapods, namely:

A =
(

r, X, Y, Z, rX, rY, rZ
)
. (3)

we can identify such singularities by considering the rank deficiency of this matrix
(obtained from the last four rows of the matrix S, cf. [3]).

Lemma 1. If the “architecture matrix" is rank deficient then the linear pentapod is an
“architecturally singular manipulator" (cf.[4]).

Since in computational kinematics most of the computations are of symbolic type,
and naturally expensive in the sense of time consumption, it will be highly favourable
if we are able to eliminate some extra symbols. The following lemma shows that it is
possible to alleviate the burden of extra symbols in computations to come:

Lemma 2. If the linear pentapod is not architecturally singular then there exists a
triple of base points Mi, M j and Mk which form a triangle and mi 6= m j holds.

Proof. For the proof please see [12].

Based on this lemma one can assume M1 = (0,0,0), M2 = (x2,0,0) and M3 =
(x3,y3,0) where x2y3 6= 0. Moreover due to m1 6= m2 we can assume a scaling upon
which, r2 = 1 holds. The following Lemma would give us a geometric intuition of the
coming algebraic computations in the later sections:

Lemma 3. The “architecture matrix" is rank deficient iff the points r, X, Y, Z, rX, rY
and rZ are coplanar in PR3.
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2 Simple singularity variety

2.1 Linear in px, py and pz

For the determination of all non-architectural singular designs, where the singularity
polynomial det(S) = 0 is only linear in position variables, we distinguish between linear
pentapods with/without coplanar base anchor points (planar/non-planar case).

Planar case Assume that the manipulator is planar (z4 = z5 = 0). The desired goal is
that all terms containing position variables of degree two should vanish. These terms
form a polynomial, which we call the undesired polynomial through the remainder of
the article. Here the undesired polynomial is as follows:

det
(

S 4,7
1,2

)
p2

z +det
(

S 4,5
1,2

)
px pz−det

(
S 4,6

1,2

)
py pz = 0. (4)

If Eq. (4) is fulfilled independently of the position variables then all the coefficients
have to be zero. Based on the resulting conditions one can prove the following theorem:

Theorem 1. A non-architecturally singular linear pentapod with a planar base has a
singularity polynomial linear in position variables, iff there is a singular affine mapping
κ from the base plane to the platform line ` with Mi 7→ mi for i = 1, . . . ,5.

Proof. Using Laplace expansion by minors, det
(

S 4,7
1,2

)
is:

[r,X,Y, rX]v− [r,X,Y, rY]u = 0. (5)

For all possible orientations, Eq. (5) holds whenever both bracket coefficients vanish.
Again by considering the Laplace expansion by minors for det

(
S 4,5

1,2

)
and det

(
S 4,6

1,2

)
respectively, one obtains:

[r,X,Y, rY]w = [r,X,Y, rX]u = 0. (6)

As it is also desired to have these equations vanished for all possible orientations, the
bracket coefficients should be equal to zero simultaneously. Hence, independently of all
possible orientations, the following statement holds:

det
(

S 4,7
1,2

)
vanishes⇐⇒ det

(
S 4,5

1,2

)
and det

(
S 4,6

1,2

)
vanish. (7)

Finally, based on Eq. (7) the necessary and sufficient condition for having a singularity
polynomial linear in position variables will be:

[r,X,Y, rY] = [r,X,Y, rX] = 0. (8)

Using the literature of bracket algebra available at [13], [14] these brackets vanish
whenever the four points characterizing them are coplanar. We denote the planes associ-
ated with the two brackets of Eq. (8)-left and Eq. (8)-right by P1 and P2, respectively.
Then the following two cases have to be distinguished:
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1. If the points r, X and Y are not collinear (or in other words if the vectors r, X and
Y are linearly independent) then the linear pentapod would be an architecturally
singular manipulator since geometrically, by Lemma 3 this is equivalent to having
the planes P1 and P2 coincident.

2. If the points r, X and Y are collinear (or in other words if the vectors r, X and Y are
linearly dependent) then r ∈ span{X,Y}; i.e.

r = α.X+β .Y with α,β ∈ R. (9)

This results the affine coupling κ mentioned in Theorem 1, namely:

κ : (xi,yi) 7−→ ri = αxi +βyi with α = 1
x2

and i = 2, . . . ,5. (10)

Note that the planes P1 and P2 do not necessarily coincide in this case.

Non-planar case For this case we can only prove (cf. [12]) the following theorem:

Theorem 2. Non-architecturally singular linear pentapods with a non-planar base
possessing a singularity polynomial, linear in position variables do not exist.

In total the results of Section 2.1 show that the manipulator given in Theorem 1
is the only one with a singularity variety linear in position variables. This manipulator
design was already known to the authors of [5]2, who also pointed out that the forward
kinematics of these pentapods can be solved quadratically.

2.2 Linear in u, v and w

In this section we determine all non-architecturally singular designs where the singular-
ity polynomial det(S) = 0 is only linear in orientation variables. As in Section 2.1 we
distinguish between linear pentapods with planar and non-planar bases.

Planar case Under the planar condition (z4 = z5 = 0) the undesired polynomial is:[
det
(

S 3,7
1,3

)
+det

(
S 4,6

1,3

)]
vw+

[
det
(

S 2,7
1,3

)
−det

(
S 4,5

1,3

)]
uw+

det
(

S 2,6
1,3

)
uv−det

(
S 4,7

1,3

)
w2 = 0. (11)

Theorem 3. A non-architecturally singular linear pentapod with a planar base has a
singularity polynomial linear in orientation variables in the following cases (using a
combinatorial classification):

1. M2, M3, M4, M5 are collinear,
2. m1 = mi and M j, Mk, Ml are collinear with pairwise distinct i, j,k, l ∈ {2,3,4,5},
3. m1 = mi = m j with pairwise distinct i, j ∈ {2,3,4,5}.

2Note that Theorems 1 and 2 cannot be concluded from [5], as the authors restricted to the
planar case with no four anchor points aligned.
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Fig. 1. Three possible designs mentioned in Theorem 3. It can be shown by a series of ∆ -
transforms [15], that the singularity loci of all the three combinatorial cases are identical.

Proof. Eq. (11), independently of the orientation variables, gives det
(

S 4,7
1,3

)
= 0. Once

again, by resorting to the literature of brackets, det
(

S 4,7
1,3

)
= 0 if and only if the follow-

ing holds:
[r,Y, rX, rY] = [r,X, rX, rY] = 0. (12)

Now, name the plane characterized by the points r, rX and rY as P . If the points r, rX
and rY are not collinear then the plane P is defined uniquely and hence by Eq. (12) X
and Y are also on P which by Lemma 3 results in an architecture singularity.

On the other hand if the points r, rX and rY are collinear then there is the possibility
of having the points X and Y on two different planes which does not necessarily lead to
an architectural singularity. Under this assumption, we get r ∈ span{rX,rY}; i.e.

r = α.rX+β .rY with α,β ∈ R (13)

where (α,β ) 6= (0,0) holds. Now having Eq. (13) in mind, the following possibilities
arise for a non-architecturally singular design:

1. ∀ i ∈ {2, ...,5},ri 6= 0. Then Eq. (13) can be rewritten as 1 = α.X+β .Y which
means that the base points M2, M3, M4, M5 are collinear (Fig. 1-right).

2. ∃! i ∈ {3,4,5} such that ri = 0. This case yields m1 = mi and M2, M j, Mk are
collinear with pairwise distinct i, j,k ∈ {3,4,5} (Fig. 1-center).

3. ∃ i and j ∈ {3,4,5}, where i 6= j such that ri = r j = 0. Now we get m1 = mi = m j
with pairwise distinct i, j ∈ {3,4,5} (Fig. 1-left).

Non-planar case For this case we can only prove (cf. [12]) the following theorem:

Theorem 4. Non-architecturally singular linear pentapods with a non-planar base
possessing a singularity polynomial linear in orientation variables do not exist.

2.3 Quadratic

In this section we study linear pentapods where the singularity polynomial is only
quadratic in total. We are only able to prove (cf. [12]) the following negative result:

Theorem 5. Non-architecturally singular linear pentapods possessing a singularity
polynomial, which is quadratic in pose variables, do not exist.
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3 Kinematic redundant designs

A certain drawback of parallel robots is the limitation of their singularity-free workspace,
which can be overcome by the concept of redundancy. A review on the different types
of redundancy for parallel robots with SPS-legs including a discussion of their pros
and cons is given by the authors in [16]. Following these arguments, we are preferring
the concept of kinematic redundancy by reconfiguring the base anchor points of the
the pentapod by additional joints. In the case of a given path of the platform, the kine-
matic redundant dofs can be used to avoid singularities (if possible3) and to increase the
performance of the manipulator during the prescribed motion [3].

3.1 Design 1

This design, displayed in Fig. 2-left, is based on the idea to change the coefficient β

of the affine coupling κ given in Eq. (10) by a reconfiguration of the base. This can
be achieved by a suitable sliding of the base points. The fibers of the singular affine
transformation κ from the base plane to the platform correspond to parallel lines in the
base plane. It is well known (cf. Section 4.3 of [4]) that a reconfiguration of a base
point along its corresponding fiber does not change the singularity variety. Therefore it
suggests itself to mount the sliders orthogonal to the fiber-direction. This sliding gives
the first degree of kinematic redundancy.

Remark 2. The linear pentapod given in Fig. 2-left has been designed in a symmetric
way, such that the sliders of Mi and Mi+1 (for i = 2,4) have to move with the same
velocity (but in opposite directions). Note that one can drive all sliders of M2, . . . ,M5
with only one motor and a fixed gearing, as the ratio of the velocities of the sliders of
M2 and M4 is constant. Moreover it can easily be checked, that the symmetric design
proposed in Fig. 2-left, can never be architecturally singular in practice. �

The second degree of kinematic redundancy is achieved by the sliding of the first
base point in fiber-direction. This will not affect the singularity surface, but it can be
used to increase the performance of the manipulator during an end-effector motion [3].

3.2 Design 2

This design, based on item 1 of Theorem 3 and displayed in Fig. 2-right, is also a 2-
dof kinematically redundant pentapod with planar base, which has the property that
its singular polynomial is linear in orientation for all possible configurations. The base
points M2, . . . ,M5 are collinearly mounted on a rod g, which slides (active joint) along
a circular rail on the ground and is connected over a U-joint (passive joint) with the
ceiling. Therefore the rod g generates during the motion a right circular cone. For a
better understanding of the redundant dofs, we have a look at the singular-invariant
replacement of legs keeping the given platform anchor points:

3The singularity variety is a hypersurface in the mechanism’s configuration space; thus two
points of the configuration space can be separated by this hypersurface.
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m4m2
m1

m3m5

M1M2

M3

M4 M5

g

m1
m2
m3

m4
m5

M1M2

M3

M4

M5

Fig. 2. Left: Kinematic redundant linear pentapod of Section 3.1 with a linear singularity variety
in position variables. Right: Kinematic redundant linear pentapod of Section 3.2 with a linear sin-
gularity variety in orientation variables. The suggested design, where the upper part is mounted
on the ceiling, can be of interest for e.g. the milling of an object without any need of its reposi-
tioning, as the manipulator can go around the object by 360 degrees.

? As this linear pentapod contains a line-line component (cf.[15]), one can relocate
the base anchor points of the legs m2M2, . . . ,m5M5 arbitrarily on g (assumed that
the resulting manipulator is not architecturally singular).
Remark 3. One can additionally allow a sliding (by active joints) of the base points
along the rod g (yielding further degrees of kinematic redundancy) but this will not
change the singularity variety. These reconfigurations can only be used to improve
the performance of the manipulator. �

? The base point of the first leg can be replaced by any point of the plane spanned by
M1 and g (assumed that the resulting manipulator is not architecturally singular).
Therefore a sliding of M1 along the circular rail changes the singularity variety.

3.3 Design 3

This design, based on item 2 of Theorem 3 and displayed in Fig. 3, is a 3-dof kine-
matically redundant pentapod with planar base, which has the property that its singular
polynomial is linear in orientation for all possible configurations. The anchor points
M1 and M2 can slide along a circular rail (two active joints). The third degree of kine-
matic redundancy is obtained by the rotation of the rod g on which the collinear points
M3,M4,M5 are mounted. For a better understanding of the redundant dofs, we study
again the singular-invariant leg-replacements keeping the given platform anchor points:

? One can relocate the base anchor points of the legs m3M3,m4M4,m5M5 arbitrarily
on g (assumed that the resulting manipulator is not architecturally singular). There-
fore also Remark 3 holds in this context.

? The base points of the first and second leg can be replaced by any two points of
the carrier plane of the circular rail (assumed that the resulting manipulator is not
architecturally singular). As a consequence the sliding of M1 and M2 along the
circular rail does not change the singularity variety. Therefore these two redundant
dofs can only be used to improve the performance of the manipulator.
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m5
m4
m3

m1 = m2

M5

M4
M3

M2
M1g

Fig. 3. Kinematic redundant linear pentapod of Section 3.3 with a linear singularity variety in ori-
entation variables. This design also allows a milling by 360 degrees around the object. Moreover,
detailed views of the circular slider of M2 and the double joint m1 = m2 are provided. In this
context it should be noted that a design, based on item 3 of Theorem 3, is not suited for technical
realization due to the triple joint at the platform.

4 Conclusions

In this paper we computed linear pentapods with a simplified singularity variety. In de-
tail we determined all non-architecturally singular designs where the singularity poly-
nomial is linear in position variables (cf. Section 2.1) or orientation variables (cf. Sec-
tion 2.2). Moreover we were able to prove that linear pentapods with a quadratic singu-
larity polynomial do not exist (cf. Section 2.3). Finally three kinematic redundant linear
pentapods with a simplified singularity variety were proposed in Section 3.

Acknowledgement The research is supported by Grant No. P 24927-N25 of the Aus-
trian Science Fund FWF. Moreover the first author is funded by the Doctoral College
“Computational Design" of Vienna University of Technology.

Appendix

Kinematic singularities occur whenever the Jacobian matrix J becomes rank deficient,
where J can be written as follows (cf. [2]):

J =

(
l1 . . . l5
l̂1 . . . l̂5

)T

with l j =

px + r ju− x j
py + r jv− y j
pz + r jw− z j

 , l̂ j =

z j(py + r jv)− y j(pz + r jw)
x j(pz + r jw)− z j(px + r ju)
y j(px + r ju)− x j(py + r jv)

 .

As (l j, l̂ j) are the Plücker coordinates of the jth leg, the condition rk(J)< 5 is equivalent
with the statement that the five legs belong to a linear line congruence (cf. [17]). Now
the idea is to add a sixth line in a way that it does not belong to this line congruence for
all poses of `. The simplest way for doing that is to consider the ideal line of a plane
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perpendicular to `, which has Plücker coordinates: (l6, l̂6) := (0,0,0,u,v,w). This line
cannot belong to the line congruence because it does not intersect the linear platform `.
Therefore rk(J)< 5 is equivalent to rk(J+)< 6 and rk(S∗)< 7, respectively, with

J+ =

(
l1 . . . l6
l̂1 . . . l̂6

)T

and S∗ =
(

1 o
o J+

)
. (14)

As J+ and S∗ are square matrices, the singularities are characterized by det(J+) =
det(S∗) = 0. By applying row and column operations to S∗, we obtain S of Eq. (1).
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