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Abstract. The configuration space of a linear pentapod can be defined as the
set of all points (u,v,w, px, py, pz) ∈ R6 located on the singular quadric Γ : u2 +
v2 +w2 = 1, where (u,v,w) determines the orientation of the linear platform and
(px, py, pz) its position. In such terminology, the set of all singular robot config-
urations is obtained by intersecting Γ with a cubic hypersurface Σ in R6, which
is only quadratic in the orientation variables and position variables, respectively.
We study the computational aspects of the determination of singularity-free balls
under the design restrictions that Σ is either (1) linear in position variables or
(2) linear in orientation variables. It turns out that for these pentapod designs the
computation of singularity-free balls in the configuration space simplifies consid-
erably. One can even obtain a closed form solution, which is paving the way for a
real-time singularity-free path planning/optimization in the configuration space.
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1 Introduction

A linear pentapod is defined as a five degree-of-freedom (DOF) parallel manipulator
consisting of a linear motion platform `, which is connected via five spherical-prismatic-
spherical (SPS) legs with the base, where the P-joints are active and the S-joints are
passive. The pose of ` is uniquely determined by a position vector p ∈ R3 and an ori-
entation given by a unit-vector i ∈R3. The coordinate vector m j of the platform anchor
point m j of the j-th leg is defined by the equation m j = p+ r ji with r j ∈R and the base
anchor points M j of the j-th leg has coordinates M j = (x j,y j,z j)

T for j = 1, . . . ,5.
It turns out that this kind of manipulator is an interesting alternative to serial robots

handling axis-symmetric tools. Some fundamental industrial tasks such as 5-axis milling,
laser engraving and water jet cutting are counted as its applications in industry [1], [2].

Special configurations referred to as kinematic singularities have always been cen-
tral in mechanism theory and robotics. In such singularities, the kinetostatic properties
of a mechanism undergo sudden and dramatic changes. This motivates the enormous
practical value of a careful study and thorough understanding of the phenomenon for
the design, control and application of robot manipulators.

In a singular configuration of a linear pentapod the platform is infinitesimal mov-
able while all prismatic joints are locked; i.e. the manipulator gains an uncontrollable
instantaneous DOF. Such a shaky configuration can also be characterized as a multiple
solution of the direct kinematics problem. In this context it should be mentioned that
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the forward kinematics of a linear pentapod was solved for the first time in [3] under
the assumption of a planar base, and in [4] for the general case. If the direct kinematics
problem has a continuous solution, then the linear pentapod has a so-called self-motions
(for details see [4] and [5], respectively). The importance of the singularity study of a
mechanism becomes evident in view of this most dangerous singular phenomenon as
the uncontrollable moving platform is a hazard to man and machine.

A further well-studied aspect in the singularity analysis of linear pentapods are de-
signs, which are singular in any configuration. A complete list of so-called architecture
singular designs is given in [4, Section 1.3].

1.1 Preparatory work and outline

The configuration space of a linear pentapod can be defined as the set of all points
(u,v,w, px, py, pz) ∈ R6 located on the singular quadric Γ : u2 + v2 +w2 = 1, where
(u,v,w) determines the orientation of the linear platform and (px, py, pz) its position. In
such terminology, the set of all singular robot configurations is obtained by intersecting
Γ with a cubic hypersurface Σ in R6, which is only quadratic in the orientation vari-
ables and position variables, respectively1. In [7] we determined all designs of linear
pentapods with the property that Σ is either (1) linear in position variables or (2) linear
in orientation variables. The obtained results can be summarized as follows:

Theorem 1. A non-architecturally singular linear pentapod has a singularity polyno-
mial linear in position variables, iff there is a singular affine mapping κ from the planar
base to the platform line ` with Mi 7→ mi for i = 1, . . . ,5.

Theorem 2. A non-architecturally singular linear pentapod has a singularity polyno-
mial linear in orientation variables in the following cases possessing a planar base:

1. M2, M3, M4, M5 are collinear,
2. m1 = mi and M j, Mk, Ml are collinear with pairwise distinct i, j,k, l ∈ {2,3,4,5},
3. m1 = mi = m j with pairwise distinct i, j ∈ {2,3,4,5}.

Clearly, due to the degree reduction it becomes easier to obtain closed form informa-
tion about singular poses. But the main motivation for our research is the computational
simplification of singularity-free balls, for which the state of art is as follows:

In [6] it is proven that for a generic linear pentapod, the computation of the maximal
singularity-free ball in the position/orientation workspace (with respect to the ordinary
Euclidean/Riemannian distance) leads over to the solution of a polynomial of degree
6 and 8, respectively. The corresponding closest singular configurations in the posi-
tion/orientation workspace are illustrated in Fig. 1-left.

In contrast the determination of the closest singular pose (cf. Fig. 1-right) within the
complete configurations space (with respect to an object-oriented metric) leads across
the solution of a polynomial of degree 80, which is far away of a desired closed form
solution, which offers interesting new concepts and strategies concerning path opti-
mization [8] and singularity avoidance. Our first idea to cope with this problem was

1A rational parametrization of the singularity loci Γ ∩Σ was given by the authors in [6].
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Fig. 1. Given is the pose G (black) of the linear pentapod. Left: The closest singular configurations
in the position/orientation workspace are given by the pose P (yellow) and O (blue), respectively.
Right: M (red) is the closest singular pose under Euclidean motions of ` and N (yellow) is the
closest singularity under equiform motions of `.

to relax the motion group from the Euclidean one to the group of equiform motions
(similarity transformations), which is equivalent to omitting the normalizing condition
Γ . Doing so, the degree drops to 28, which was demonstrated in the extended version
of [6] and is displayed in Fig. 1-right. As the obtained distance of the relaxed problem
is less or equal to the distance of the original problem, it can be used as the radius of a
guaranteed singularity-free ball.

Before plunging into the computations of the singularity-free balls for linear pen-
tapods possessing a singularity polynomial linear in position/orientation variables (cf.
Section 2 and Section 3, respectively) a further definition seems to be necessary:

Consider the Lagrange equation L := f +λ1Φ1 + ...+λnΦn, where f is a smooth
distance function on a manifold M which equals R6, R3 or S2. Moreover a certain subset
N of M is given as the zero-set of the polynomials Φ1, . . . ,Φn and their corresponding
Lagrange multipliers are denoted by λ1, . . . ,λn. Then the solutions of the system of
equations

∇L = 0 and Φi = 0 for i = 1, ...,n (1)

are called “pedal points”, as these points of N cause local extrema of the distance func-
tion f to the given pentapod configuration (M =R6), position (M =R3) and orientation
(M = S2), respectively.

2 Linear in position variables

The design parameters of the linear pentapod used in the examples of Section 2 are:

r1 = 0 r2 = 1 r3 = 2 r4 = 4 r5 = 6
x1 = 0 x2 =−1/2 x3 = 1 x4 =−3 x5 =−1
y1 = 0 y2 = 0 y3 = 2 y4 =−1 y5 = 2

(2)

and z1 = . . . = z5 = 0 due to the planarity of the base. This manipulator, which fits in
with Theorem refthm:1, is in the given pose G= ( 1

3 ,
2
3 ,

2
3 ,1,2,3), which is non-singular.
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Fig. 2. Left: For fixed orientation the unique pedal point has coordinates ( 61
33 ,

38
33 ,

92
33 ) ∈

R3 which has a distance of 1.21854359 units from the given position. Middle-left:
For fixed position the four pedal points are illustrated, where the one with coordinates
(0.12661404,0.81506780,0.56536126) ∈R3 is closest to the given orientation. The correspond-
ing spherical distance equals 15.75049156◦. The second pedal point is antipodal to the first one
and the distance s is the supplementary angle. Illustration of the pose G (green) of the linear
pentapod studied in Section 2. Middle-right: The closest singular configurations in the posi-
tion/orientation workspace are given by the pose P (yellow) and O (blue), respectively. Right:
M (red) is the closest singular pose under Euclidean motions of ` and N (yellow) is the closest
singularity under equiform motions of `.

2.1 Fixed orientation case

We ask for the closest singular configuration O having the same orientation (g1,g2,g3)
as the given pose G. The distance to the singularity pose with respect to (g4,g5,g6)
is computed according to the ordinary Euclidean metric. The singularity polynomial
is linear in position variables and under fixed orientation condition it will be a plane
passing through the origin in position space R3. Naturally, there will be only one pedal
point and hence the number of solutions in this case will only be one.

Example 1. A general example with O= ( 1
3 ,

2
3 ,

2
3 ,

61
33 ,

38
33 ,

92
33 ) is illustrated in Fig. 2.

2.2 Fixed position case

Now we ask for the closest singular configuration P, which has the same position
(g4,g5,g6) as the given pose G. In this case the distance to the singularity curve with re-
spect to (g1,g2,g3) is computed according to the Riemannian distance s on the sphere.
This means that the shortest path between two poses on the sphere is the shorter curve
of the great circle connecting the two points.

Under the fixed position the singularity polynomial factors into two planes in R3:

w(A1u+A2v+A3w+A4) = 0, (3)
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u v w s

1 0.12661404 0.81506780 0.56536126 15.75049156◦

2 0.44721359 0.89442719 0 41.83152170◦

3 -0.44721359 -0.89442719 0 138.25977700◦

4 -0.60029825 -0.34138359 -0.72325600 155.56475890◦

Table 1. The 4 real solutions in ascending order with respect to the spherical distance s to the
given orientation.

where the design variables are encoded in the coefficients Ai.
As a consequence the singular orientations are obtained as the intersection of these

two planes with the unit-sphere, which is given by the normalizing condition Γ . One of
these planes always passes through the center of the sphere and hence the intersection
is a great circle. For the second plane different cases can occur:

• A2
4 < A2

1 +A2
2 +A2

3: the plane intersects the sphere.
• A2

4 = A2
1 +A2

2 +A2
3: the plane is tangent to the sphere.

• A2
4 > A2

1 +A2
2 +A2

3: the plane doesn’t intersect the sphere.

Depending on the case the total number of pedal points equals (a) 4, (b) 3 and (c) 2,
respectively.

Remark 1. Note that if the given non-singular orientation is normal to one of the planes
intersecting the unit-sphere, then there exists an infinite number of pedal points. �

Example 2. A general example with P = (0.1266,0.815,0.5653,1,2,3) is illustrated
in Fig. 2. In the example at hand there exist 4 pedal points, which are listed in Table 1.

2.3 General case

Computing the distance to the next singularity for fixed orientation and position, re-
spectively, are well-known concepts in kinematics but from these two separated infor-
mations no conclusion about the closeness to the next singular configuration within the
5-dimensional configuration space can be drawn. Therefore our general case deals with
mixed (translational and rotational) DOFs, thus the question of a suitable distance func-
tion arises. As the configuration space C equals the space of oriented line-elements, we
can adopt the object dependent metrics discussed in [9] as follows:

d(L,L
′
)2 :=

1
5

5

∑
j=1
‖m j−m

′
j‖

2
, (4)

where L and L
′

are two configurations and m j and m′
j denote the coordinate vectors of

the corresponding platform anchor points. This metric has already been used in [6] for
the mechanical device at hand. Note that this is an Euclidean metric in R6 comprised of
the points (u,v,w, px, py, pz).
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u v w λ1 λ2 d

1 0.19954344 0.75426388 0.62551450 0.22471412 0.00242829 0.37163905
2 0.44721359 0.89442721 0.00000000 -1.18154819 0.15475648 1.53723662
3 -0.44720571 -0.89444123 0.00001503 -8.09845180 0.00888318 4.02454431
4 -0.72878205 -0.23306556 -0.64396839 -9.46430882 0.00812550 4.13597163
5 0.50116745 0.86532314 0.00686193 -1.24444052 63.53263267 4.98948239
6 -0.44100968 -0.89750916 -0.00554456 -8.10658006 -11.11676392 6.20308215

Table 2. The 6 real solutions in ascending order with respect to the distance d from G. The
corresponding values of missing variables px, py, pz are obtained by substituting u,v,w,λ1,λ2
into the expressions for px, py, pz.

Remark 2. An alternative “closeness” index for linear pentapod with planar base can
be based on a result of [10] that in singularity configurations legs with zero length can
be constructed by the method of singularity-invariant leg-replacement. Therefore one
can take the shortest length of the two-parametric set of length, which can be allocated,
to evaluate the singularity “closeness”. �

With respect to the metric d of Eq. (4), we can compute the closest singular con-
figuration M to G in the following way: We determine the set of pedal-points on the
singularity variety with respect to G as the variety V ( ∂L

∂u ,
∂L
∂v ,

∂L
∂w ,

∂L
∂ px

, ∂L
∂ py

, ∂L
∂ pz

, ∂L
∂λ1

, ∂L
∂λ2

)

where λ1 and λ2 are the Lagrange multipliers of the Lagrange equation:

L(u,v,w, px, py, pz,λ1,λ2) := d(M,G)2 +λ1(u2 + v2 +w2−1)+λ2F. (5)

Note that here F is the singularity polynomial linear in position variables (cf. [7]).

Example 3. Considering the example of the design parameters indicated in Eq. (2),
there are 10 solutions out of which 6 are real2. These solutions were calculated as fol-
lows: After solving { ∂L

∂ px
, ∂L

∂ py
, ∂L

∂ pz
} for {px, py, pz} and substituting the values obtained

into the rest of the equations of the system, we can use the Gröbner basis method to
solve the new system for the remaining variables. Using the order w > v > u > λ2 > λ1
one of the Gröbner basis generators solely depends on λ1 while the rest depend on λ1
and another orientation variable or λ2, respectively. Based on this elimination technique
Table 2 is obtained. The first row of this table corresponds to the global minimizer M
illustrated in Fig. 2, which has position variables px = 1.42386285, py = 1.69623807
and pz = 3.11364494.

2.4 General case without normalizing condition

We can simplify the problem by considering equiform transformations of the linear
platform `, which is equivalent to the cancellation of the normalizing condition Γ . This
would be equal to canceling the first constraint in Eq. (5). It turns out that for this
reduced set of equations only 3 pedal points exit over C.

2It is unknown if examples with 10 real solutions can exist.



Linear Pentapods with a Simple Singularity Variety – Part II 7

u v w λ1 λ2 d

1 0.22077150 0.77922849 0.65664594 1.04265095 0.00209764 0.35854952
2 0.33333333 0.66666666 0 0.74535599 0.04901408 1.43604394
3 0.36256185 0.63743814 0.01002046 0.73340227 26.26334956 4.95602764

Table 3. The 3 real solutions in ascending order with respect to the distance d from G. The
scaling factor of the corresponding equiform displacement of the platform is given by λ1. The
corresponding values of missing variables px, py, pz are obtained by substituting u,v,w,λ2 into
the expressions for px, py, pz.

Example 4. For the example under consideration, the computations can be done in the
same way as in Section 2.3 with the sole difference that λ1 is now absent. We end
up with Table 3. The first row in this table corresponds to the global minimizer N
illustrated in Fig. 2, which has position variables px = 1.36501824, py = 1.63498176
and pz = 3.03249538.

3 Linear in orientation variables

The design parameters of the linear pentapod used in the examples of Section 3 are:

r1 = 0 r2 = 1 r3 = 3 r4 = 5 r5 = 6
x1 = 0 x2 = 1 x3 =−1/2 x4 =−3 x5 =−1
y1 = 0 y2 = 0 y3 = 3/2 y4 = 4 y5 = 2

(6)

and z1 = . . . = z5 = 0 due to the planarity of the base. It can easily be checked that
this manipulator belongs to the first class of Theorem 2. Moreover we assume that this
manipulator is in the given pose G= ( 1

3 ,
2
3 ,

2
3 ,1,2,3), which is non-singular.

3.1 Fixed orientation case

Once again we ask for the closest singular configuration O having the same orientation
(g1,g2,g3) as the given pose G. The distance to the singularity pose with respect to
(g4,g5,g6) is computed according to the ordinary Euclidean metric. Under fixed orien-
tation condition it is revealed that the singularity polynomial is factored to:

pz(B1 px +B2 py +B3 pz +B4) = 0, (7)

where the design information is encoded in the coefficients Bi. For each of the two
planes in R3 we can compute the pedal point with respect to the given pose (cf. Fig. 3).

Example 5. The closer pedal point implying O= ( 1
3 ,

2
3 ,

2
3 ,2,3,0) is displayed in Fig. 3.
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Fig. 3. Left: For fixed orientation there exits for each of the two planes a unique pedal point.
One pedal point has coordinates (−8/17,9/17,12/17) and a distance of 4.80196038 units to
the given position and the other pedal point has coordinates (2,3,0) and a distance of 4 units.
Middle-left: For fixed position the two pedal points are illustrated, where the one with coordinate
(0.11346545,0.47007115,0.87530491) is closest to the given orientation. The corresponding
spherical distance s equals 20.82450533◦. Illustration of the pose G (green) of the linear pentapod
studied in Section 3. Middle-right: The closest singular configurations in the position/orientation
workspace are given by the pose P (yellow) and O (blue), respectively. Right: M (red) is the clos-
est singular pose under Euclidean motions of ` and N (yellow) is the closest singularity under
equiform motions of `.

3.2 Fixed position case

Now we ask again for the closest singular configuration P, which has the same position
(g4,g5,g6) as the given pose G. As the singularity polynomial is linear in orientation
variables and does not possess an absolute term, the singularity loci is a great circle for
the fixed position case. If the given orientation differs from the pole of the great circle,
then there exist two pedal points (otherwise infinitely many).

Example 6. The results for the example at hand are displayed in Fig. 3, whereby the
closer pedal point implies P= (0.11346545,0.47007115,0.87530491,1,2,3).

3.3 General Case

Similar “experimental” computations as in Section 2.3 show that there are again 10
solutions.

Example 7. For the example at hand we obtain 6 real solutions, which are given in Table
4. The first row in this table corresponds to the global minimizer M illustrated in Fig. 3,
which has position variables px = 1.35978906, py = 2.34492506 and pz = 2.57706069.

3.4 General case without normalizing condition

Similar computations as in Section 2.4 show again that the number of solution reduces
to three.
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u v w λ1 λ2 d

1 0.24002202 0.57831003 0.77970951 -0.07616071 0.00198708 0.41484860
2 0.16067752 0.32134537 0.93924532 5.58789193 -0.03317073 2.44661840
3 -0.20843306 -0.55064498 -0.80863487 -10.27182281 0.00088059 4.53615852
4 -0.35275218 0.88481355 -0.34421986 -3.79940039 0.38394736 6.70384275
5 -0.02624291 -0.92437183 0.38072309 -7.13002767 0.19314992 7.16835476
6 -0.06268654 -0.12537309 -0.99012725 -32.85080126 0.07233642 9.04867032

Table 4. The 6 real solutions in ascending order with respect to the distance d from G.

u v w λ1 λ2 d

1 0.23632218 0.56965551 0.76841946 0.98530404 0.00196374 0.41349741
2 0.33333333 0.66666666 1.30046948 1.49892509 -0.02111913 1.81542685
3 -0.06965551 0.26367781 -0.10175277 0.29108677 3.26647730 6.49924087

Table 5. The 3 real solutions in ascending order with respect to the distance d from G.

Example 8. For the example at hand all three solutions are real and are given in Table
5. The first row in this table corresponds to the global minimizer N illustrated in Fig. 3,
which has position variables px = 1.36986410, py = 2.36986410 and pz = 2.61205791.

Remark 3. Through the numerical examples one observes that the same number of
pedal points is obtained for the other two geometries (items 2 and 3) listed in Theo-
rem 2 for the computation of the closest singular pose under Euclidean motions of `
and equiform motions of `, respectively. �

4 Conclusion

This article dealt with the computation of the singularity-free balls of two classes of
simplified linear pentapods, namely, the linear pentapods with singularity polynomi-
als linear position/orientation variables (abbreviated by LP/LO). It is demonstrated (cf.
Section 2 and Section 3, respectively) that for these designs the computation simplifies
considerably (cf. Table 6). One should note that the results obtained for singularity-
free balls regarding manipulators with singularity varieties linear in position/orientation
variables in the cases of fixed position variables and fixed orientation variables are gen-
eral while for the general case with normalizing condition the given numbers are just
based on a set of random examples3. Recently the authors were able to prove [8] that
the pedal point problem in the general case without normalizing condition is a cubic
one. Therefore the closest singular configurations under equiform motions (cf. Sec-
tions 2.4 and 3.4) are of interest, as they can be computed in closed form. This closed
form solution offers interesting new concepts and strategies concerning real-time path
planning/optimization; e.g. a variational path approach maximizing the distance to the
singularity variety [8].

3In this context we also refer to Section 6 “What is a proof?” of [11], where the authors
Faugere and Lazard were faced with a similar problem.
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Generic case LP case LO case

Fixed position 6 4 2
Fixed orientation 8 1 2

Object-oriented metric case 80 10 10
Object-oriented metric case without normalizing condition 28 3 3

Table 6. Illustration of the generic number of pedal points under different metric conditions.
“Generic case” refers to the general pentapod (not necessarily with a simple singularity variety).
Note that they are computed over the field of complex numbers and hence the real solutions might
be lower. The red colored rows indicate that these numbers are just experimental while the green
ones are mathematically proven and reliable in all situations.

Based on this closed form solution we also want to optimize the geometry of the
pentapod such that for a given home-pose of the platform line the distance to the next
singularity is maximal. This is dedicated to future research.
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