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Fundamentals
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Bar-joint framework
Graph G of a framework
consists of w knots X1, . . . , Xw , which
are connected by e edges (⇒ combina-
torial structure).
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Inner geometry
is determined by assigning to each edge
a non-zero length (⇔ fixing intrinsic me-
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Realization G(X)

with X = (x1, . . . , xw ) corresponds to
the embedding of the framework with fi-
xed inner geometry into the Euclidean s-
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Algebraic definitions for flexibility and rigidity

The relation that two knots Xi and Xj are connected by an edge of
length Lij can also be expressed algebraically as ∥xi −xj∥2 −L2

ij = 0.

This implies e quadratic conditions c1, . . . , ce in m = 2w − 3 un-
knowns (after eliminating isometries of the complete framework)
constituting an algebraic variety V (c1, . . . , ce).

Definition: A realization is flexible
if it belongs to a (real) positive-dimensional component of
V (c1, . . . , ce).

Definition: A realization is rigid
if it corresponds to a real isolated solution of V (c1, . . . , ce).
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Infinitesimal flexibility and rigidity

We can compute in a realization the tangent-hyperplane to each
of the hypersurfaces ci = 0 in Rm for i = 1, . . . , e. The normal
vectors ∇ci of these tangent-hyperplanes constitute the columns of
the m × e rigidity matrix RG(X) of the realization G(X); i.e.

RG(X) = (∇c1, ∇c2, . . . , ∇ce)

For rk(RG(K)) = m the realization G(K) is infinitesimal rigid.

For rk(RG(K)) < m the realization G(K) is infinitesimal flexible;
i.e. the hyperplanes have a positive-dimensional affine subspace in
common. Therefore the intersection multiplicity of the e hypersur-
faces is at least two in an infinitesimal flexible realization.
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Flexion order of a bar-joint framework
According to Nawratil∗ the flexion order of a bar-joint framework
can be defined as follows:
Definition of the flexion order of a bar-joint framework
If a configuration does not belong to a continuous flexion of the
framework then we define its flexion order r by the number of coin-
ciding framework realizations minus 1.
For configuration belonging to a continuous flexion we have r = ∞.

Open Question: What are the flexes associated with a bar-joint
framework of flexion order r?

Example: Bar-joint framework with r = 23.
What are the associated flexes?

∗ A global approach for the redefinition of higher-order flexibility and rigidity.
Mechanism and Machine Theory 205:105853 (2025)
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Review
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Review on higher-order flexes

According to Stachel∗ the classical definition of a higher-order flex
can be written as follows:

Classical Definition: A framework has a nth-order flex
if for each vertex xi (i = 1, . . . , w) there is a polynomial function

x′
i := xi + xi ,1t + . . . + xi ,ntn with n > 0

such that
1. the replacement of xi by x′

i in the equations c1, . . . , ce gives
stationary values of multiplicity ≥ n + 1 at t = 0; i.e.

∥xi − xj∥2 − L2
ij = 0 =⇒ ∥x′

i − x′
j∥2 − L2

ij = o(tn)
2. the velocity vectors x1,1, . . . , xw ,1 do not originate from a rigid

body motion (incl. standstill) of the complete framework.

∗ Stachel, H.: A proposal for a proper definition of higher-order rigidity. (Slides)
Tensegrity Workshop, La Vacquerie, France (2007)
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Review on higher-order flexes

Based on the classical definition of nth-order flex one can define nth-
order rigidity as follows according to Connelly & Servatius∗:

Classical Definition: A framework is nth-order rigid
if every nth-order flex has x1,1, . . . , xw ,1 trivial as a first-order flex;
i.e. it originates from a rigid body motion (incl. standstill) of the
complete framework.

The double-Watt mechanism of Connelly & Servatius∗ raises so-
me problems concerning these classical definitions, as they attest
the mechanism in a certain configuration a 3rd-order rigidity which
conflicts with its continuous flexibility; i.e. a proper definition should
imply rigidity from nth-order rigidity.

∗ Connelly, R., Servatius, H.: Higher-order rigidity - What is the proper definition?
Discrete & Comp. Geometry 11:193–200 (1994)
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Double-Watt mechanism of Connelly & Servatius

x1 x2

The dimensions of each Watt mechanism
The arms have length 1 and the couplers length

√
2. The midpoints

x1 and x2 of both couplers are connected by a bar of length 3.

The problematic configuration corresponds to a cusp in the confi-
guration space; i.e. the mechanism has an instantaneous standstill.

Further cusp mechanisms were given by Lopez-Custodio et al. in
Lopez-Custodio, P.C., Müller, A., Rico, J.M., Dai, J.S.: A synthesis method for 1-dof
mechanisms with a cusp in the configuration space. Mechanism and Machine Theory
132:154–175 (2019)
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Stachel’s attempt to resolve the dilemma

Stachel’s approach follows the more general notation of (k, n)-flexibility
suggested by Sabitov and was presented in
Stachel, H.: A proposal for a proper definition of higher-order rigidity. (Slides) Tense-
grity Workshop, La Vacquerie, France (2007)

x′
i := xi + xi ,1t + . . . + xi ,ntn =⇒

x′
i := xi + xi ,ktk + . . . + xi ,ntn with n ≥ k > 0

where x1,k , . . . , xw ,k are non-trivial.
In addition the (k,n)-flex has to be irreducible; this means that
the flex does not result from a polynomial parameter substitution

t = tq(a0 + a1t + a2t2 + . . .) with a0 ̸= 0 and q > 1

of a lower-order flex. With this approach Stachel was able to show
that the double-Watt mechanism has a (2, ∞)-flex.
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New dilemma: Extended Double-Watt mechanism

x1 x2
x3

Stachel’s proposal was only presented at the Tensegrity Workshop in
2007. It remained unpublished as another dilemma arose; namely no
unique (k, n)-flex can be identified for another double-Watt mecha-
nism extended by a linear point-guidance of the coupler midpoint;
Stachel, H.: A (3,8)-flexible bar-and-joint framework? (Slides) AIM Workshop rigidity
& polyhedral combinatorics, Palo Alto, USA (2007)

For the resulting rigid framework Stachel ended up with an infinite
sequence of irreducible (k, 3k − 1)-flexes for k = 1, 2, . . ..
Which is the correct (k,n)-flex? The problem is not yet settled!
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Solution
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Preliminary considerations

The problem in Stachel’s approach is that the correct value for k is
unknown. What is the meaning of k?

In the limit case n = ∞ the flexes correspond to branches of alge-
braic curve, which can be locally parametrized by Puiseux series; cf.
Burau, W.: Algebraische Kurven und Flächen I & II. Walter De Gruyter & Co. (1962)
Semple, J.G., Kneebone, G.T.: Algebraic Curves. Oxford University Press (1959)
Walker, R.J.: Algebraic Curves. Springer (1978)

This theory is well established for planar algebraic curves, but it can
also be extended to the non-planar case; e.g.
Alonso, M.W., et al.: Local Parametrization of Space Curves at Singular Points. Com-
puter Graphics and Mathematics, 61–90, Springer (1992)
Jensen, A.N., Markwig, H., Markwig, T.: An algorithm for lifting points in a tropical
variety. Collectanea Mathematica 59:129–165 (2008)
Maurer, J.: Puiseux expansion for space curves. Manuscripta Mathematica 32:91–100
(1980)
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Removal approach for isostatic bar-joint frameworks

The realization is called isostatic (minimally rigid) if the removal of
any edge constraint ci will make the realization flexible (⇔ m = e).

From standpoint of kinematics following procedure is quite natural:
a) Remove the ith bar of an isostatic bar-joint framework for

i ∈ {1, . . . , e} and to consider the resulting 1-dof
mechanism.

b) Compute in the configuration X of interest the branches of
the 1-dimensional configuration curve generated by the ideal

⟨c1, . . . , ci−1, ci+1, . . . , ce⟩. (1)

c) Check up to which order each branch is compatible with the
removed condition ci = 0, which contains X as regular point,
by determining the intersection multiplicity n + 1. Then this
branch implies a nth-order flex.
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Example

Let us consider three quadrics Ci ∈ R3:

c1(x , y , z) := x2 + y2 − 2z
c2(x , y , z) := y2 + xy − z
c3(x , y , z) := 2x2 − 3xy − 2y2 − 2yz + z

y
0 x

0

0
z

Note that the three regular quadrics intersect in the origin with
multiplicity 4 (⇒ r = 3). It can easily be seen that these quadrics
have a common tangent plane z = 0 at the origin, which is also a
double point of each three possible intersection curves.

By applying only the removal procedure one would end up with the
conclusion that there are always two linear branches, which both
imply flexes of order 1 =⇒ (1,1)-flexes
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Removal approach for isostatic bar-joint frameworks

This kinematic motivated removal procedure cannot generate a
complete picture of the flexes, which becomes clear by looking
at the problem from the standpoint of algebraic geometry.
The ideal of Eq. (1) can be generalized to

⟨c1 + λ1ci , . . . , ci−1 + λi−1ci , ci+1 + λi+1ci , . . . , ce + λeci⟩ (2)

where the λ1, . . . , λi−1, λi+1, . . . , λe ∈ R imply a (e −1)-parametric
set of curves, whose branches have to be intersected with the hy-
persurface ci = 0 containing the origin as regular point.
The resulting intersection multiplicity n + 1 yields again the order n
of the flex implied by the corresponding branch.
Note that if we add ci = 0 to the ideal of Eq. (2), then the resulting
ideal is equivalent to the initial one ⟨c1, . . . , ce⟩ including also its
intersection multiplicity.
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Example: Continuation

Within the bundle of quadrics spanned
by C1, C2, C3 there also exists a pencil of
cones P having their apexes in the ori-
gin. Moreover P touches the plane z = 0
in a pencil of lines through the origin.

y0 x

0

0
z

Therefore each cone of P intersect C1 in a quartic curve having a
cusp in the origin in direction of the cone’s generator contained in
z = 0. This is illustrated for the cone C4 ∈ P given by c4 = 0 with
c4(x , y , z) := x2 −2yz . Hence there exists a pencil of (2,3)-flexes.

Higher-order cusps (k > 2) are not possible due to degree reasons.
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Removal approach for general bar-joint frameworks

Modified Definition of (k,n)-flexes

A bar-joint framework, which is not continuous flexible, has a 1-
parametric (k, n)-flex if for each vertex xi (i = 1, . . . , w) there is a
polynomial function

x′
i := xi + xi ,ktk + . . . + xi ,ntn with n ≥ k > 0

such that
1. the replacement of xi by x′

i in the equations c1, . . . , ce gives
stationary values of multiplicity ≥ n + 1 at t = 0;

2. the vectors x1,k , . . . , xw ,k are non-trivial;
3. x′

i can be extended to a minimal parametrization of a branch
of order k of an algebraic curve, which corresponds to a 1-dim
irreducible component of a variety determined by an ideal,
whose generators are contained in the linear family of quadrics
spanned by c1, . . . , ce .
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Remarks on the modified definition of (k,n)-flexes

1. The replacement of Stachel’s irreducability condition by item
3 resolves the dilemma of ending up with an infinite series of
possible (k, n)-flexes, as k cannot be greater than r .

2. We speak more precisely of a “1-parametric flex” as one can
also think of p-parametric flexes with p > 1. Their definition
can be done similarly and their study can be based on local
approximations of p-surfaces by multivariate Puiseux series; cf.
Aroca, F., Ilardi, G., Lopez de Medrano, L.: Puiseux power series solutions for
systems of equations. Int. Journal of Mathematics 21:1439–1459 (2010)
Buchacher, M.: The Newton-Puiseux algorithm and effective algebraic series.
arXiv 2209.00875 (2022)
McDonald, J.: Fiber polytopes and fractional power series. Journal of Pure and
Applied Algebra 104:213–233 (1995)
McDonald, J.: Fractional power series solutions for systems of equations.
Discrete & Computational Geometry 27:501–529 (2002)
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Remarks on the modified definition of (k,n)-flexes

3. We added also the assumption that the framework is not
continuous flexible, but the redefinition also holds for
frameworks with a 1-dim mobility (⇔ n = ∞).

4. Item 3 of the redefinition implies a global construction for
determining (k, n)-flexes instead of a local mobility analysis.

5. The algebraic approach for the computation of the
(k, n)-flexes operates over C but it also allows to take reality
issues into account by using only the real part of the
minimal parametrizations of the branches. This can be used to
determine the highest real flex (kmax, nmax), which is of
interest as it complements the flexion order r .

For the discussed example we get (r ; kmax, nmax) = (3; 2, 3).
The original double-Watt mechanism has the triple (∞; 2, ∞).
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Example: Immobile 4-bar mechanism

F1 =
(

−1
0

)
M1 =

(
a
b

)
M2 =

(3 + c
d

)
F1 =

(5
0

)
x

y

The three quadratic constraints read as follows:

c1 : ∥M1 − F1∥2 − 12 = 0, c2 : ∥M2 − M1∥2 − 32 = 0, c3 : ∥M2 − F2∥2 − 22 = 0.

The parametrization of the space curve splits up into two conjugate
complex linear branches given by b(t) = t and

a(t) = −1
2 t2− 1

8 t4+. . . c(t) = −8±6I
25 t2+ −79±3I

1250 t4+. . . d(t) = 2±6I
5 t+ 6±33I

250 t3+. . .

through the origin, which is the only real point. By plugging the real
part of this parametrization into c1, c2, c3 it can be seen that at least
t2 factors out from the resulting three expressions. This implies that
the triple (r ; kmax, nmax) = (∞; 1, 1).
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Future research & Acknowledgment

For an efficient computation of the (k, n)-flexes we plan to resort to
the powerful mean of tropical geometry, cf.
Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry. American Mathema-
tical Society (2015)
Jensen, A.N., Markwig, H., Markwig, T.: An algorithm for lifting points in a tropical
variety. Collectanea Mathematica 59:129–165 (2008)
which was also demonstrated in the kinematic context; cf.
Nayak, A.: C-Space Analysis Using Tropical Geometry. Proceedings of 2nd IMA Confe-
rence on Mathematics of Robotics, 98–106, Springer (2022)
This approach is dedicated to future research as well as the study
of the already mentioned p-parametric flexes with p > 1.
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