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TECHNISCHE UNIVERSITÄT WIEN

Abstract
Center for Geometry and Computational Design
Institute of Discrete Mathematics and Geometry

Doctor of Technical Sciences

Design and Path Optimization of Linear Pentapods Based on the Geometry of Their
Singularity Varieties

by Arvin RASOULZADEH

The main goal of this work is to optimize the design and path of linear pentapods via study-
ing the geometrical properties of their related singularity varieties. Several mathematical
tools are borrowed to perform the aforementioned tasks. In the first chapter, these tools are
briefly reviewed in two groups of differential geometry and algebraic geometry. The chapter
is peppered with several purposeful examples which are given in such a way that they would
give an intuition to the reader for the coming higher dimensional counterparts. The second
chapter is mainly centred around the algebraic concepts of this study, namely, the rational
parametrization of the general linear pentapods’ singularity variety, topological and geomet-
rical properties of the singularity variety and most importantly introducing a new class of
linear pentapods under the name of simple pentapods which possess a simple-structured sin-
gularity variety. The third chapter views the singularity variety from a rather mathematically
different discipline, namely the metric spaces. In this chapter, ideas such as pedal points on
the singularity variety and object-oriented metric are investigated. The chapter ends with the
main result on the generic number of pedal points on the simple pentapods’ singularity vari-
ety. The fourth chapter focuses on the concept of variational path optimization by assuming
that an already singularity-free path between two non-singular poses of the simple pentapod
is given. Combining the tools from chapter one with the results of chapter three paves the
way for obtaining a real time path optimization. Additionally, the optimized path takes the
base spherical joint and prismatic extension limits into account in such a way that during the
related optimized motion the manipulator does not exceed these limits. The chapter comes to
an end with a brief introduction of a graphical user interface which provides a user-friendly
access to the aforementioned variational path optimization algorithm. Finally, the last chapter
names and explains the related unfinished projects in the field. These include path planning,
workspace analysis and the extension of the variational path optimization algorithm to the
platform spherical joints limit and leg collision.

This PhD thesis is based on the following scientific works:

• Rational Parametrization of Linear Pentapod’s Singularity Variety and the Distance to
It, Computational Kinematics [Rasoulzadeh and Nawratil, 2018],

• Linear Pentapods with a Simple Singularity Variety Part I: Determination and Re-
dundant Designs, IFToMM World Congress on Mechanism and Machine Science [Ra-
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and Nawratil, 2019b],
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Chapter 1

Mathematical Frameworks

The main goal of this chapter is to briefly review the mathematical tools used throughout
the thesis. The chapter is divided into two parts. The first part, under the title of differen-
tial geometry, mainly reviews the differential geometric concepts related to the study of the
mechanical objects coming in the later chapters. However, the section contains topics that
are technically not necessarily differential geometric (i.e. optimization techniques) but are
still included there as they are mainly viewed from a differential geometric point of view.
The second section comes with the title of algebraic geometry and revisits some general but
useful concepts. This section is specifically important in the later chapters as it gives the
computational and algebraic tools necessary to study certain classes of surfaces related to the
mechanical objects under study.
Finally, it is noteworthy that most of the examples presented in this chapter are designed
purposefully for the lower dimensions, in which the reader can visualize the related geo-
metric objects. In this way the reader would have an intuition about the higher dimensional
counterparts to come.

1.1 Differential Geometry

Differential geometry is a mathematical discipline that uses techniques of differential calcu-
lus, integral calculus, linear and multilinear algebra to study problems in geometry. The the-
ory of plane and space curves and surfaces in the three-dimensional Euclidean space formed
the basis for the developments of differential geometry during the 18th and 19th century.
Since the late 19th century, differential geometry has grown into a field concerned more gen-
erally with the geometric structures on differentiable manifolds. Differential geometry is
closely related to differential topology and the geometric aspects of the theory of differential
equations.
Here, the goal is to review those concepts of differential geometry which in later chapters are
used to study the geometry of the kinematic structures under investigation.

1.1.1 Metric Spaces

In 1906, Maurice Fréchet introduced the metric spaces in his work Sur quelques points du
calcul fonctionnel. However the name is chosen by Felix Hausdorff [Fréchet, 1906]. A
metric space is a set together with a metric on the set. The metric is a function that defines a
concept of distance between any two members of the set, which are usually called points. In
the arguments to come, metric spaces play an important role, hence in order to have a clear
view, a formal definition is of essence.

Definition 1. A “metric space" is an ordered pair (M,d) where M is a set and d is a metric
on M, i.e., a function

d : M×M −→R (1.1)



2 Chapter 1. Mathematical Frameworks

such that for any x,y,z ∈M, the following holds:

1. d(x,y) = 0⇐⇒ x = y,

2. d(x,y) = d(y,x),

3. d(x,z) ≤ d(x,y)+ d(y,z).

The function d is also called “distance function" [Rudin, 1964, page 38].

Example 1. The followings are some well-known examples in the literature:

• Any normed vector space is a metric space by defining d(x,y) = ‖x− y‖,

• If (M,d) is a metric space and X is a subset of M, then (X ,d) becomes a metric space
by restricting the domain of d to X×X,

• Given an injective function f from any set A to a metric space (X ,d), then d ( f (x), f (y))
induces a metric on A.

• For any set there is always a metric associated to it, where d(x,y) = 0 if x = y and
d(x,y) = 1 otherwise. This metric is called “discrete metric".

1.1.2 Analysis on Manifolds

It was probably the discoveries of Gauss on the curvature of the regular surfaces that founded
the subject of differential geometry. After Riemann, the subject was an organized discipline.
Many of these discoveries were intrinsic; not depending on how the surface was situated in
space. This led to the definition of manifolds [Selig, 2004, page 7-8]. Manifolds are (second
countable, Hausdorff) spaces that locally resemble the Euclidean space which allow one to
do calculus on them [Boothby, 1986, page 6]. However, globally they are not necessarily
isomorphic to Rn. These spaces are covered by local coordinate patches, in such a way that
each patch is homeomorphic to an open set in Rn. In the case of smooth manifolds, whenever
the patches overlap, the two coordinate systems are related to each other by a smooth change
of coordinates.
In this context, the maps that we are interested in are the smooth maps between smooth
manifolds. A special case of this is a smooth curve. In general, such a curve is seen as a
smooth map from an interval of R into a smooth 1-dimensional manifold M.

Finally, to obtain rigorous mathematical formulation of the above definitions, one could
resort to excellent texts such as [Lee, 2003], [O’Neill, 1983] and [Boothby, 1986].

In this part some well-known parametrizations of the sphere are reviewed. These exam-
ples will give a visual understanding of the coordinate neighbourhoods and their overlaps. In
this thesis, for every manifold M, each coordinate neighbourhood is written as (U , φ ), where
U ⊆M is an open subset and φ : U −→Rn is the parametrization.

Example 2. “6-patch coordinate neighbourhoods" is a routine initial example of the sphere
parametrizations. The visualization of these coordinate neighbourhoods gives an intuition of
the overlap of the coordinate charts and the diffeomorphic transitions between them. Defin-
ing the following notations:

R+
i := {(x1,x2,x3) ∈R3 | xi  0}, (1.2)

R−i := {(x1,x2,x3) ∈R3 | xi � 0}, (1.3)
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FIGURE 1.1: Illustrations of the wrapping 6-patch parametrization of a sphere where its two defin-
ing parameters each sweep the intervals [−0.45,0.45] (left), [−0.65,0.65] (middle) and [−0.85,0.85]
(right).

the 6-patch coordinate neighbourhoods are the half-spheres and are of the following types:(
π1(x1,x2,x3), S2∩R+

1

)
,
(
π2(x1,x2,x3), S2∩R+

2

)
(1.4)(

π3(x1,x2,x3), S2∩R+
3

)
,
(
π1(x1,x2,x3), S2∩R−1

)
(1.5)(

π2(x1,x2,x3), S2∩R−2
)

,
(
π3(x1,x2,x3), S2∩R−3

)
(1.6)

where the map πi maps the corresponding half sphere to the plane xi = 0 (cf. Fig. 1.1).

Example 3. The parametrization based on “polar and azimuthal angles", also known as
spherical coordinates, is another common way of parametrizing the sphere. One of the theo-
retical main reasons of its use is the fact that it would be helpful in the sense of understanding
the concept of manifolds and their related geometric features.
Fig. 1.2 depicts one of the aforementioned coordinate neighbourhoods, namely(

S2 \P , ψ
)

(1.7)

where
P = {(x,0,z) | x≥ 0} (1.8)

and
ψ
−1(θ ,φ ) = (sin (θ )cos (φ ) , sin (θ ) sin (φ ) , cos (θ )) . (1.9)

1.1.3 Metric Tensor on Smooth Manifolds

Evidently, to do calculation on smooth manifolds an inner product is required, where this
inner product can be derived from a metric tensor that varies smoothly on the manifold.

Definition 2 (O’Neill, 1983, page 54). A Riemannian metric tensor on a smooth manifold M
is a smooth, symmetric and positive definite (0,2)-tensor field g.

In other words, g assigns a symmetric, positive definite bilinear form:

g (p) u gp : Tp M×Tp M −→R. (1.10)
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FIGURE 1.2: Illustrations of polar parametrization of a sphere. The yellow half-plane depicts P .

The matrix of g relative to an orthonormal basis e1, . . . ,em of Rm is denoted by the m×m
matrix g where its entries are

g i, j = g (ei,e j) , 1≤ i, j ≤ m, (1.11)

[O’Neill, 1983, page 50].
The following definition defines the relation between the metric tensor and the metric:

Definition 3. Consider the metric tensor g. For two points of the Euclidean space Rm namely,
u = (u1, . . . ,um) and p = (p1, . . . , pm) define the metric d(p,u) as:

d(p,u)2 :=CT .g .C, (1.12)

where CT = (u1− p1, . . . ,um− pm)T . For more details cf. [Boothby, 1986, chapter 2].

Note that the rhs of Eq. 1.12 serves as the desired inner product:

〈−,−〉 : Rm×Rm −→R, (1.13)

(X ,Y ) 7−→ XT .g .Y , (1.14)

Finally, (Rm,g) forms a Riemannian manifold.

1.1.4 Geodesics

Geodesics are one of the two fundamental concepts of Riemannian Geometry. The notion
of a geodesic can be thought of as a curve with zero acceleration. From another point of
view, one can think of geodesic as a generalization of the Euclidean notion of straight line
[Do Carmo, 2016, page 60, O’Neill, 1983, page 67].

Remark 1. The set of all geodesics of a sphere S2 is the set of all great circles (the ones that
are obtained by intersecting S2 and the planes passing through its centre).
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1.1.5 Riemannian Submanifold

A Riemannian submanifold N of a Riemannian manifold M is a submanifold of M equipped
with the Riemannian metric inherited from M. Formally, if (M,g) is a Riemannian manifold
and N ⊂M is an immersed submanifold, one can define a smooth symmetric 2-tensor g|N =
ı∗ g, where ı : N ↪→M is the inclusion map. Consequently, for X , Y ∈ Tp N this reads as

(g|N) (X ,Y ) = ı∗ g (X ,Y ) = g (ı∗X , ı∗Y ) = g (X ,Y ) . (1.15)

This means that g|N is just the restriction of g to vectors tangent to N [Lee, 2003, page 191]
(for the detailed discussion on the immersed submanifolds, push forwards ı∗, and pull backs
ı∗, see [Boothby, 1986, chapter 3]).

Example 4 (Lee, 2003, page 191). Consider the case of a unit sphere S2 in 3-dimensional
real space with the spherical coordinates. Then the induced metric tensor in matrix format
is given by

g =

(
1 0
0 sin2 (θ )

)
(1.16)

and is called the “round metric". Hence, S2 with the round metric becomes a Riemannian
submanifold of R3.

Note that, the round metric can be obtained from the parametrizations described in Ex-
ample 3.

Lemma 1. Assume M to be an immersed m-dimensional submanifold of Rn and p an arbi-
trary point in Rn \M. Consider E to be the set of all local extrema of the distance function
d (p,M) then q ∈ E iff q− p ∈ Tq (M)⊥.

Proof: Without loss of generality, assume p is located at the origin. Now, if q ∈ E then
there exists a parametrization ψ by which q = ψ(x1, . . . ,xm) such that ∀i, 1≤ i≤m we have

0 =
∂

∂xi ‖ψ(x1, . . . ,xm)‖= 2〈∂ψ

∂xi , ψ〉, i = 1 . . .m, (1.17)

which gives ∀v ∈ Tq (M), 〈v,ψ〉 = 0 and hence q = ψ(x) ∈ E . The reverse trivially holds.
�

1.1.6 Orthogonal Projection

One of the fundamental tools later used for the optimization of the motion paths of the kine-
matic structures under study is the orthogonal projection.

Definition 4 (Dudek and Holly, 1994). Let M be a non-empty subset of the metric space Rn.
The orthogonal projection into M, is the relation π ⊂Rn×M such that for each p ∈Rn we
have

π (p) := {q ∈M : d (p,q) = ρ (p,M)}, (1.18)

where d is the metric of Rn and ρ (p,M) := infq∈M d(p,q).

Remark 2. π is defined as a relation rather than a map due to the fact that it might not be a
function.



6 Chapter 1. Mathematical Frameworks

Cut Locus

In Definition 4, we emphasized on π being a relation rather than a function. It turns out such
a failure has close ties to the concept of cut locus of the metric spaces.

Definition 5 (Petersen, Axler, and Ribet, 2006). Let M be metric space, equipped with a
metric d, and let p ∈ M be a point. The cut locus of p in M, CLp (M), is the locus of all
points in M for which there exists at least two distinct shortest paths to p. More accurately,
u∈CLp (M) if and only if there exists two paths c1, c2 : I−→M such that c1 (0) = p= c2 (0),
c1 (1) = u = c2 (1), ‖c1‖= d(u, p) = ‖c2‖ and the trajectories of the two paths are distinct.

Example 5. Let M = S2 in R3. Then the cut locus of every point on the sphere consists of
exactly another point, namely the antipodal one.

1.1.7 Metric-dependent Gradients

The usual definition of a gradient of a smooth function has a simplified structure which
corresponds to the ordinary Euclidean metric and the canonical basis, where in the light of
Definition 3 is read as

‖p−u‖2 = (p−u)T .I. (p−u) , (1.19)

where I is the n×n identity matrix and p and u are two point belonging to Rn. ∇ f shows the
maximum directional derivative of f and ‖∇ f‖ stands as its value. Clearly, the aforemen-
tioned concepts rely on the metric of the space and hence choosing different metrics gives
rise to different gradients. Consequently, these facts lead to the definition of a more general
gradient operator that have the effect of the metrics encoded in:

Definition 6 (O’Neill, 1983, page 85). Suppose f is a real-valued function on Rn and ∇ f
is the “canonical gradient". Then, the “gradient of f with respect to a positive definite
symmetric metric g" (see Section 1.1.3) is defined as follows:

∇g f := g−1.∇ f . (1.20)

Remark 3. Assume W to be an inner product space and p and u two points belonging to it.
From now on, through the rest of the thesis, we use the following notations:

(p−u)T .I. (p−u) = 〈p−u, p−u〉= ‖p−u‖2, (1.21)

(p−u)T .g. (p−u) = 〈p−u, p−u〉g = ‖p−u‖2
g, (1.22)

where g is a metric tensor matrix other than the identity matrix (I).

Example 6. The space Rn with the ordinary Euclidean metric, gives ∇g f = I−1.∇ f =∇ f =(
∂ f /∂x1, · · · ,∂ f /∂xn

)
which is the “well known" formula for the gradient.

Definition 6 describes the concept of the generalized gradient in the Euclidean space Rn.
However, one can define the gradient operator on a more general structures, namely, the
Riemannian manifolds via operators [O’Neill, 1983, page 85-86]). Here, we resorted to the
“less" general definition due to the fact that through out this thesis the geometrical objects
that the gradient should operate on are merely the (immersed) submanifolds of Rn. These
submanifolds inherit the gradient operator from the ambient Euclidean space. The following
Lemma shows that the inherited gradient coincides with the gradient operator defined on a
manifold.
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Lemma 2. Let f be a smooth function on Rn and let M be a submanifold of it. Then the
gradient of the map f restricted to M at a point p∈M, (∇ f |M)p, is the orthogonal projection
of (∇ f )p onto Tp (M).

Proof: If g is the Riemannian metric on Rn then g|M (∇ f |M,X) = X ( f |M) for all X ∈
X (M) denoting the set of all smooth tangent vector fields on M (cf. [O’Neill, 1983]). Now,
considering the decomposition at the point p ∈M, (∇ f )p = vo + vt where vt ∈ Tp (M) and

vo ∈ Tp (M)⊥ we have 1

g|M (∇ f |M,X) = X ( f |M) = X ( f ) = g (∇ f ,X) = g (vo + vt ,X) =

g (vo,X)+ g (vt ,X) = g (vt ,X) .

which gives
g (∇ f |M,−) = g (vt ,−) . (1.23)

�

Remark 4. Note the in Eq. 1.20, g−1 is an n×n matrix while ∇ f is by default considered to
be a n×1 column matrix. The matrix format is computationally advantageous due to being
programming-friendly. In fact in vectorized programmings where tensor product of matrices
takes place such presentation is of great help.

1.1.8 Optimization Techniques and Gradient Descent

Mathematical optimization or mathematical programming is the selection of a best element
from a set of available alternatives. Optimization problems arise in many different disciplines
such as computer science and engineering to economics. The generalization of optimization
theory constitutes a vast area of applied mathematics.
In this thesis the main focus is on a sub-branch of optimization called quadratic program-
ming. The quadratic programming is the process of solving the problem of optimization of a
quadratic function of several variables subject to linear constraints on these variables which
makes this subfield to be a particular type of nonlinear programming [Nocedal and Wright,
2006].

Quadratic Programming Problem Formulation

Suppose that:

• c is a real-valued n-dimensional vector,

• b is a real-valued m-dimensional vector,

• Q is an n×n-dimensional real symmetric matrix,

• A is an m×n-dimensional real matrix,

then, the quadratic programming problem with n variables and m constraints can be formu-
lated as follows. The objective is to find an n-dimensional vector u, that will

• minimize 1
2 uT Qu+ cT u,

• subject to Au4 b,

1In the following equation the subscript p is dropped intentionally.
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FIGURE 1.3: Illustrations of the profit per population data for each city (red crosses). The blue line
depicts the linear regression fit.

where uT denotes the vector transpose of u. However, in the upcoming problems in this the-
sis the constraints under study are merely the equality and hence we restrict our attention to
the case of Au = b.

Gradient Descent Method

Gradient descent is an iterative optimization algorithm for finding a local minimum of a
differentiable function [Lemaréchal, 2012].
Gradient descent is based on the observation that if the multivariable function (from now on
we call it cost function) F (x) is defined and differentiable in a neighbourhood of a point a,
then F (x) decreases fastest if one goes from a in the direction of the negative gradient F at
a, namely, −∇F (a). More accurately, if the update is taking place in the following way

an+1 = an− γ ∇F (an) , (1.24)

for γ ∈ R+ (which is known as step size or learning rate). If γ is taken adequate enough
(small enough) then F (an) = F (an+1). In such a way one can view the decrease of the cost
function till convergence which implies the local minimum obtaining.
The following regression example gives an intuition regarding the quadratic programming

case via gradient descent. In order to focus more on the geometric nature of this optimization
case, the numerical details are merely given as points in the Fig. 1.3.

Example 7 (Ng, 2012). Suppose a CEO of a restaurant franchise considers different cities
for opening a new outlet. The chain already has trucks in various cities and the data for
profits and population is given for each city via red crosses in Fig. 1.3. We would like to use
this data to select which city to expand to. This problem yields a rather regression solution
in which the following cost function is proposed:

C (θ ) =
1

2m

m

∑
i=1

(
hθ

(
ui)− yi)2

, (1.25)
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where m is the number of data samples and hθ (x) is given by the following linear model

hθ (x) = θ
T x = θ0 +θ1 x1. (1.26)

The parameters of our model are θ j values which we adjust to minimize the cost C (θ ).
Using the gradient descent, each iteration performs the update

θ j := θ j− γ
1
m

m

∑
i=1

(
hθ

(
xi)− yi) xi

j, (1.27)

by keeping the learning rate γ = 0.01, with each step of gradient descent, our parameter θ j

come closer to the optimal values that will achieve the lowest cost C (θ ). Finally, the results
are depicted in Fig. 1.4.

Having the following definitions in mind gives a geometrical view towards the problems
of a similar nature as Example 7 in higher dimensions.

Definition 7 (O’Neill, 1983, page 20). A hypersurface in a manifold M is a submanifold N
whose codimension, dimM−dimN, is 1.

Definition 8 (Lee, 2003, page 103). Let U ⊂Rn be an open set, and let F : U −→Rk be a
smooth function. The graph of F is the subset of Rn×Rk defined by

Γ(F) = {(x,y) ∈Rn×Rk : x ∈U and y = F(x)}. (1.28)

Indeed, in the case of Example 7, the cost function C (θ ) creates a bowl shaped quadric
surface in R3 which is also a graph surface (see Fig. 1.4). In later chapters, when dealing
with a much more complicated cost function in several variables and in higher dimensions,
Definitions 7 and 8 along with Example 7 come handy in bearing the geometrical intuition of
the aforementioned cost function in mind.
In various geometric problems involving the optimization, one has to minimize a function
defined on a Riemannian manifold M. In many cases to be seen in later chapters, M is inter-
preted as a kinematic space where a path on this manifold describes the poses of a rigid body,
orientations or positions. For these applications it is important to introduce a meaningful
metric on M with respect to the problem to be solved. Then, one takes gradient with respect
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projection of u+

FIGURE 1.5: Illustrations of the convergence of uc to p∗. Starting with an initial guess uc, at each
iteration uc is updated to u+ by moving in the negative direction of the ∇ f (uc) with a certain positive
step size magnitude s on the Tuc (M). Then u+ is orthogonally project from Tuc (M) into M and the
whole process is repeated till convergence is obtained. Informally, one should expect convergence
to occur for sufficiently small s. However, in later chapters we approach the step size from a more
intelligent point of view.

to that metric. The following example emphasized on defining such a “meaningful metric"
by visualizing the faster convergence on a surface.

Example 8. Consider a point p in Rn and an m-dimensional immersed submanifold M.
The goal is to compute the closest point p∗ ∈ M to p. By Lemma 1 we know that p∗ is the
footpoint of the normal from p to M. p∗ can also be seen as the image of an orthogonal
projection into M. This problem requires the minimization of the distance function from the
point p to M. Since M is a smooth manifold it is covered by the coordinate neighbourhoods.
Obtaining the closest point on M requires taking all coordinate neighbourhood into account.
Focusing on a coordinate neighbourhood (U ,φ ) of M, one could think of it as a “parametric
surface" indicated by ψ

(
x1,x2, . . . ,xm

)
:= φ−1

(
x1,x2, . . . ,xm

)
. Then the distance function to

be minimized is

f (x1,x2, . . . ,xm) :=
1
2
‖ψ (x1,x2, · · · ,xm)− p‖2. (1.29)

Then the gradient will be

∇ f =
(

∂ f
∂ x1 , . . . ,

∂ f
∂ xm

)
, (1.30)

∀1≤ i≤ m,
∂ f
∂xi = 〈ψ(x1,x2, . . . ,xm)− p,

∂ ψ

∂xi 〉. (1.31)

Geometrically, the rhs of Eq. 1.31 implies that the gradient vector ∇ f is in fact the projec-
tion of −→q p into the tangent space to M at each point ψ(x1,x2, . . . ,xm) =: q, namely Tq (M).
Consequently, in the light of Lemma 1, ∇ f = 0 implies (p− p∗) ∈ Tp∗ (M)⊥.
Now, let us solve this optimization problem using the gradient descent algorithm. The afore-
mentioned algorithm is formulated in the parameter domain through the following iterative
formula (see Fig. 1.5)

u+ = uc− γ ∇ f (uc). (1.32)

where uc is the current point on the surface, u+ is the updated point on Tuc (M) and γ is the
step size. Eq. 1.32 does not consider the distortion between parameter domain and the actual
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FIGURE 1.6: Gradient flow with respect to the canonical (top-left) and induced (top-right) gradient
fields. Below: the corresponding paths on the parameter domain’s level sets. The courtesy of the
figures goes to Georg Nawratil.

surface (see Figs. 1.6 - left). In order to take it into account, one has to compute “the gradient
with respect to the induced metric on the surface" which is in fact the metric induced on the
surface from the ambient space. Such a gradient is computed using Eq. 1.20 and modifies
Eq. 1.32 into

u+ = uc− γ g−1
uc

.∇ f (uc) = uc− γ .∇g f (uc). (1.33)

Fig. 1.6 shows the gradient flow with respect to the ambient metric (ordinary Euclidean met-
ric) and the induced metric on the surface. The corresponding level sets show the conver-
gence to the final solution p∗.

Computation of Pedal Points

In later chapters, in several occasions, we are interested in obtaining the closest point on a
certain surface from a point outside of it. This problem is related to the concept of orthogonal
projection, yet despite the fact that Definition 4 gives an intuition toward the nature of it but
it does not provide a computational tool. In fact there can be several ways to calculate π for a
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sample point p. But for reasons that will be cleared out later the Lagrange multiplier method
is chosen.

Definition 9. Consider the “Lagrange equation" L := f +λ1Φ1 + ...+λnΦn, where f is the
smooth “distance function" on a manifold N. Moreover a certain subset S of N is given as
the zero-set of the polynomials Φ1, . . . ,Φn and their corresponding “Lagrange multipliers"
are denoted by λ1, . . . ,λn. Then the solutions of the system of equations

∇L = 0 and Φi = 0 for i = 1, ...,n (1.34)

are called “pedal points", as these points of S cause local extrema of the distance function.

Note that, the set π (p) is a subset of the set S of pedal points (see Definition 4).

1.1.9 Curvature of the Curves

The second fundamental topic of interest in differential geometry is the curvature. Infor-
mally, the curvature is the amount by which a smooth curve deviates from a line, or a surface
deviates from being a plane. There are extensive literature on this topic that generalize this
notion to higher dimensions and abstract manifolds [O’Neill, 1983]. However, in this thesis
only a glance of this concept, namely the curvature of the smooth curves, is needed and hence
only a brief introduction to this concept is given.
Let c : (a,b) −→Rn be a curve parametrized by arc length s (see [Do Carmo, 2016, chapter
1]). Since the tangent vector c′ (s) has unit length, the norm ‖c′′‖ of the second derivative
measures the rate of change of the angle which neighbouring tangents make with the tangent
at s. The curvature κ (s) := ‖c′′‖ gives, therefore, a measure of how rapidly the curve pulls
away from the tangent line at s, in the neighbourhood of s [Do Carmo, 2016, page 16].
In the later chapters, due to involvement of the piecewise smooth curves, we are mainly in-
terested in the discrete counterparts of the smooth notion such as curvature. Consequently,
such an introduction is necessary:

Definition 10 (Milnor, 1950). In the discrete case, if {a′ = p1, p2, . . . , pn = b′} is a sequence
of breakpoints defining a piecewise smooth curve, it is natural to consider the angle θi be-
tween vectors pi+1− pi and pi− pi−1 as the “curvature" at the breakpoint pi.

1.1.10 Energy of Curves

In this section, the variations and energy of a curve, namely the bending energy and geodesic
energy, are introduced. In later chapters, the tools studied here are borrowed to manipulate
the behaviour of certain curves globally.

Definition 11 (Carmo, 1992, page 192). Let c : [a,b] −→ N be piecewise smooth curve on a
Riemannian manifold N. A “variation" of c is a continuous mapping f : (−ε ,ε)× [a,b]−→N
such that

• f (0, t) = c(t), t ∈ [a,b],

• there exists a subdivision of [a,b] by points a = t1 < ... < tn−1 < tn = b in a way that
the restriction of f to each (−ε , ε)× [ti, ti+1] is differentiable.

A variation is said to be “proper" if f (s,a) = c (a) and f (s,b) = c (b) for all s ∈ (−ε ,ε)
(see Fig. 1.7).
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FIGURE 1.7: Illustration of a proper variation.

Considering a smooth variation (smooth f ), the geodesic energy E and bending energy B
of the variation f for s ∈ (−ε ,ε) are defined as follows [Carmo, 1992, page 192, Pottmann
and Wallner, 2009, page 298]:

E (s) =
∫ b

a
‖∂ f

∂ t
(s, t)‖2 dt, (1.35)

B (s) =
∫ b

a
‖ ∂ 2 f

∂ t2 (s, t) ‖2 dt. (1.36)

In later chapters, it is shown that a variation of a curve is discretely done and depends on a
predefined step size (also known as learning rate). Hence, an introduction of Eqs. 1.36 with
a discrete setting is necessary.

Discretization of Curve Energies

For the sake of simplicity of notations, we restrict ourselves to the case of the piecewise
smooth curve in Rn as they are needed later on.

Definition 12. Assume that c : [a,b] −→ Rn is a “piecewise smooth" curve with a finite
partition, a = t1 < ... < tn−1 < tn = b, then the “discrete geodesic energy" E and “discrete
bending energy" B of the curve c are as follows (cf. [ Pottmann and Wallner, 2009]):

E (c) =
n

∑
i=2
‖c (ti)− c (ti−1)‖2, (1.37)

B (c) =
n−1

∑
i=2
‖ (c (ti+1)− c (ti))− (c (ti)− c (ti−1))‖2, (1.38)

while “discrete length" and “discrete total curvature" are respectively given by (cf. [Carmo,
1992; Milnor, 1950]):

L (c) =
n

∑
i=2
‖c (ti)− c (ti−1)‖, (1.39)

τ (c) =
n−1

∑
i=2
‖ (c (ti+1)− c (ti))− (c (ti)− c (ti−1))‖. (1.40)



14 Chapter 1. Mathematical Frameworks

Finally, it is noteworthy to emphasize that the variations under study in this paper are
proper as we require the motions to remain between a fixed start- and end-pose.

1.2 Algebraic Geometry

Algebraic geometry is a branch of mathematics, classically studying zeros of multivariable
polynomials. The fundamental objects of study in algebraic geometry are algebraic varieties,
which are in fact the set of solutions of the system of polynomials. Algebraic geometry oc-
cupies a central place in modern mathematics and has multiple conceptual connections with
such diverse fields as complex analysis and topology. In the 20th century, algebraic geometry
is divided into several subareas, one of which is computational algebraic geometry. Com-
putational algebraic geometry is an area that has emerged at the intersection of the algebraic
geometry and computer algebra, with the rise of computers. It consists mainly of algorithm
design and software development for the study of properties of explicitly given algebraic va-
rieties. Some of the crucial recent applications of this branch revolve around the computer
science fields such as robotics and artificial intelligence [Cox, Little, and O’Shea, 2013].
The mathematical discipline of this thesis is closely related to one of the branches of com-
putational algebraic geometry known as computational kinematics. This branch which, for-
mally, is defined as the kinematics involving intensive computations [Angeles, 2002], heavily
resorts to the algebraic geometry and due to its repeated use through out the thesis, dedicating
a subsection to it is unavoidable.
In this subsection, some definitions and theorems are recalled from algebraic geometry. Once
again, the presented examples in this subsection are in R3 so that the reader obtains a geo-
metric intuition for the future cases to come (which are mainly in R6).

1.2.1 Algebraic Varieties

The main goal of study in the classical algebraic geometry revolves around the geometrical
objects known as algebraic varieties. The following definition deals with the concept of
affine algebraic varieties.

Definition 13 (Cox, Little, and O’Shea, 2013, page 5). Let K be a field, and let f1, . . . fs be
polynomials in K [x1, . . . ,xn]. Then an “affine variety" defined by f1, . . . , fs is:

V ( f1, . . . , fs ) := {(a1, . . . ,an) ∈Kn | fi (a1, . . . ,an) = 0, ∀ i, 1≤ i≤ s}. (1.41)

Thus, an affine variety is the set of all solutions of the system of equations in the space
Kn. The reader can find some examples of affine algebraic varieties in Fig. 1.8. Affine
algebraic varieties obey certain properties out of which the intersection and union properties
are most important.

Lemma 3 (Hartshorne, 2013, page 2). If V = V ( f1, . . . , fs), W = V (g1, . . . ,gt) are affine
varieties, then we have

V (1) = /0, (1.42)

V (0) = Kn, (1.43)

V ∩W = V ( f1, . . . , fs,g1, . . . ,gt) , (1.44)

V ∪W = V ( fi g j | 1≤ i≤ s, 1≤ j ≤ t) . (1.45)
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FIGURE 1.8: Illustrations of affine varieties. Left: a one-sheet hyperboloid V
(
x2 + y2− z2−1

)
as a

smooth connected surface. Middle: a cone V
(
x2 + y2− z2

)
as a non-smooth connected surface. Right:

a two-sheet hyperboloid V
(
x2 + y2− z2 + 1

)
as a smooth non-connected surface.

By considering the compliment of the algebraic varieties, the properties listed in Lemma 3
define a topology on Kn called Zariski topology.
Depending on the ambient space, special names are reserved for the varieties that are defined
by a single irreducible polynomial. The varieties obtained in this way possess some compu-
tational benefits that may be of use in coding algorithms. In later chapters we resort to these
varieties from time to time to enjoy the aforementioned advantages.

Definition 14 (Hartshorne, 2013, page 4). Let f be an irreducible polynomial in R=K [x1, ...,xn].
Then the affine variety V ( f ) is:

• an affine curve if n = 2,

• a surface if n = 3,

• a hypersurface if n > 3.

By having the basic objects defined, we move to a fundamental theorem in classical alge-
braic geometry. Hilbert’s Nullstelllensatz is a fundamental theorem that establishes relation
between geometry and algebra. More specifically, it relates algebraic varieties to ideals in
polynomial rings over algebraically closed fields.

Theorem 1 (Cox, Little, and O’Shea, 2013, page 183). Let K be an algebraically closed
field. If I is an ideal in R := K [x1, . . . ,xn], then

I (V (I)) =
√

I, (1.46)

where lhs of Eq. 1.46 stands as the set of all polynomials in R vanishing over V (I) and the
rhs is √

I = { f ∈ R | ∃n ∈N, f n ∈ I}. (1.47)

Finally, before shifting to the next class of interesting varieties, an example is given.

Example 9. The variety V
(
y− x2,z− x3

)
∈ R3 is called the “twisted cubic" (cf. Fig 1.9).

This curve has some interesting features such as being “non-planar", “non-symmetric" and
"smooth" which makes it a suitable testing ground for rigid body motions in the later chap-
ters.
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FIGURE 1.9: Illustrations of the twisted cubic. Left: The twisted cubic as the intersection V
(
y− x2

)
∩

V
(
z− x3

)
. Right: A general view.

1.2.2 Projective Varieties

Metaphorically, from an applied point of view, a projective space is the way that “human
eye sees the world", or in another word, is the space with perspectives. Recently, the com-
putational aspects of projective geometry has played different roles in computer science,
kinematics, optics and even art.
Here in this section we give a short introduction to the definition of a projective space and
projective varieties.
We define an equivalence relation ∼ on Kn+1 \{0} by setting

(y0, . . . ,yn) ∼ (x0, . . . ,xn) (1.48)

if ∃λ ( 6= 0) ∈K\{0} such that (y0, . . . ,yn) = λ (x0, . . . ,xn).

Definition 15 (Cox, Little, and O’Shea, 2013, page 368). The “n-dimensional projective
space over the field K", denoted by PKn is the set of equivalence classes of∼ on Kn+1\{0}.
Thus

Pn =
(
Kn+1 \{0}

)
/ ∼ . (1.49)

In this way, the n-tuples (x0, . . . ,xn) define a point in PKn and are called homogeneous
coordinates. These coordinates from now on are denoted by (x0 : . . . : xn).

In projective space the well-defined geometric objects to study are the projective varieties
which are defined as follows.

Definition 16 (Cox, Little, and O’Shea, 2013, page 370). Let K be a field and let f1, . . . , fs ∈
K [x0, . . . ,xn] be homogeneous polynomials. Then

V ( f1, . . . , fs ) := {(a0, . . . ,an) ∈Pn | fi (a0, . . . ,an) = 0, ∀ i1≤ i≤ s}, (1.50)

is called a projective variety.

Finally, before moving to an example, the following theorem is necessary to be men-
tioned.
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FIGURE 1.10: Illustration of the intersection of lines in the projective plane. The black lines meet on
the line at infinity while the red and the blacks meet in the finite plane R2.

Corollary 1 (Cox, Little, and O’Shea, 2013, page 370). For each i = 0, . . . ,n, let

Ui = {(x0, . . . ,xn) ∈Pn | xi 6= 0}. (1.51)

a) The points of each Ui are in one to one correspondence with the points of Kn,

b) The compliment Pn \Ui can be identified as Pn−1,

c) Pn =
⋃n

i=1Ui.

Corollary 1 allows one to think of the projective space as the disjoint union of a finite
space and a plane at infinity (which is in fact a copy of a one dimensional lower projective
space). As an example the 3-dimensional real projective space in this sense can be written as
P3 = R3∪Ω∞, where Ω∞

∼= P2.

Example 10. Fig. 1.10 shows the case of the intersection of lines in the real projective plane
P2. The parallel lines meet on the line at infinity, like the train rails which meet on the
horizon. While the non-parallel ones meet in R2.

1.2.3 Critical Values Vs. Singular Points

Due to the nature of the definition of manipulator’s singularities, the idea of singular points
and critical values are sometimes mixed up. In order to resolve this, let’s visit the definition
of regular points and regular values.

Definition 17. If F : M −→ N is a smooth map, a point p ∈M is said to be a “regular point"
of F if d Fp : TpM −→ TF(p)N is surjective; it is a “critical point" otherwise. Note that if
dimM < dimN then every point of M is going to be a critical point. Furthermore, a point
c ∈ N is a “regular value" if every point of the level set F−1 (c) is a regular point and a
“critical value" otherwise [Lee, 2003].

Example 11. Consider the following smooth surjective map

f : R2 −→R, (1.52)

(x,y) 7−→ x2 + y2, (1.53)
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computing its derivative gives
d f =

(
2x 2y

)
(1.54)

Evidently, d f is not onto at the origin and hence (0,0) will be a critical value of the map
f . Geometrically, the critical point is a point on the paraboloid graph( f ) where the tangent
space at paraboloid is parallel to one of the coordinate planes (x− y plane in this case).

Now, let’s review the definition of singular points on an algebraic variety.

Definition 18. Let p be a point on an affine variety V . Then p is “nonsingular" (or smooth)
provided dimpV = dimTpV . Otherwise, p is a “singular point" [Cox, Little, and O’Shea,
2013].

Theorem 2. Let V = V( f1, . . . , fr)⊂Cn be an arbitrary variety and suppose that p ∈V is a
point where Jp( f1, ..., fr) has rank r. Then p is a nonsingular point of V and lies on a unique
irreducible component of V of dimension n− r [Cox, Little, and O’Shea, 2013].

Example 12. In order to compute the singular points of a paraboloid consider the following
surjective smooth map defining it:

g : R3 −→R, (1.55)

(x,y,z) 7−→ x2 + y2− z, (1.56)

computing it derivative gives
d g =

(
2x 2y −1

)
(1.57)

one easily notes that ∇g = d g. As can be seen d g does not vanish on any point of R3

including the points on g−1(0) = V(x2 + y2− z). Hence (0,0) is a critical point for the map
f but is not a singular point. Note that, (0,0) is not a critical point for map g.

1.2.4 Distance to a Variety via Lagrange Multipliers

The method of Lagrange multipliers is a strategy for finding the local maxima, minima and
saddle points of a function f subject to equality constraints gi (i.e. subject to the condition
that one or more equations have to be satisfied exactly by the chosen values of the variables).
Mathematically, this method states that ∇ f = ∑i λi ∇gi at a critical point.
However, in problems to come we mainly deal with the case where the function f is a dis-
tance function (from a point to a surface) and the constraint g is a polynomial describing an
algebraic variety. Geometrically, this means that a critical point is obtained whenever the
gradient fields on the variety and the on the shape defined by the metric become co-linear
at a point. An important consequence of this interpretation is that the Lagrange multipli-
ers method fails to identify critical points at the singularities of a variety. Note that this is
expected as the gradient vector vanishes at the singular points of a variety.

Example 13. Consider the variety V = V
(
x2− y3

)
⊂ R2 and a point outside of it A =

(0,−1) (cf. Fig. 1.11). The Lagrange multiplier system for this case will be

L = x2 +(y+ 1)2 +λ
(
x2− y3) , (1.58)

which upon solving yields complex solutions. In another word the closest point of the cusp to
the red disk, which is it sharp point, is not detected by the “Lagrange multipliers technique".

Despite this failure of Lagrange multipliers, this method will be of great help in forth-
coming chapters. The singular points of the variety can be identified separately. In cases
to come in future these singular points either form point clouds (finite points in space) or
well-behaved geometrical objects such as low dimensional planes and hence can be treated
separately.
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FIGURE 1.11: Illustration of distance of a point in space (green) to a curve with cusp singularity.

1.2.5 Rational Varieties

Rational varieties form another interesting class of algebraic varieties which are formally
defined as follows.

Definition 19 (Cox, Little, and O’Shea, 2013, page 252). Let K be a field and V ⊂Km and
W ⊂ Kn be irreducible affine varieties. A rational mapping from V to W is a function φ

represented by

φ : V 99KW with φ (x1, . . . ,xm) =

(
f1(x1, . . . ,xm)

g1(x1, . . . ,xm)
, . . . ,

fn(x1, . . . ,xm)

gn(x1, . . . ,xm)

)
(1.59)

where fi
gi
∈K(x1, . . . ,xm) and satisfies the following properties:

1. φ is defined at some point of V .

2. For every (a1, . . . ,am) ∈V where φ is defined, φ (a1, . . . ,am) ∈W.

Definition 20 (Cox, Little, and O’Shea, 2013, page 253). Two irreducible varieties V and
W are said to be birationally equivalent if there exist rational mappings φ : V 99KW and
ψ : W 99KV such that φ ◦ψ and ψ ◦φ be equal to idW and idV respectively.

Definition 21 (Cox, Little, and O’Shea, 2013, page 254). A rational variety is a variety that
is birationally equivalent to Kn.

One can find the extensive discussion of above definitions in [Shafarevich and Reid,
1994].
Having a rational parametrization of a variety has numerous advantages: If the coefficients
of the polynomials fi and gi of Eq. (1.59) belong to Q and if (x1, . . . ,xm) is an element of
Qm, then one obtains points with rational coordinates on the singularity variety [Shafarevich
and Reid, 1994, page 8]. This is a matter, which is of high importance to computer aided
designs, as computers can calculate rational coordinates at a much faster rate. Moreover the
rationality of the variety implies that it is path connected, which means that every point can
be connected to any other point by a continuous curve [Husty and Gosselin, 2008]. This
property, in the kinematics of manipulators, is of importance as it can be used for a computa-
tionally efficient approximation of the singularity-free workspace by hierarchical structured
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FIGURE 1.12: Illustrations of the comparison of three rational parametrizations of a one-sheet hyper-
boloid. Left: Rational parametrization using a bundle of line with apex on the plane at infinity. Middle:
Rational parametrization using Weierstrass substitution. Right: Rational parametrization of the one-
sheet hyperboloid as a ruled surface. The blue silhouette is the hyperboloid that is to be covered by the
coloured parametrized surfaces.

hyperboxes, where only their boundaries have to be checked to be free of singularities.
The following examples illustrate two rational parametrizations for the case of hyperboloid
of one-sheet.

Example 14. The goal is to find a rational parametrization for the one-sheet hyperboloid
with the following implicit equation

P :=
x2

A2 +
y2

B2 −
z2

C2 −1. (1.60)

One standard way to obtain rational parametrization for quadric surfaces is to resort to the
projective space [Schicho, 1998]. Homogenizing the polynomial P from Eq. 1.60 gives a
projective variety in P3 represented by the zero of the following polynomial:

Ph :=
x2

A2 +
y2

B2 −
z2

C2 −w2. (1.61)

For our purpose we need to compute a birational map from V (Ph) to P2. This is easy as if
the point q ∈ V (Ph) is a smooth point then the projection from q to P2 is birational. This is
equivalent to choosing three linearly independent linear forms vanishing at a smooth point,
here namely q = (0 : B : C : 0). For details on smoothness of algebraic varieties see [Cox,
Little, and O’Shea, 2013, page 490] and for details on the general parametrization algorithm
for the quadric surfaces see [Schicho, 1998]. Then we have the following map:

φ : U ⊂ V (Ph) 99KP2, (1.62)

(x : y : z : w) 7→ (x : C y−Bz : w), (1.63)

where U = V(Ph) \ q. This gives a rational map from our quadric minus a point to P2.
Geometrically, this is similar to the idea of parametrizing a circle using a pencil of lines.
Now, name

X = x, (1.64)

Y =C y−Bz, (1.65)

Z = w, (1.66)
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and solving the above equations for x, y, and w and substituting the result in Eq. 1.61, one
obtains z. Finally, the rational parametrization is:

ψ : U ′ ⊂P2 99K V (Ph)

(X : Y : Z) 7→

(
X :

(
−C2 B2 +A2

)
Y

2A2C
+

B2C Z2

2Y
:

(
−C2 B2−A2

)
Y

2A2 B
+

BC2 Z2

2Y
: Z

)

where U ′ = P2 \V(Y ). The rest is easy to check that ψ and φ give the birational equivalency
of V(Ph) and P2. By putting Z = 1, one achieves the rational parametrization for hyperboloid
of one-sheet.
Finally, it could be helpful to take a look at the visual result of our parametrization. Fig. 1.12 -
left provides the rational parameterization picture for A =

√
b, B =

√
4b and C =

√
4b when

b = 0.5. The blue hologram of hyperboloid is created using its implicit function while the
“more accurate" portions of it are produced using our rational parametrization for X ∈
[−2,2] and Y ∈ [−18,−0.8]∪ [0.8,18]. Playing with the ranges of X and Y reveals that
the parametric portion does not grow identically in all directions and though this rational
parametrization gives some theoretical and computational benefits, its not always the best
parametric representation for a 3-dimensional visualization of a surface.

In this next example, we repeat the same goal as of Example 14 using a tool of different
nature which turns out to be more compatible with plottings.

Example 15. One useful tool to obtain the rational parametrization of the quadrics is the so-
called “Weierstrass substitution", t 7→ 2arctanu. Combining it with the usual trigonometric
relations

cos2 t + sin2 t = 1 −→
(

1−u2

1+ u2

)2

+

(
2u

1+ u2

)2

= 1

sec2 t− tan2 t = 1 −→
(

1+ u2

1−u2

)2

−
(

2u
1−u2

)2

= 1

builds up the rational parametrizations for the quadric surfaces.
For the specific case of the one-sheet hyperboloid of Eq. 1.60, the trigonometric parametriza-
tion is:

x = A cosθ secλ , (1.67)

y = B sinθ secλ , (1.68)

z =C tanλ . (1.69)

Using the “Weierstrass substitution" yields

x = A
(1−u2) (1+ v2)

(1+ u2) (1− v2)
, (1.70)

y = B
2u (1+ v2)

(1+ u2) (1− v2)
, (1.71)

z =C
2v

1− v2 . (1.72)

One observes the result of such parametrization in Fig. 1.12 - right.

Example 16. Another well known parametrization of the one-sheet hyperboloid is the one
obtained by resorting to the fact that this variety is a ruled surface ((for details on ruled
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surfaces see [Carmo, 1992])). Computing the tangent space to this variety at each point and
intersecting the result with it yields two lines. Each of these lines can be utilized to generate
the surface. The following rational parametrization describes the one-sheet hyperboloid by
sweeping it with the generating line:

(u,v) 7→

 −A (A2 u2−B2)/(A2 u2 +B2)
(2uAB2)/(A2 u2 +B2)

0

+ v

 −2 (A2 Bu)/(A2 u2 +B2)
−B (A2 u2−B2)/(A2 u2 +B2)

C

 ,

where u and v each sweep the real line R. Fig. 1.12 - right depicts this parametrization. Note
that the generating line is visible as one of the two coordinate curves.

1.2.6 Real Algebraic Geometry

The real algebraic Geometry is a branch of algebraic geometry focusing on the real solu-
tions to the algebraic equations and the related mappings between them (i.e. real polynomial
mappings). The main geometrical objects of study in this field are the semialgebraic sets. In-
formally, these objects illustrate the real solutions to algebraic inequalities with real number
coefficients.

Definition 22. A semialgebraic set is a subset S of Kn for some real closed field K (for
example K could be the field of real numbers) defined by a finite sequence of polynomial
equations of the form P(x1, ...,xn) = 0 and inequalities of the form Q(x1, ...,xn) > 0, or any
finite union of such sets.

Similarly to algebraic subvarieties, finite union and intersections of semialgebraic sets are
still semialgebraic sets. Furthermore, unlike subvarieties, the complement of a semialgebraic
set is again semialgebraic.
The main goal of referring to real algebraic geometry in this thesis is related to use a specific
tool known as cylindrical algebraic decomposition. In later chapters, the application of this
tool in obtaining the workspace of the linear pentapods is depicted.

Definition 23. Given a set S of polynomials in R [x1, . . . ,xn], a cylindrical algebraic decom-
position is a decomposition of Rn into connected semialgebraic sets called cells, on which
each polynomial has constant sign (i.e. either +, − or zero ). To be cylindrical, this decom-
position must satisfy the following condition:

• If 1≤ i≤ n and π is the projection from Rn to Rn−k by removing the last k coordinates,
then for every pair of cells C and D, one has either π (C) = π (D) or π (C)∩π (D) = /0.

1.2.7 Singular Value Decomposition

Informally, the singular value decomposition (SVD) is a factorization of real or complex
matrices. Formally, the singular value decomposition of an m×n real or complex matrix M
is a factorization of the form U SV ∗, where U is an m×m real or complex unitary matrix,
S is an m× n rectangular diagonal matrix with non-negative real numbers on the diagonal,
and V is an n× n real or complex unitary matrix. The diagonal entries σi of S are known
as singular values of M. The SVD is implemented in a vast variety of software libraries
including MATLAB and Maple.
Computationally, one of the main usages of the SVD is in obtaining the structure of the null
space of a linear map/matrix.
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FIGURE 1.13: Illustration of the intersection of three algebraic varieties (given in blue, green and
salmon) in two points (red spheres). The courtesy of the related polynomials goes to Franz Winkler.

Example 17. Assume that W is an inner product space and V is an n-dimensional subspace
of it. Then the space of all orthogonal vectors to V is defined by

V⊥ := {w ∈W | 〈v,w〉= 0, ∀v ∈V}, (1.73)

[O’Neill, 1983].
Resorting to the matrix format of the inner product yields vT gw = 0 where g is matrix of
metric tensor with respect to coordinate axis. Let

A :=

 vT
1
...

vT
n

 , (1.74)

such that {v1, . . . ,vn} spans V . From basic linear algebra the it is known that V⊥= null (Ag).
Using SVD algorithm on the matrix Ag will result in U SV ∗ where the rows of U form the
orthonormal basis of V .
In MATLAB this is obtained using the following function:

[U, ~ , ~] = n u l l (A ∗ g ) ;

1.2.8 Resultants method

Informally, the resultant of two polynomials is a polynomial expression which is equal to
zero if the polynomials have a common root, or equivalently, a common factor. In this thesis,
the resultants are used as a computational tool for solving systems of polynomial equations.
The interested reader can find the computational details of these algorithms in [Cox, Little,
and O’Shea, 2006, Cox, Little, and O’Shea, 2013].

R = r e s u l t a n t ( f1 , f2 , x ) ;
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1.2.9 Gröbner basis method

The Gröbner basis method allows one to solve problems about polynomial ideals (i.e. poly-
nomial system of equations) in an algorithmic and computational fashion. It is also used in
several computational algebra systems (such as Maple) to study specific polynomial ideals
that arise in applications [Cox, Little, and O’Shea, 2013, chapter 2].
Suppose J is our polynomial ideal (system of polynomial equations) then two of the useful
Maple commands of this method are given below:

wi th ( Groebner ) ;
w i th ( P o l y n o m i a l T o o l s ) ;

B := B a s i s ( J , p l e x (X ) ) ;
B := B a s i s ( J , l e x d e g ( [X] , [ u , A] ) , method = fgb ) ;

Example 18. Suppose that we want to solve the following system of polynomial equations:

f1 = y2− xy− xz+ 1, (1.75)

f2 = 2xy−2xz+ x2 + x, (1.76)

f3 = 2xy−2xz+ x2 + 1. (1.77)

Each polynomial equation in this system is geometrically interpreted as one of the algebraic
varieties given in Fig. 1.13, and solving this system is equivalent to obtaining the intersection
of these varieties. Here, our goal is to solve this system via the methods of Gröbner basis
and resultants in Maple.

Resultant

Using the command given in Section 1.2.9 we compute:

R1 := r e s u l t a n t ( f2 , f3 , z )
R2 := r e s u l t a n t ( f1 , f3 , z )
R3 := r e s u l t a n t ( f1 , f2 , z )

which gives

R1 = 2x (x−1) , (1.78)

R2 = −x3−4x2 y+ 2xy2 + x, (1.79)

R3 = −x
(
x2 + 4xy−2y2 + x−2

)
, (1.80)

G1 := r e s u l t a n t ( R2 , R3 , y )
G2 := r e s u l t a n t ( R1 , R3 , y )
G3 := r e s u l t a n t ( R1 , R2 , y )

which gives the following equation as the only solution

4x4 (x−1)2 = 0, (1.81)

4x2 (x−1)2 = 0. (1.82)

Upon solving these equations and back-substituting it to the rest of the above equation we
find that the two points A = (1,0,1) and B = (1,2,3) are the only real solutions to our system
of Eq. 1.77.
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Gröbner basis

Using the Gröbner basis, we create the ideal J := 〈 f1, f2, f3〉. Now using one of the mentioned
command in Section 1.2.9,

B := B a s i s ( J , p l e x ( x , y , z ) ) ;

yields the following basis for the ideal J which is consisted of simpler polynomials compared
to the original basis of the aforementioned ideal.

z2−4z+ 3 = 0, (1.83)

y− z+ 1 = 0, (1.84)

x−1 = 0. (1.85)

Hence, solving Eq. 1.85 for x and back-substituting it to the rest of the above equation gives
the two points A = (1,0,1) and B = (1,2,3) as the only solutions of our system of equations
(see Fig. 1.13 for the related geometrical interpretation).

1.2.10 Bézout’s Theorem and Extension of Example 18

From time to time in tasks involving computational kinematics one has to estimate the num-
ber of solutions of a system of polynomial equations. This is equal to thinking of a zero
dimensional variety. The theorem originally states that the number of common points of
two curves is at most equal to the product of their degrees, an equality holds if the points
at infinity, points with complex coordinates and intersection multiplicities (for definition of
multiplicity see [Cox, Little, and O’Shea, 2013, page 139]) are counted [Cox, Little, and
O’Shea, 2013, chapter 8]. Bézout’s Theorem also refers to higher dimensions which the
definition is as follows:

Definition 24 (Cox, Little, and O’Shea, 2006, page 97). If the equations F0 = . . .Fn−1 = 0
have degrees d0, . . . ,dn−1 and finitely many solutions in PCn, then the number of solutions
(counted with multiplicity) is the multiplication of the aforementioned degrees d0 d1 ...dn−1.

Geometrically, Definition 24 implies that the number of points obtained after intersecting
n hypersurfaces in PCn is d0 d1 ...dn−1 (after counting multiplicity). As soon as we step down
from resorting to PCn (or from counting multiplicities) this theorem provides only an upper
bound. Chapter 8 of [Cox, Little, and O’Shea, 2013] contains beautiful yet simple example
of this theorem for intersecting planar curves. Here we rely on Example 18 to demonstrate
the Bézout’s theorem.

Example 19. Consider the equations of Example 18 in the projective space PC3 which gives
the following three hyperquadrics:

f1 = y2− xy− xz+ x2
0, (1.86)

f2 = 2xy−2xz+ x2 + xx0, (1.87)

f3 = 2xy−2xz+ x2 + x2
0, (1.88)

where x0 is our extra homogenizing variable. At this point Bézout’s theorem states that the
number of solutions to this system is 8 (having in mind that the multiplicity is counted as
well). Upon solving the above system of polynomial equations one finds the following five
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points:

(1 : 2 : 3 : 1) , (1.89)

(1 : 0 : 1 : 1) , (1.90)(
−2+

√
6 : 1 :

√
6/2 : 0

)
, (1.91)(

−2−
√

6 : 1 : −
√

6/2 : 0
)

, (1.92)

(0 : 0 : 1 : 0) , (1.93)

out of which, the magenta ones are exactly those which are obtained in Example 18 (in finite
space) and the rest are on the plane at infinity (the last coordinates refers to x0).
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Chapter 2

Linear Pentapods

2.1 Introduction

A (general) linear pentapod (cf. Fig. 2.1) is defined as a five degree-of-freedom (DoF) line-
body component of a Gough-Stewart platform consisting of a linear motion platform ` with
five identical spherical-prismatic-spherical (SPS) legs, where the prismatic joints are active
and the rest are passive [Kong and Gosselin, 2001]. The pose of ` is uniquely determined
by a position vector p = (u4,u5,u6)

T ∈ R3 and an orientation given by a unit-vector i =
(u1,u2,u3)

T ∈R3. The coordinate vector m j of the platform anchor point m j of the j-th leg
is defined by the equation m j = p+ r ji with r j ∈R and the base anchor points M j of the j-th
leg has coordinates M j = (x j,y j,z j)

T for j = 1, . . . ,5.

`

FIGURE 2.1: Sketch of a linear pentapod.

It turns out that this kind of manipulator is an interesting alternative to serial robots han-
dling axis-symmetric tools. Some fundamental industrial tasks such as 5-axis milling, laser
engraving and water jet cutting are counted as its applications in industry [Borràs, Thomas,
and Torras, 2010b; Weck and Staimer, 2002].

Singularity analysis plays an important role in motion planning of parallel manipula-
tors. Special configurations referred to as kinematic singularities have always been central in
mechanism theory and robotics. Beside being an intellectually appealing topic, the study of
kinematic singularities provides an insight of major practical and theoretical importance for
the design, control, and application of robot manipulators.

In such singularities, the kinetostatic properties of a mechanism undergo sudden and dra-
matic changes. This motivates the enormous practical value of a careful study and thorough
understanding of the phenomenon for the design and use of manipulators.
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2.1.1 Review

Here, a brief review on the previous findings related to the singularity analysis of the linear
pentapods is presented.

Forward and Inverse Kinematics of the Linear Pentapods

From a geometrical point of view, the forward kinematics problem of the linear pentapod is
equivalent to the problem of placing a rigid body such that five given points of the body lie
on five spheres with center Mi and radius ρi [Borràs, Thomas, and Torras, 2010a, page 9].
Geometrically, this is equivalent to finding the solutions of the following system:

ρ
2
i = ‖mi−Mi‖= ‖p+ ri i−Mi‖. (2.1)

On the other hand, the inverse kinematics deals with the problem to determine the leg lengths
if the end-effector position is given by p and i. Based on the results in [Bär and Weiß, 2006,
Borràs et al., 2009] the forward and inverse kinematics of the linear pentapods are given in
the following table:

Forward/Inverse Kinematics’ Number of Solutions
Forward kinematics Inverse Kinematics

General linear pentapod 8 1

TABLE 2.1: A summary on the number of solutions of the forward and inverse kinematics of the linear
pentapods.

In this context it should be mentioned that the forward kinematics of a linear pentapod
was solved for the first time in [Zhang and Song, 1992] under the assumption of a planar
base, and in [Nawratil and Schicho, 2017] for the general case.

Redundancy

It is well known that in applications parallel manipulators have some crucial advantages over
the serial counterparts (e.g. stiffness in certain directions, higher accuracy, etc). However, one
of the fundamental disadvantages of this class of manipulators is their limited workspace. In
order to ameliorate these forgoing advantages, redundant parallel manipulators have been
designed. Most of the current designs are based on the concept of actuation redundancy in
which more actuators than necessary are used for the control of the robot [Dasgupta and
Mruthyunjaya, 1998, Kim, 1997, Wu et al., 2009, Merlet, 1996, Nakamura and Ghodoussi,
1989]. In contrast with actuation redundancy, kinematic redundancy involves the introduc-
tion of additional degrees of freedom. Additionally, they generally involve more controlled
motion parameters or actuators then the minimum required for a generic set of tasks [Wang
and Gosselin, 2004]. Examples of such manipulators can be found within [Zanganeh and
Angeles, 1994b, Zanganeh and Angeles, 1994a, Huang and Kong, 1995].

Singularity Analysis of Linear Pentapods

If the system presented in Eq. 2.1 is written as an implicit relation between the leg lengths
ρ = (ρ1, . . . ,ρ5) and the linear pentapod’s pose u = (u1, . . . ,u6) then the system can be ab-
breviated as

Fi (u, ρ) = 0, ∀ i, 1≤ i≤ 5. (2.2)
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Differentiating Eqs. 2.2 with respect to time gives

Ju̇+Kρ̇ = 0, (2.3)

where J = ∂ F/∂ (u1, . . . ,u6) and K = ∂ F/∂ (ρ1, . . . ,ρ5). The structure of Eq. 2.3 bears
an interesting analysis regarding the singularities of the linear pentapods. Specializing the
concepts of serial singularities and parallel singularities defined in [Merlet, 2006] for the
case of linear pentapod gives

Definition 25. A linear pentapod has “serial singularities" if the Jacobian matrix K is rank
deficient.

Definition 26. A linear pentapod has “parallel singularities" if the Jacobian matrix J is rank
deficient.

Depending on the singularity type, one of the following scenarios happens:

• If the pentapod has only the serial singularities then for certain non-zero joint veloci-
ties, namely ρ̇ , the matrix multiplication Kρ̇ vanishes. This makes the pose velocity,
u̇, to vanish. In another word the manipulator loses degree(s)-of-freedom.

• If the pentapod has only parallel singularities then for certain non-zero pose velocities,
namely u̇, the matrix multiplication Ju̇ vanishes, which results in the vanishing of ρ̇ .
In another word, the prismatic joints are locked (producing no velocity) but the motion
platform is locally moveable. This can be seen as gaining degree(s)-of-freedom.

• If the pentapod has both singularities, then both previous scenarios may occur.

The singularity analysis of linear pentapods has undergone an acceptable level of investiga-
tions over the past few years. In the following we give an overview of the obtained results:

From the line-geometric point of view (cf. [Merlet, 1989]) a linear pentapod is in a sin-
gular configuration if and only if the five carrier lines of the legs belong to a linear line
congruence [Pottmann and Wallner, 2009]; i.e. the Plücker coordinates of these lines are lin-
early dependent. From this latter characterization the following algebraic one can be obtained
(cf. [Rasoulzadeh and Nawratil, 2018]):

There exists a bijection between the configuration space of a linear pentapod and all
points (u1,u2,u3,u4,u5,u6)T ∈R6 located on the singular quadric Γ : u2

1+u2
2+u2

3 = 1, where
(u1,u2,u3) determines the orientation of the linear platform ` and (u4,u5,u6) its position.
Then the set of all singular robot configurations is obtained as the intersection of Γ with a
cubic hypersurface Σ of R6, which can be written as Σ : det(S) = 0 (which from now on will
be called singularity polynomial) with

S =



1 u1 u2 u3 u4 u5 u6
0 u4 u5 u6 0 0 0
0 0 0 0 u1 u2 u3
r2 x2 y2 z2 r2x2 r2y2 r2z2
r3 x3 y3 z3 r3x3 r3y3 r3z3
r4 x4 y4 z4 r4x4 r4y4 r4z4
r5 x5 y5 z5 r5x5 r5y5 r5z5


. (2.4)

(according to [Borràs, Thomas, and Torras, 2010b]) under the assumption that x1 = y1 = z1 =
r1 = 0. Note that this assumption can be done without loss of generality as the fixed/moving
frame can always be chosen in a way that the first base/platform anchor point is its origin.
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Remark 5. The relation between the matrix S and the Plücker coordinates of the pentapod’s
legs is not well explained in the literature. For the interested reader this gap is closed in the
Appendix A.

A singular configuration can also be characterized as a multiple solution of the direct
kinematics problem. If the direct kinematics problem has a continuous solution, then the
linear pentapod has a so-called self-motion. Note that each pose of such a motion is a singular
one. All designs of linear pentapods possessing such motions are listed in [Nawratil and
Schicho, 2017]. A more detailed study of the corresponding self-motions is performed in
[Nawratil, 2018]. Moreover the last two cited papers also contain extensive literature reviews
on this topic.

A further well-studied field within the singularity analysis of linear pentapods are de-
signs, which are singular in any configuration. These so-called architecture singular designs
are completely classified in [Nawratil and Schicho, 2017, Section 1.3], where also all relevant
references in this context are cited.

Finally it should be noted, that Borràs and Thomas have studied how to move the leg
attachments in the base and the platform of 5-SPS linear pentapod without altering the robot’s
singularity locus (for a planar base see [Borràs, Thomas, and Torras, 2011b] and for a non-
planar one see [Borràs, Thomas, and Torras, 2010b]).

2.1.2 Notation and preparatory work

The following notations are used in the rest of the thesis:

• The compact notations X = (x2,x3,x4,x5)T , Y = (y2,y3,y4,y5)T , Z = (z2,z3,z4,z5)T

are introduced for the coordinates related to base anchor points.

• The compact notation r = (r2,r3,r4,r5)T is used for the coordinates related to platform
anchor points.

• The component-wise product of two vectors (also known as the Hadamard product) is
given as follows:

r◦X =


r2x2
r3x3
r4x4
r5x5

 , r◦Y =


r2y2
r3y3
r4y4
r5y5

 , r◦Z =


r2z2
r3z3
r4z4
r5z5

 . (2.5)

• For the sake of simplicity in notation as well as interpretation, we use the bracket; i.e.:

[A1,A2,A3,A4] = det(A1,A2,A3,A4) with Ai ∈ {r,X,Y,Z,r◦X,r◦Y,r◦Z}.

It is noteworthy that in the coming subsections of this chapter, the Roman letters inside
the bracket are interpreted as points in projective space while the bold letters denote
the corresponding homogeneous coordinates expressed as a vector.

Furthermore, a proper definition for undesired designs or in another formidable word the
architectural singularity seems necessary. Therefore a linear pentapod is an architecturally
singular manipulator if for every position and orientation, the matrix of Eq. 2.4 becomes rank
deficient. By defining the architecture matrix of linear pentapods, namely:

A =


r2 x2 y2 z2 r2x2 r2y2 r2z2
r3 x3 y3 z3 r3x3 r3y3 r3z3
r4 x4 y4 z4 r4x4 r4y4 r4z4
r5 x5 y5 z5 r5x5 r5y5 r5z5

 , (2.6)
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m1 = m2 = m3

m4

m5

M1

M2

M3

M4 = M5

m1 = m2 = m3 = m4

M1

M2

M3

M4
M5

m5

FIGURE 2.2: Illustrations of the counter examples for the necessity of the condition given in Lemma
4.

we can identify such singularities by considering the rank deficiency of this matrix (obtained
from the last four rows of the matrix S, Eq. 2.4).

Lemma 4. If the “architecture matrix" Eq. 2.6 is rank deficient then the linear pentapod is
an “architecturally singular manipulator" (cf. [Borràs, Thomas, and Torras, 2011a]).

Remark 6. It is noteworthy that this is a sufficient but not necessary condition as it is well-
known (cf. items (c) and (d) of Corollary 1 in [Nawratil, 2009]) that there exist the following
two1 exceptional cases:

? m1 = m2 = m3 and M4 = M5,

? m1 = m2 = m3 = m4,

which are illustrated in Fig. 2.2. It should be mentioned that these two designs2 are equiva-
lent with respect to singularity-invariant leg replacements (cf. [Borràs, Thomas, and Torras,
2011b]). �

Since in computational kinematics most of the computations are of symbolic type, and
naturally expensive in the sense of time consumption, it will be highly favourable if one
is able to eliminate some extra symbols. The following lemma shows that it is possible to
alleviate the burden of extra symbols in computations to come:

Lemma 5. If the linear pentapod is not architecturally singular then there exists a triple of
base points Mi, M j and Mk which form a triangle and mi 6= m j holds (cf. Fig. 2.3).

Proof: It is enough to show that there is a triangle where at least two of its corresponding
platform points are not coinciding. First we claim that a triangle in the base always exist,
as otherwise all five base points are collinear which yield a trivial architecture singular de-
sign. Now, since not all the platform points can be coincided (if more than 3 platform anchor
points coincide we get again a trivial architecture singular design) there should be at least
two different points on the platform namely, mi and m j. Now name the corresponding base
points Mi and M j. If these two are not coincided then based on the first part of the proof it is
possible to find another base point Mk not co-linear with Mi, M j and hence the statement is
fulfilled.

Now, suppose such a triangle with mi 6= m j doesn’t exist. Then for 4 MiMkMl and

1Up to renumbering of the platform and base anchor points.
2Note that throughout the paper a combinatorial classification [Faugère and Lazard, 1995] of pentapods is

used.
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mi
m j

Mi = M j Ml

Mk

FIGURE 2.3: Red line stands as the linear pentapod’s motion platform, while green and black stand for
the triangle in the base and the legs respectively.

4 MiMkMl we have mi = mk = ml and m j = mk = ml respectively, which would yield
mi = m j, a contradiction. �
Based on Lemma 5 one can assume M1 = (0,0,0)T , M2 = (x2,0,0)T and M3 = (x3,y3,0)T

where x2y3 6= 0. Moreover due to m1 6= m2 we can assume a scaling upon which, r2 = 1 or
x2 = 1 holds. Now the architecture matrix of Eq. 2.6 simplifies into the following matrix:

A =


r2 x2 0 0 x2 0 0
r3 x3 y3 0 r3x3 r3y3 0
r4 x4 y4 z4 r4x4 r4y4 r4z4
r5 x5 y5 z5 r5x5 r5y5 r5z5

 . (2.7)

With the aid of Lemma 5 and using projective geometry it is possible to obtain a simple but
helpful geometric interpretation for architecturally singular linear pentapods in the coming
sections. In fact one can think of r, X and r ◦X as points in the affine space R3 and the
remaining columns of Eq. 2.7 as points on the plane at infinity Ω∞, which closes R3 pro-
jectively; i.e. the columns of Eq. 2.7 can be seen as homogenous point coordinates of the
3-dimensional projective space PR3. This point of view implies the following lemma:

Lemma 6. The “architecture matrix" is rank deficient iff the points r, X, Y, Z, rX, rY and rZ
are coplanar in PR3.

Naturally, in the case where some columns of the architecture matrix are zero, they will
not appear as points in the projective space interpretation.

2.2 Singularity Variety of Linear Pentapods

Kinematical singularities occur whenever the Jacobian matrix J becomes rank deficient,
where J can be written as follows (cf. [Borràs, Thomas, and Torras, 2010b]):

J =

(
l1 . . . l5
l̂1 . . . l̂5

)T

with l j =

u4 + r ju1− x j

u5 + r ju2− y j

u6 + r ju3− z j

 , l̂ j =

z j(u5 + r ju2)− y j(u6 + r ju3)
x j(u6 + r ju3)− z j(u4 + r ju1)
y j(u4 + r ju1)− x j(u5 + r ju2)

 .

This 5× 6 Jacobian matrix J has a rank less than five whenever the determinants of all its
5× 5 sub-matrices vanish. So by naming the determinant of the 5× 5 sub-matrix, which
results from excluding the jth column, with Fj the singularity loci equals V (F1, . . . ,F6); i.e.
the variety of the ideal spanned by the polynomials F1, . . . ,F6. It can easily be checked by
direct computations that this variety equals the zero-set of the greatest common divisor F of
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F1, . . . ,F6. This singularity polynomial F has the following structure:

F :=(A1u5 +A2u6)u1
2 +[(A3u4 +A4u5 +A5u6 +A6)u2 +(A7u4 +A8u5

+A9u6 +A10)u3 +(A11u5 +A12u6)u4 +A13u5
2 +(A14u6 +A15)u5

+A16u6
2 +A17u6]u1 +(A18u4 +A19u6 +A20)u2

2 +[(A21u4 +A22u5

+A23u6 +A24)u3 +A25u4
2 +(A26u5 +A27u6 +A28)u4 +(A29u6

+A30)u5 +A31u6
2 +A32u6]u2 +(A33u4 +A34u5 +A35)u3

2 +[A36u4
2

+(A37u5 +A38u6 +A39)u4 +A40u5
2 +(A41u6 +A42)u5 +A43u6]u3

(2.8)

where the coefficients Ai belong to the ring

R := R [x2,x3,x4,x5,y3,y4,y5,z4,z5,r2,r3,r4,r5] , (2.9)

which evidently makes F a polynomial with the total-degree of 3 belonging to R [u1, . . . ,u6].
Note that for a specified orientation (u1,u2,u3) the equation F = 0 determines only a quadric
surface Ω(u1,u2,u3) in the space of positions. This property is of great importance later on.

Remark 7. It can easily be checked that the polynomial F is identical with the determinant
of the 7×7 matrix S of Eq. 2.4, (cf. [Borràs, Thomas, and Torras, 2010b, Eq. 4]).

2.2.1 Rational Parametrization of Singularity Locus

For the computation of the rational parametrization of the linear pentapod’s singularity vari-
ety, we exploit the idea used in [Coste and Moussa, 2015]: By homogenizing the singularity
polynomial F of Eq. 2.8 by the extra variable u0 with respect to the position variables u4,
u5 and u6, we obtain a homogeneous polynomial Fh ∈ R(u1,u2,u3)[u4,u5,u6,u0] in the pro-
jective 3-space P3 with homogeneous coordinates (u4 : u5 : u6 : u0). It turns out that the
point B with homogeneous coordinates (u1 : u2 : u3 : 0) is a point of the singularity variety;
i.e. B ∈ V(Fh) ⊂ P3. Note that B is the ideal point of the linear platform ` with orientation
vector i.

The side condition on the vector i = (u1,u2,u3)T to be of unit-length, can be avoided by
using the stereographic parametrization of the unit-sphere S2:

x : (t3, t4) 7→
(

2 t3
t32 + t42 + 1

,
2 t4

t32 + t42 + 1
,
t32 + t42−1
t32 + t42 + 1

)
. (2.10)

Based on this we can parametrize the lines of the bundle B with vertex B in the finite space
R3 of positions with coordinates (u4,u5,u6) as follows:

B :

 u4
u5
u6

= ax(t3, t4)+ t1
∂x(t3, t4)

∂ t3
+ t2

∂x(t3, t4)
∂ t4

. (2.11)

Note that the 2-tuple (t1, t2) fixes the line of the bundle B and the parameter a determines the
point on this line. By varying (t1, t2) ∈ R2 and setting a = 0 one obtains the plane through
the origin, which is orthogonal to i.

Plugging B(a, t1, t2, t3, t4) into F = 0 shows that the resulting expression is only linear
in a, as the ideal point B is always one of the two intersection points of a line belonging to
B with the quadric Ω(x(t3, t4)). By solving this linear condition we get a(t1, t2, t3, t4). Now
the singular configurations X = (ξ1, . . . ,ξ6) ∈ R6 of the linear pentapod can be rationally
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parametrized by (ξ1,ξ2,ξ3) := x(t3, t4) and

ξ4 = 2
a (t1, t2, t3, t4) t3

t32 + t42 + 1
−2

t1
(
t32− t42−1

)
(t32 + t42 + 1)2 −4

t2 t3 t4
(t32 + t42 + 1)2 ,

ξ5 = 2
a (t1, t2, t3, t4) t4

t32 + t42 + 1
−4

t1 t3 t4
(t32 + t42 + 1)2 + 2

t2
(
t32− t42 + 1

)
(t32 + t42 + 1)2 ,

ξ6 =
a (t1, t2, t3, t4)

(
t32 + t42−1

)
t32 + t42 + 1

+ 4
t1t3

(t32 + t42 + 1)2 + 4
t2t4

(t32 + t42 + 1)2 .

(2.12)

This parametrization covers the singular variety with exception of two low-dimensional sub-
variety: A missing 3-dimensional sub-variety is defined by the denominator of a(t1, t2, t3, t4).
In this case the residual intersection point ∈R3 of the line belonging to B with Ω(x(t3, t4))
is not determined uniquely; i.e. the complete line belongs to Ω(x(t3, t4)). As the orientation
(0,0,1) cannot be obtained by the stereographic parametrization, also the 2-dimensional
sub-variety Ω(0,0,1) is missing.

Moreover for a given singular pose X = (ξ1, . . . ,ξ6) ∈ R6 one can trivially compute
t1, . . . , t4 in a rational way from ξ1, . . . ,ξ6, thus the singularity variety is a rational one (ac-
cording to the Definitions 19, 20 and 21).

2.3 Designs of the Linear Pentapods Implying a Simple Singular-
ity Variety

The goal of this section is to extract information on the possible designs of the linear pen-
tapods which would lead to possessing a simpler singularity variety. Naturally, having a
simple singularity variety has numerous advantageous including a simple path planning and
path optimization. These merits will be investigated in later chapters.
The computation of each case is based on the elimination of determinants of undesired sub-
matrices of Eq. 2.4. These sub-matrices are named S j1,..., jn

i1,...,in where i1, . . . , in indicates the
numbers of the rows and j1, . . . , jn the numbers of the columns, which have to be deleted
from the matrix given in Eq. 2.4; e.g. S4,5,6

1,2,3 stands for the sub-matrix obtained by remov-
ing the 1st, 2nd and 3rd row and 4th, 5th and 6th column. In this section, by resorting to
Lemma 5, r2 = 1.

2.3.1 Linear in Position Variables

In this section we determine all non-architectural singular designs, where the singularity
polynomial det(S) = 0 is only linear in position variables. In the following we distinguish
between linear pentapods with/without coplanar base anchor points (planar/non-planar case).

Planar case

Assume that the manipulator is planar (z4 = z5 = 0). Since the desired goal here is to have the
linear singularity polynomial in position variables, all the terms containing position variables
of degree two should vanish. These terms form a polynomial, which we call the undesired
polynomial through the remainder of the section. In a more general sense, the undesired poly-
nomial is a polynomial which after subtracting it from det(S) yields a polynomial with the
desired property (this property can be linearity in position/orientation variables or quadratic
in total).
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FIGURE 2.4: Geometric interpretation of the conditions yielding a singularity polynomial, which is
linear in position variables for a linear pentapod with a planar base: architecturally singular case (left)
and the non-architecturally singular case (right).

Here the undesired polynomial is as follows:

det
(

S 4,7
1,2

)
u2

6 + det
(

S 4,5
1,2

)
u4u6−det

(
S 4,6

1,2

)
u5u6 = 0. (2.13)

If Eq. 2.13 is fulfilled independently of the position variables then all the coefficients have to
be zero. Based on the resulting conditions one can prove the following theorem:

Theorem 3. A non-architecturally singular linear pentapod with a planar base has a “sin-
gularity polynomial" that is linear in position variables, iff there is a singular affine mapping
κ from the base plane to the platform line ` with Mi 7→ mi for i = 1, . . . ,5.

Proof: Using Laplace expansion by minors, det
(

S 4,7
1,2

)
is:

[r,X,Y, rX]u2− [r,X,Y, rY]u1 = 0. (2.14)

For all possible orientations, Eq. 2.14 holds whenever both bracket coefficients vanish. Again
by considering the Laplace expansion by minors for det

(
S 4,5

1,2

)
and det

(
S 4,6

1,2

)
respectively,

one obtains:
[r,X,Y, rY]u3 = [r,X,Y, rX]u1 = 0. (2.15)

As it is also desired to have these equations vanished for all possible orientations, the bracket
coefficients should be equal to zero simultaneously. Hence, independently of all possible
orientations, the following statement holds:

det
(

S 4,7
1,2

)
vanishes⇐⇒ det

(
S 4,5

1,2

)
and det

(
S 4,6

1,2

)
vanish. (2.16)

Finally, based on Eq. 2.16 the necessary and sufficient condition for having a singularity
polynomial linear in position variables will be:

[r,X,Y, rY] = [r,X,Y, rX] = 0. (2.17)

Using the literature of bracket algebra available at [Ben-Horin et al., 2008; White, 1994]
these brackets vanish whenever the four points characterizing them are coplanar. We denote
the planes associated with the two brackets of Eq. 2.17 - left and Eq. 2.17 - right by P1 and
P2, respectively. Then the following two cases have to be distinguished:
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1. If the points r, X and Y are not collinear (or in other words if the vectors r, X and Y
are linearly independent) then the linear pentapod would be an architecturally singular
manipulator since geometrically, by Lemma 6 this is equivalent to having the planes
P1 and P2 coincident, as depicted in Fig. 2.4 - left.

2. If the points r, X and Y are collinear (or in other words if the vectors r, X and Y are
linearly dependent) then r ∈ span{X,Y}; i.e.

r = α .X+β .Y, (2.18)

where α and β are real numbers. This yields the affine coupling κ mentioned in
Theorem 3, namely:

κ : (xi,yi) 7−→ ri = αxi +βyi with α = 1
x2

and i = 2, . . . ,5. (2.19)

Geometrically, it is also worth mentioning that the planes P1 and P2 do not necessar-
ily coincide in this case (as depicted in Fig. 2.4 - right).

�

Remark 8. Now, the question arises, which designs possessing a singular affine coupling κ :
Mi 7→ mi are architecturally singular. According to the list given in [Nawratil and Schicho,
2017, Corollary 1] there are three possible types of “architecturally singular manipulators
3", which will be as follows:

? m1, . . . ,m5 are distinct and there exists a conic section passing through M1, . . . ,M5 and
the ideal point of the parallel fibers of κ (cf. [Borràs, Thomas, and Torras, 2011a]).
This is for example trivially fulfilled if M1, . . . ,M4 are collinear.

? m1, . . . ,m4 are pairwise distinct, m4 = m5 holds and the base points M1,M2,M3 are
collinear.

? More than two platform points coincide.

Non-planar case

For the non-planar case the following theorem holds:

Theorem 4. Non-architecturally singular linear pentapods with a non-planar base possess-
ing a “singularity polynomial", which is linear in position variables, do not exist.

Proof: det (S) = 0, independent of the position variables, gives det
(

S 5,2
1,2

)
= det

(
S 6,3

1,2

)
=

0. Using Laplace expansion by minors for det
(

S 5,2
1,2

)
and det

(
S 6,3

1,2

)
one finds:

[r,Y,Z, rZ] = [r,Y,Z, rY] = 0, (2.20)

[r,X,Z, rZ] = [r,X,Z, rX] = 0. (2.21)

Now, it is possible to deduce the following:

1. From Eq. 2.20 - left:
r◦Z ∈ span{r,Y,Z}, (2.22)

as r, Y and Z are obviously linearly independent.

3Up to renumbering of the platform and base anchor points.



2.3. Designs of the Linear Pentapods Implying a Simple Singularity Variety 37

2. From Eq. 2.20 - right one derives:

r◦Y ∈ span{r,Y,Z}. (2.23)

3. If we replace in Eq. 2.21 - left the expression r◦Z by the linear combination resulting
from Eq. 2.22 we get:

X ∈ span{r,Y,Z}. (2.24)

4. From Eq. 2.21 - right and Eq. 2.24 one finds:

r◦X ∈ span{r,Y,Z}. (2.25)

Now, using Eqs. 2.22–2.25, four out of seven columns of the architecture matrix are linearly
dependent and thus rank deficient:

Rank(r,X,Y,Z,r◦X,r◦Y,r◦Z) < 4. (2.26)

�
In total the results of Section 2.3.1 show that the manipulator given in Theorem 3 is the only
one with a singularity variety linear in position variables. This manipulator design was al-
ready known to the authors of [Borràs, Thomas, and Torras, 2011b]4, who also pointed out
that the forward kinematics of these pentapods can be solved quadratically.

2.3.2 Linear in Orientation Variables

In this section we determine all non-architecturally singular designs where the singularity
polynomial det(S) = 0 is only linear in orientation variables. As in Section 2.3.1 we distin-
guish between linear pentapods with planar and non-planar bases.

Planar case

Under the planar condition (z4 = z5 = 0) the undesired polynomial is:[
det
(

S 3,7
1,3

)
+ det

(
S 4,6

1,3

)]
u2 u3 +

[
det
(

S 2,7
1,3

)
−det

(
S 4,5

1,3

)]
u1 u3+

det
(

S 2,6
1,3

)
u1 u2−det

(
S 4,7

1,3

)
u3

2 = 0. (2.27)

Theorem 5. A non-architecturally singular linear pentapod with a planar base can only
have a “singularity polynomial", which is linear in orientation variables, in the following
cases:

1. M2, M3, M4, M5 are collinear,

2. m1 = mi and M j, Mk, Ml are collinear with pairwise distinct i, j,k, l ∈ {2,3,4,5},

3. m1 = mi = m j with pairwise distinct i, j ∈ {2,3,4,5}.

4Note that Theorems 3 and 4 cannot be concluded from Borràs, Thomas, and Torras, 2011b, as the authors
restricted to the planar case with no four anchor points aligned.
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FIGURE 2.5: Geometric interpretation of the conditions yielding a singularity polynomial, which is
linear in orientation variables for a linear pentapod with a planar base: architecturally singular case
(left) and the non-architecturally singular case (right).

Proof: Eq. 2.27, independently of the orientation variables, gives det
(

S 4,7
1,3

)
= 0. Once

again, by resorting to the literature of brackets, det
(

S 4,7
1,3

)
= 0 if and only if the following

holds:
[r,Y, rX, rY] = [r,X, rX, rY] = 0. (2.28)

Now, name the plane characterized by the points r, rX and rY as P1. If the points r, rX
and rY are not collinear then the plane P1 is defined uniquely and hence by Eq. 2.28 X and
Y are also on P1 which by Lemma 6 results in a rank deficiency of the architecture matrix
(cf. Fig. 2.5 - left).

On the other hand if the points r, rX and rY are collinear then there is the possibility
of having the points X and Y on two different planes, namely P1 and P2 as depicted in
Fig. 2.5 - right, which does not necessarily lead to an architectural singularity. Under this
assumption, we get r ∈ span{r◦X,r◦Y}; i.e.

r = α .rX+β .rY, (2.29)

where α and β are real numbers with (α ,β ) 6= (0,0). Now having Eq. 2.29 in mind, the
following possibilities arise (cf. Fig. 2.6):

1. ∀ i ∈ {2, ...,5},ri 6= 0. This yields:

1 = α .X+β .Y. (2.30)

Geometrically, in this case, the point 1 = (1,1,1,1) should always be on the line l

defined by the two points X and Y. Moreover Eq. 2.30 gives:{ x2 =
1
α

αxi +βyi = 1 for i > 2,

which means the base points M2, M3, M4, M5, are collinear.

2. ∃! i ∈ {3,4,5} such that ri = 0. Geometrically this means that one of the points
(1,0,1,1)T ,(1,1,0,1)T or (1,1,1,0)T should be on l. Naturally this yields m1 = mi

and M j and Mk are collinear with pairwise distinct i, j,k ∈ {3,4,5}.
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FIGURE 2.6: Three possible designs mentioned in Theorem 5. In this figure, a possible design space
is illustrated where the point X can be chosen on the depicted bundle of lines. Blue points stand
as the possible designs containing three collinear base points and red points as the design with three
collapsed spherical joints while the only green point describes the design with four base points on a
line. The collinear base points are indicated by red beams. It is noteworthy that illustrated designs are
obtained based on the number of co-incidents (which for red, blue and green are 2,1 and 0 respectively).
Additionally, it can be shown by a series of ∆-transforms [Borràs, Thomas, and Torras, 2010b], that
the singularity loci of all the three cases are identical.

3. ∃ i and j ∈ {3,4,5}, where i 6= j such that ri = r j = 0. Geometrically this means that
only one of the points (1,1,0,0)T ,(1,0,1,0)T or (1,0,0,1)T can be on l which yields
m1 = mi = m j with pairwise distinct i, j ∈ {3,4,5}.

�

Remark 9. Note that it is impossible to have the point (1,0,0,0)T on the line l, since this
would mean that the four platform anchor points should be coincident, which yields an “ar-
chitecturally singular manipulator". For the additional conditions on the designs 1–3 of The-
orem 5 rendering the manipulator architecture singular we refer to the list given in [Nawratil
and Schicho, 2017, Corollary 1].

Non-planar case

For the non-planar case the following theorem holds:

Theorem 6. Non-architecturally singular linear pentapods with a non-planar base possess-
ing a singularity polynomial, which is linear in orientation variables, do not exist.

Proof: det (S) = 0, independently of orientation variables, gives det
(

S 2,5
1,3

)
= det

(
S 3,6

1,3

)
=

det
(

S 4,7
1,3

)
= 0. By using Laplace expansion by minors for det

(
S 2,5

1,3

)
, det

(
S 3,6

1,3

)
and

det
(

S 4,7
1,3

)
one finds:

[r,Y, rY, rZ] = [r,Y, rX, rY] = 0, (2.31)

[r,Z, rX, rZ] = [r,X, rX, rZ] = 0. (2.32)

Now from Eq. 2.31 and Eq. 2.32 the following is argued:
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1. From Eq. 2.31 - left:
r◦Y ∈ span{r,Y,r◦Z}. (2.33)

2. From Eq. 2.31 - right and Eq. 2.33:

r◦X ∈ span{r,Y,r◦Z}. (2.34)

3. From Eq. 2.32 - left and Eq. 2.34:

Z ∈ span{r,Y,r◦Z}. (2.35)

4. From Eq. 2.32 - right and Eq. 2.34:

X ∈ span{r,Y,r◦Z}. (2.36)

Now, considering Eqs. 2.33–2.36 one would obtain

Rank(r,X,Y,Z,r◦X,r◦Y,r◦Z) < 4. (2.37)

which implies an architecturally singular manipulator. �

2.3.3 Quadratic

In this section we study linear pentapods where the singularity polynomial is only quadratic
in total. We are only able to prove the following negative result:

Theorem 7. Non-architecturally singular linear pentapods possessing a singularity polyno-
mial, which is quadratic in pose variables, do not exist.

Proof: Despite the fact that it is possible to prove this theorem in a similar fashion as the
proofs of the Theorem 4 and Theorem 6, here we choose a different constructive-computational
approach. The singularity polynomial given in Eq. 2.8 is a polynomial in pose variables.
However, the coefficients of this polynomial contain architectural information regarding the
geometric structure of the pentapod. Hence, rewriting Eq. 2.8 in the following form

F =(A1 u2 +A2 u3)u4
2 +((A3 u1 +A4 u2 +A5 u3)u5 +(A6 u1 +A7 u2 +A8 u3)u6+

(A9 u2 +A10 u3)u1 +A11 u2
2 +(B1 +A12 u3)u2 +A13 u3

2 +B2 u3)u4+

(A14 u1 +A15 u3)u5
2 +((A16 u1 +A17 u2 +A18 u3)u6 +A19 u1

2 +(B3+

A20 u2 +A21 u3)u1 +(B4 +A22 u3)u2 +A23 u3
2 +B5 u3)u5 +(A24 u1+

A25 u2)u6
2 +(A26 u1

2 +(B6 +A27 u2 +A28 u3)u1 +A29 u2
2 +(B7+

A30 u3)u2 +B8 u3)u6

(2.38)

implies that if we are about to carve a quadratic polynomial out, then the variables given
in magenta should not vanish all at the same time while the rest of coefficients (given by
Ai for i = 1, . . . ,30) are the ones that must vanish simultaneously. Note that, in the light of
Lemma 5, Ai and B j should belong to the ring R := R [r3,r4,r5,x2,x3,x4,x5,y3,y4,y5,z4,z5]
(in fact this is the least number of variables we can resort to in a general setting). This yields
a rather famous algebraic geometry problem known as the ideal membership problem. In
fact, if we define the ideal

I := 〈A1,A2, . . . ,A30〉 � R, (2.39)
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the variety V := V (I) is a 9-dimensional algebraic variety in R12 (which we can think of it
as a sort of design space where each point of it represents a possible architectural design for
the pentapod). Thinking of the polynomials B j (for j = 1, . . . ,8) as maps between R12 and
R, we would like to know whether they all simultaneously vanish over V or not. By Hilbert’s
Nullstellensatz theorem (see Theorem 1) we know that the set of all polynomial functions that
vanish on V is

√
I. Hence the whole problem reduces to knowing whether all B js belong to√

I simultaneously or not. Using the following command in Maple

f o r j from 1 t o 8 do Radica lMembersh ip (B[ j ] , I ) end do ;

reveals that the statement is true for all 8 cases. Consequently, all Ais vanishing implies that
all B js vanish which results in an architecturally singular manipulator. �

2.4 Simple Pentapods

The results of the previous section paves the way for the introduction of a new family of
linear pentapods possessing a singularity variety linear in position/orientation variables. Due
to the findings in Theorem 3 and Theorem 5, the aforementioned family has to be a subclass
of linear pentapods with a planar base.

Definition 27. A planar pentapod with an architectural design resulting in a singularity
polynomial linear in orientation/position variables (LO / LP) is called a “simple pentapod".

It turns out that the singularity variety of simple pentapods has some certain interesting
topological and geometrical features to study. In the following subsection these properties
are exploited.

2.4.1 Σ - Variety

Definition 28. The locus of the singularity polynomial of a “simple pentapod" is called a
“Σ-variety".

Now, tidied up the known information through definitions, one can take a closer look at
the structure of the Σ-varieties of LO and LP-cases.

Lemma 7. The Σ-variety of the LO-cases is the zero set of the following polynomial:

Σ : u6 [u6(αu1 +βu2)−u3(αu4 +βu5−1)] = 0, (2.40)

where α and β are real numbers and α2 +β 2 6= 0 (cf. [Rasoulzadeh and Nawratil, 2019a]).

Proof: It can be shown by a series of ∆-transforms (cf. [Borràs, Thomas, and Torras,
2010b]), that the singularity loci of all three cases are identical. Now, by substituting the
relations between architecture parameters of one of the cases (e.g. 3rd-case identified by
pairwise distinct indices i, j,k ∈ {3,4,5}) into det (S) (cf. Eq. 2.4):

x2 :=
1
α

, xi :=
1−βyi

α
, r j = rk := 0, (2.41)

one obtains Eq. 2.40. �

Lemma 8. The Σ-variety of the LP-case is the zero set of the following polynomial:

Σ : u3 [u6(αu1 +βu2−1)−u3(αu4 +βu5)] = 0. (2.42)
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FIGURE 2.7: One way to have an imaginative illustration of the Σ-variety is to consider a case with a
certain similarity in R3. In order to do so, consider the variety V

(
z (x2− y2− z2)

)
which is in fact the

union of a plane Σ1 and a hyperbolic paraboloid Σ2. In that way, the Σ1∩Σ2 will be of co-dimension
2 while Σ1 and Σ2 are tangent at a 0 dimensional subvariety. Note that due to the fact that in this
example we are restricted to R3 it is impossible to show the 2-dimensional singular set on Σ2 as it is of
co-dimension 4.

Proof: From Theorem 3, it is known that LP-case is generated whenever there is a singular
affine map κ : (xi,yi) −→ ri, where ri = αxi + βyi (cf. Eq. 2.19). Substituting this relation
into det (S) and factorizing, one obtains Eq. 2.42. �
Later on, during the process of singularity-free path optimization, a projection of a point
in R6 onto the variety is needed. Hence, a more detailed understanding of the Σ-variety
is helpful. In the following theorem the properties of the Σ-variety in the real space are
investigated.

Theorem 8. The Σ-variety has the following properties:

a) It is an algebraic variety formed by the union of a hyperplane Σ1, and a hyperquadric
Σ2, in R6,

b) Σ2 = Σ3∪· M, where Σ3 is the set of singular points of Σ2 and M is a smooth manifold,

c) Σ1 ∩Σ2 is a 4-dimensional algebraic variety, consisting of the union of two 4-planes
A and B,

d) Σ1 is tangent to Σ2 at a 3-dimensional smooth manifold M′ ⊂ Σ1∩Σ2,

e) Σ3 is a 2-plane and is contained in A ∩B ⊂ Σ1∩Σ2.

Finally, having in mind that V ( f1, . . . , fn) is the set of solutions to the system of polynomial
equations 〈 f1, . . . , fn〉, the details are summarized below:

• LO-case :

Σ1 = V(u6),

Σ2 = V (u6(αu1 +βu2)−u3(αu4 +βu5−1)),

Σ3 = V(αu1 +βu2,u3,αu4 +βu5−1,u6).

• LP-case:

Σ1 = V(u3),

Σ2 = V (u6(αu1 +βu2−1)−u3(αu4 +βu5)),

Σ3 = V (αu1 +βu2−1,u3,αu4 +βu5,u6).
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Proof: Since proving the theorem for one of the LP/LO cases can easily be repeated for the
other case, without loss of generality, we prove the theorem for the “LO-case":

a) Using Lemma 7 and basic properties of algebraic varieties (cf. [Cox, Little, and O’Shea,
2013]) results in:

Σ = V(u6) ∪ V(u6 (α u1 + β u2) − u3 (α u4 + βu5 − 1 ) ) = Σ1∪Σ2. (2.43)

b) The set of all singular points of Σ2 are the solutions of 〈 ∂ f
∂u1

, ∂ f
∂u2

, ∂ f
∂u3

, ∂ f
∂u4

, ∂ f
∂u5

, ∂ f
∂u6

, f 〉
where f ∈ C[u1,u2,u3,u4,u5,u6]. If f is Eq. 2.40 then

Σ3 = V (u6, 1− (αu4 +βu5), u3, α u1 +β u2 ) . (2.44)

Considering the following evidently smooth maps

h1 : R5 \V (α u1 +β u2 ) −→R6, (2.45)

(u1,u2,u3,u4,u5) 7−→
(

u1,u2,u3,u4,u5,
u3(αu4 +βu5−1)

α u1 +β u2

)
, (2.46)

h2 : R5 \V (1− (αu4 +βu5) ) −→R6, (2.47)

(u1,u2,u4,u5,u6) 7−→
(

u1,u2,
u6 (α u1 +β u2)

α u4 +β u5−1
,u4,u5,u6

)
, (2.48)

h3 : R5 \V (u3 ) −→R6, (2.49)

(u1,u2,u3,u5,u6) 7−→
(

u1,u2,u3,
α u1u6 +β u2u6−β u3u5 + u3

u3α
,u5,u6

)
, (2.50)

h4 : R5 \V (u6 ) −→R6, (2.51)

(u2,u3,u4,u5,u6) 7−→
(

α u3u4−β u2u6 +β u3u5−u3

u6α
,u2,u3,u4,u5,u6

)
, (2.52)

gives 5-dimensional smooth manifolds Mi := graph (hi)⊂R6 whose intersection with
Σ3 is empty. Moreover, taking an element in Σ2 and noting the structure of hi domains
implies one of the following two possibilities:

• if it satisfies Eq. 2.44 then it belongs to Σ3,

• otherwise it belongs to at least one of the Mis.

Hence, by naming M :=
⋃4

i=1 Mi we get the required result.

c) Substituting u6 = 0 in the defining equation of the hypersurface gives

Σ1∩Σ2 = V (u3)∪V(αu4 +βu5−1) = A ∪B, (2.53)

which upon observing that hypersurface equation and Eq. 2.53 are two constraints for
pose variables or through direct computation (i.e. using HilbertDimension command
in Maple) reveals that Σ1∩Σ2 is a union of two 4-dimensional planes.

d) Assuming f1 and f2 to be the defining polynomials of Σ1 and Σ2, to obtain the tangency
one has to check the points of Σ1∩Σ2 in which ∇ f1 and ∇ f2 are collinear. Doing so
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yields M′ with the following parametrization:

R3 \V (α v1 +β v2 ) −→R6, (2.54)

(v1,v2,v3) 7−→
(

v1,v2,0,
1−β v3

α
,v3,0

)
, (2.55)

for the LO-case which trivially yields a 3-dimensional smooth manifold. Using the
above parametrization (or through direct manipulation of the corresponding implicit
equations) one finds that Σ3 is a 2-dimensional plane and a subset of Σ1 ∩Σ2. By
observing Eq. 2.53, one deducts 〈u3, (α u4 +β u5−1)〉 includes 〈u3 (α u4 +β u5−1)〉
which results in Σ3 ⊂A ∩B.

e) The parametrization of Σ3 for LO-case is:

(v1,v2) 7−→
(
−β v1

α
,v1,0,

1−β v2

α
,v2,0

)
. (2.56)

�
In Fig. 2.7, an imaginative geometric depiction of Σ-variety in R6 is described in such a
way that the there is a correspondence between the co-dimension of its properties and of the
properties listed in Theorem 8.

2.5 Kinematic Redundant Designs

A certain drawback of parallel robots is the limitation of their singularity-free workspace,
which can be overcome by the concept of redundancy. A review on the different types of
redundancy for parallel robots with SPS-legs including a discussion of their pros and cons
is given by the authors in [Nawratil and Rasoulzadeh, 2018]. Following these arguments,
we are preferring the concept of kinematic redundancy by reconfiguring the base anchor
points of the pentapod by additional joints. In the case of a given path of the platform, the
kinematic redundant DoFs can be used to avoid singularities (if possible5) and to increase the
performance of the manipulator during the prescribed motion [Borràs et al., 2009].

For kinematic redundant designs of the simple pentapods the optimal reconfiguration of
the base (regarding the distance from the singularity) can easily be done due to the above
mentioned closed form solution (will be discussed in Theorem 9 and Section 3.3.3). There-
fore we conclude the chapter by presenting three such designs. The designs proposed in
Sections 2.5.1 and 2.5.2 have two DoFs of kinematically redundancy and the design given in
Section 2.5.3 has even three kinematic redundant DoFs.

2.5.1 Design 1

This design, displayed in Fig. 2.8, is based on the idea to change the coefficient β of the
affine coupling κ given in Eq. 2.19 by a reconfiguration of the base. This can be achieved by
a suitable sliding of the base points. The fibers of the singular affine transformation κ from
the base plane to the platform correspond to parallel lines in the base plane. It is well known
(cf. Section 4.3 of [Borràs, Thomas, and Torras, 2011a]) that a reconfiguration of a base point
along its corresponding fiber does not change the singularity variety. Therefore it suggests
itself to mount the sliders orthogonal to the fiber-direction. This sliding gives the first degree
of kinematic redundancy.

5The singularity variety is a hypersurface in the mechanism’s configuration space; thus two points of the
configuration space can be separated by this hypersurface.
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M1M2

M3

M4
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FIGURE 2.8: Illustration of the kinematic redundant linear pentapod of Section 2.5.1 with a linear
singularity variety in position variables.

Remark 10. The linear pentapod given in Fig. 2.8 has been designed in a symmetric way,
such that the sliders of Mi and Mi+1 (for i = 2,4) have to move with the same velocity (but
in opposite directions). Note that one can drive all sliders of M2, . . . ,M5 with only one motor
and a fixed gearing, as the ratio of the velocities of the sliders of M2 and M4 is constant.

Moreover it can easily be checked, that the symmetric design proposed in Fig. 2.8, can
never be architecturally singular in practice. �

The second degree of kinematic redundancy is achieved by the sliding of the first base
point in fiber-direction. As already mentioned this will not affect the singularity surface, but
it can be used to increase the performance of the manipulator during an end-effector motion
[Borràs et al., 2009].

2.5.2 Design 2

This design, based on item 1 of Theorem 5 and displayed in Fig. 2.9, is also a 2-DoF kine-
matic redundant pentapod with a planar base, which has the property that its singular poly-
nomial is linear in orientation for all possible configurations. The base points M2, . . . ,M5 are
collinearly mounted on a rod g, which slides (active joint) along a circular rail on the ground
and is connected over a U-joint (passive joint) with the ceiling. Therefore the rod g generates
during the motion a right circular cone.

For a better understanding of the redundant DoFs, we have a look at the singular-invariant
replacement of legs keeping the given platform anchor points:

? As this linear pentapod contains a line-line component (cf. [Borràs, Thomas, and Tor-
ras, 2010b]), one can relocate the base anchor points of the legs m2M2, . . . ,m5M5 arbi-
trarily on g (assumed that the resulting manipulator is not architecturally singular).

Remark 11. One can additionally allow a sliding (by active joints) of the base points
along the rod g (yielding further degrees of kinematic redundancy) but this will not
change the singularity variety. These reconfigurations can only be used to improve the
performance of the manipulator. �

? The base point of the first leg can be replaced by any point of the plane spanned by M1
and g (assumed that the resulting manipulator is not architecturally singular). There-
fore a sliding of M1 along the circular rail changes the singularity variety.
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FIGURE 2.9: Illustration of the kinematic redundant linear pentapod of Section 2.5.2 with a linear
singularity variety in orientation variables. The suggested design, where the upper part is mounted on
the ceiling, can be of interest for e.g. the milling of an object without any need of its repositioning, as
the manipulator can go around the object by 360 degrees.

2.5.3 Design 3

This design, based on item 2 of Theorem 5 and displayed in Fig. 2.10, is a 3-DoF kinemat-
ically redundant pentapod with planar base, which has the property that its singular polyno-
mial is linear in orientation for all possible configurations. The anchor points M1 and M2 can
slide along a circular rail (two active joints). The third degree of kinematic redundancy is
obtained by the rotation of the rod ` on which the collinear points M3,M4,M5 are mounted.

For a better understanding of the redundant DoFs, we study again the singular-invariant
replacements of legs keeping the given platform anchor points:

? One can relocate the base anchor points of the legs m3M3,m4M4,m5M5 arbitrarily on g
(assumed that the resulting manipulator is not architecturally singular). Therefore also
Remark 11 holds in this context.

? The base points of the first and second leg can be replaced by any two points of the
carrier plane of the circular rail (assumed that the resulting manipulator is not archi-
tecturally singular). As a consequence the sliding of M1 and M2 along the circular rail
does not change the singularity variety. Therefore these two redundant DoFs can only
be used to improve the performance of the manipulator.

Remark 12. Finally it should be noted that a design, based on item 3 of Theorem 5, is not
suited for technical realization due to the triple joint at the platform. �
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m1 = m2

M5 M4 M3 M2

M1
`

FIGURE 2.10: Illustration of the kinematic redundant linear pentapod of Section 2.5.3 with a linear
singularity variety in orientation variables. This design also allows a milling by 360◦ degrees around
the object. Moreover, detailed views of the double joint m1 = m2 at the platform and the circular slider
of M2 are provided.
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Chapter 3

Distance to the Singularity Variety

In singularities the number of DoFs of the mechanism changes instantaneously and becomes
uncontrollable. Additionally the actuator forces can become very large and cause the break
down of the platform [Li, Gosselin, and Richard, 2007]. Henceforth knowing the distance
of a given pose from the singularity variety is of great importance. The chapter is designed
as follows. We start by a lemma which reformulated the object-oriented metric tensor into
a metric. This function allows us to interpret the distance between two points in the pose
space (in R6) as the distance between two configurations of the pentapod (in R3). The next
pace thoroughly investigates the distance to the singularity variety for the linear pentapods
and simple pentapods (cf. Definition 27) for a fixed orientation/position under Euclidean and
equiform motions. Finally, the results of these investigations are summarized in a table given
at the end of the chapter.

3.1 Object-oriented Metric

In this section the goal is to introduce the object-oriented metric which is of special interest
as it allows one to deal with the kinematic space in a more general format (without forcing
us to restrict ourselves to position or orientation space). In order to introduce this metric we
define an object-oriented metric tensor and from that we derive the metric function.

Definition 29. The“object-oriented metric tensor" relative to the canonical basis of R6 is
defined by the following matrix:

g =



R J

R J

R J

J 1

J 1

J 1


6×6

, (3.1)

where R = 1
5 (r

2
1 + r2

2 + r2
3 + r2

4 + r2
5) and J = 1

5 (r1 + r2 + r3 + r4 + r5).

Before going further the following lemma is crucial in the coming interpretations:

Lemma 9. The object-oriented metric can be reformulated into

d(p,u)2 :=
1
5

5

∑
i=1
‖mi−m

′
i‖

2
, (3.2)

where p and u are two configurations and mi and m
′
i denote the coordinate vectors of the

corresponding platform anchor points [Nawratil, 2017] (cf. Fig. 3.1).
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FIGURE 3.1: Illustration of a linear pentapod with a planar base. From a geometrical point of view,
the value of Eq. 3.2, for the two poses of the planar pentapod, is equal to 1/5 of the sum of the squared
lengths of the dashed lines between two platforms configurations.

Proof: Define mi := (u4,u5,u6)
T +ri (u1,u2,u3)

T and m
′
i := (p4, p5, p6)

T +ri (p1, p2, p3)
T

for i = 1, . . . ,5 as the platform anchor points. Then expanding the right hand side of Eq. 1.12
gives Eq. 3.2. �
In kinematics, especially in the area of path planning, it is quite usual to decompose a ma-
nipulators motion into the fixed orientation, (namely all the positions the end effector can
attain) and the fixed position case (all the orientations a manipulator attains) at each stance
of the motion [Li et al., 2017]. However, as it is inferred from Fig. 3.1, Lemma 3.2 allows
us to interpret the distance between two points p and u ∈ R6 as the distance between two
configurations in R3. Consequently, this interpretation alleviates the burden of such a de-
composition and lets us to deal with the entire motion as a curve in either R6 or S2×R3 in
one go. However, for the sake of simplicity in following the text, the corresponding metric
spaces to be investigated in this chapter are summarized in Table 3.1. In the coming subsec-
tions Euclidean and equiform motions are thoroughly investigated for the linear pentapods.

In all the cases to come assume that the given pose is G= (p1, p2, . . . , p6). Additionally,
the coordinates of the pose space are assumed to be (u1,u2, . . . ,u6).

Metric Spaces
Motion Space Metric
Positions R3 ordinary Euclidean metric
Orientations S2 round metric
Euclidean motion S2×R3 ⊂ R6 object-oriented metric (from R6)
Equiform motion R6 object-oriented metric

TABLE 3.1: A summary of metric spaces of interest to the possible motions of a linear pentapod.
Note that the translations and orientations are referring to fixed orientation and fixed position motions
respectively while Euclidean motion stands as rigid body transformations. Equiform motions are the
rigid body motions which do not preserve the size of the object.
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3.2 General Linear Pentapods

3.2.1 Positions (Fixed Orientation Case)

We ask for the closest singular configuration O having the same orientation (p1, p2, p3) as the
given pose G. As G and O only differ by a translation, one could define the distance between
these two poses by the length of the translation vector. This is equal to restricting our case
to R3 with ordinary Euclidean metric (cf. Table 3.1). Therefore O has to be a pedal point on
Ω(p1, p2, p3) with respect to the point (p4, p5, p6). The set O of all these pedal points equals
the variety V ( ∂L

∂u4
, ∂L

∂u5
, ∂L

∂u6
, ∂L

∂λ
) where λ is the Lagrange multiplier of the Lagrange equation

L(u4,u5,u6,λ ) = (u4− p4)
2 +(u5− p5)

2 +(u6− p6)
2 +λF , (3.3)

where F is the singularity polynomial obtained from Eq. 2.8. It turns out that the equations
∂L
∂u4

= ∂L
∂u5

= ∂L
∂u6

= 0 are linear with respect to u4,u5 and u6. Solving these equations for these

variables and plugging in the obtained expressions into ∂L
∂λ

= 0 gives a polynomial, which
has 354513 terms, and is of degree 6 in λ . Hence, O consists of six points over C, where the
closest one to (p4, p5, p6) implies O (see Figs. 3.2 - left and 3.3 - left).

Example 20. Assume a general linear pentapod with the following architecture matrix:
r2 x2 y2 z2
r3 x3 y3 z3
r4 x4 y4 z4
r5 x5 y5 z5

=


2 5 0 0
4 −4 −3 0
5 3 7 −6
10 9 −5 4

 . (3.4)

It turns out that for a random example (i.e. pose G is given in the caption of Fig. 3.2 - left)
one obtains 4 real solutions and 2 complex ones. The corresponding values of u4,u5,u6 are
obtained by back-substitution (cf. Table 3.2).

u4 u5 u6 λ l

1 2.477488952 2.697875818 0.9626913680 e-1 0.7113733065 e-4 3.944412424
2 1.947281086 -12.89155068 4.083319654 0.1588929873 e-2 15.89185655
3 -6.068046868 -11.26894102 1.797066843 0.2894577270 e-2 16.53931597
4 23.47334506 -5.118737128 5.125091422 0.5105991308 e-2 22.98443541

TABLE 3.2: The 4 real solutions in ascending order with respect to the length l of the translation vector
towards the given position.

3.2.2 Orientations (Fixed Position Case)

On another hand one can ask for the closest singular configuration P, which has the same
position (p4, p5, p6) as the given pose G. As G and P only differ in orientation, the angle
∈ [0,π ] enclosed by these two directions can be used as distance function. Note that this
angle is the Riemannian distance on S2 (cf. Section 1.1.5 and Table 3.1).

By intersecting the singularity variety Σ, for the given position (p4, p5, p6), with S2 one
obtains a spherical curve ω(p4, p5, p6) of degree 4. Then P has to be a pedal point on
ω(g4,g5,g6) with respect to the point (p1, p2, p3) ∈ S2 (see Fig. 3.2-right). Computationally,
an easy way to obtain the closest pedal is to replace the underlying round metric by the Eu-
clidean metric of the ambient space R3 and create the Lagrange function with an additional
constraint, namely, the sphere equation. Note that by such an act one does not change the set
P of pedal points on ω(p4, p5, p6) with respect to (p1, p2, p3). Therefore P can be com-
puted as the variety V ( ∂L

∂u1
, ∂L

∂u2
, ∂L

∂u3
, ∂L

∂λ1
, ∂L

∂λ2
) where λ1 and λ2 are the Lagrange multipliers
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Ω

ω

FIGURE 3.2: Illustrations are done for G = ( 3
5 , 4

5 ,0,2,3,4) of the linear pentapod displayed in
Fig. 2.1. Fixed orientation (Left): O has only four real solutions where the closest one O =
( 3

5 , 4
5 ,2.4774,2.6978,0.9626) has a distance of 3.9444 units. Fixed position (right): P has only

two real solutions where the closest one P = (0.3701,0.5523,0.7468,2,3,4) has a remote distance
of 48.4178◦.

of the Lagrange equation

L(u1,u2,u3,λ1,λ2) = (u1− p1)
2 +(u2− p2)

2 +(u3− p3)
2 +λ1 F +λ2 G (3.5)

with G = u2
1 + u2

2 + u2
3−1 and F the singularity polynomial of Eq. 2.8.

Remark 13. For the practical application of the round distance to the singularity, we rec-
ommend to locate the position vector p in the tool-center-point of `. �

The set P equals the variety of the ideal 〈 ∂L
∂u1

, ∂L
∂u2

, ∂L
∂u3

, ∂L
∂λ1

, ∂L
∂λ2
〉, which can be computed

as follows:
Compute λ1,λ2 from the two equations ∂L

∂u1
= ∂L

∂u2
= 0, which are linear in u1,u2 and

u3. By plugging in the obtained expressions into ∂L
∂u3

, ∂L
∂λ1

and ∂L
∂λ2

one gets three rational
polynomials in the variables u1, u2 and u3. We name their numerators F1, F2 and F3, respec-
tively. It turns out that these equations are quadratic. Since the solution set of these quadratic
equations is V (F1,F2,F3) = V (F1)∩V (F2)∩V (F3), the number of solutions is 8 according
to Bezout’s Theorem. Additionally, the number of terms of the polynomials F1, F2 and F3 are
896, 348 and 4 respectively (F3 is in fact the implicit equation of the sphere). Now in order
to obtain these 8 solutions we use the resultant method in the following form:

R1 := Res(F2,F3,u1), R2 := Res(F1,F3,u1), R3 := Res(F1,F2,u1), (3.6)

where R1,R2 and R3 are dependent on the variables u2 and u3. By using the resultant method
again to eliminate the variable u2 we obtain

G1 := Res(R2,R3,u2), G2 := Res(R1,R3,u2), G3 := Res(R1,R2,u2). (3.7)

The greatest common divisor of G1,G2,G3 yields the degree 8 polynomial in u3.

Example 21. It turns out that for an example with the same architectural design as Eq. 3.4
(i.e. pose G is given in the caption of Figs 3.2 - right) one obtains only 2 solutions are real
(see Figs. 3.2 - right and 3.3 - left). The corresponding values of u1,u2,u3,λ2 are obtained by
back-substitution (cf. Table 3.3).
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u1 u2 u3 λ1 λ2 s

1 0.3701 0.5523 0.7468 0.0000002748 4.3813 48.4178◦

2 -0.3265 -0.5850 -0.7423 0.0000131667 -6.4345 131.6726◦

TABLE 3.3: The 2 real solutions in ascending order with respect to the round distance s to the given
orientation.

P

G

O

NM

G

FIGURE 3.3: Given is the pose G (black) of the linear pentapod. Left: The closest singular configura-
tions in the position/orientation workspace are given by the pose P (yellow) and O (blue), respectively.
Right: M (red) is the closest singular pose under Euclidean motions of ` and N (yellow) is the closest
singularity under equiform motions of `.

3.2.3 Euclidean Motion

In contrast to the two cases discussed before, Euclidean motion case deals with mixed (trans-
lational and rotational) DOFs. Therefore, in this case, one deals with the metric space S2×R3

associated with object-oriented metric (cf. Eq. 3.2 and Table 3.1). With respect to this metric
d we can compute the closest singular configuration M to G in the following way: Deter-
mine the set M of pedal points on the singularity variety with respect to G as the variety
V ( ∂L

∂u1
, ∂L

∂u2
, · · · , ∂L

∂u6
, ∂L

∂λ1
, ∂L

∂λ2
) where λ1 and λ2 are the Lagrange multipliers of the Lagrange

equation
L(u1,u2, · · · ,u6,λ1,λ2) := d(M,G)2 +λ1 G+λ2 F . (3.8)

Random examples indicate that M consists of eighty points over C, where the one with the
shortest distance d to G equals M (see Fig. 3.3 - right).

Remark 14. Note that these minimal distances are seen as the radii of maximal singularity-
free hyperspheres [Li, Gosselin, and Richard, 2007] in the position workspace (see also
[Nag et al., 2018]), the orientation workspace (see also [Jiang and Gosselin, 2009]) and the
complete configuration space. Moreover the distance d(M,G) to the singularity variety can
also be interpreted as quality index thus it is an alternative to the value of F proposed in
[Borràs et al., 2009]. An alternative “closeness index" for the pentapod with planar base
can be based on the results of [Borràs et al., 2009] that in singularity configurations legs
with zero length can be constructed by the method of singularity-invariant leg-replacement.
Therefore one can take the length of the shortest leg of the two-parametric set of legs, which
can be allocated. �

Gröbner Base: It is possible to compute the Gröbner basis of the ideal

〈 ∂L
∂u1

, ∂L
∂u2

, · · · , ∂L
∂u6

, ∂L
∂λ1

, ∂L
∂λ2
〉 (3.9)
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by Maple using the FGb package of Faugère [Faugère, 2010] for a random example (e.g. ar-
chitectural parameters given in Eq. 3.4 and pose G given in the caption of Fig. 3.2). By means
of this package we can also compute the univariate polynomial P in u1. The corresponding
Maple pseudo-code reads as follows:

wi th ( FGb ) :
GB:= f g b _ g b a s i s ( [ seq ( d i f f ( L , u [ i i ] ) , i i = 1 . . 6 ) , d i f f ( L , lambda [ 1 ] ) , . . .

d i f f ( L , lambda [ 2 ] ) ] , 0 , [ ] , [ seq ( u [ i i ] , i i = 1 . . 3 ) , lambda [ 1 ] , . . .
lambda [ 2 ] , seq ( u [ i i ] , i i = 4 . . 6 ) ] ) :

P := f g b _ g b a s i s _ e l i m (GB, 0 , [ u [ 2 ] , u [ 3 ] , lambda [ 2 ] , lambda [ 1 ] , u [ 4 ] , u [ 5 ] , u [ 6 ] ] , . . .
[ u [ 1 ] , u [ 2 ] , u [ 3 ] , lambda [ 2 ] , lambda [ 1 ] , u [ 4 ] , u [ 5 ] , u [ 6 ] ] ) :

It can easily be checked that P is of degree 80 in u1.

Resultant method: We are also able to compute this polynomial P by a stepwise elimi-
nation of unknowns based on resultant method executed by Maple. Details of this approach
read as follows1:
We start by computing u4,u5,u6 from the three equations ∂L

∂u4
= ∂L

∂u5
= ∂L

∂u6
= 0, which are lin-

ear in u4,u5,u6. Plugging in the obtained expressions into ∂L
∂u1

shows that its numerator only
depends linearly on λ1. From this condition we compute λ1 and insert it into the equations
∂L
∂u2

= ∂L
∂u3

= ∂L
∂λ2

= 0, which only depend on u1,u2,u3,λ2. The remaining equation ∂L
∂λ1

= 0
equals G = 0 with G = u2

1 + u2
2 + u2

3−1. Then we compute the following resultants:

H1 := Res(Gu2 ,G,u3), H2 := Res(Gu3 ,G,u3), H3 := Res(Gλ2 ,G,u3),

where Gi with i ∈ {u2,u3,λ2} denotes the numerator of ∂L
∂ i (u1,u2,u3,λ2). Note that Gu2 is of

degree 8 in u3 and that Gu3 and Gλ2 are both of degree 9 in u3. Moreover we have

H1[1230], H2[1271], H3[1252],

where the number in the brackets gives the number of terms. It should also be mentioned that
H1 and H2 are polynomials of degree 14 with respect to λ2 and that H3 is of degree 12 in λ2.
Then we proceed by computing

K1 := Res(H2,H3,λ2), K2 := Res(H1,H3,λ2), K3 := Res(H1,H2,λ2).

K1,K2,K3 have two common factors, which do not cause solutions as they imply zeros in the
denominators of above arisen expressions. Beside these factors K1, K2, K3 split up into

K1,1[2016]K1,2[11175], K2,1[1938]K2,2[11097] and K3,1[1653]K3,2[11371],

respectively, where the long factors K j,2 (for j = 1,2,3) are caused by the elimination process
and do not contribute to the final solution. The factors K1,1 and K2,1 are of degree 62 in
v and K3,1 is of degree 56 in u2. The greatest common divisor of Res(K1,1,K3,1,u2) and
Res(K2,1,K3,1,u2) yields the univariate polynomial P in u1 of degree 80.

Example 22. The polynomial P (either obtained by Gröbner basis elimination techniques
or by the resultant method) has to be solved numerically. It turns out that for the random
example under consideration only 16 solutions are real and 64 solutions are complex.2 By

1Degrees and lengths of the given polynomials and factors are given with respect to the architectural parame-
ters given in Eq. 3.4 and pose G given in the caption of Fig. 3.2.

2It is unknown if examples with 80 real solutions can exist.
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back-substitution into the equations obtained during the stepwise elimination based on re-
sultant method, we get the values for u1,u2,u3,λ2 (cf. Table 3.4).

u1 u2 u3 λ2 d

1 0.5559273 0.7274604 0.4021767 0.0000977 1.47919239
2 0.7100848 0.6097073 -0.3521880 0.0112120 6.37008978
3 0.6707364 0.6608309 -0.3367715 0.0263760 6.39634868
4 0.9520812 0.2971145 -0.0725547 0.0518935 6.49493069
5 -0.4198912 -0.7478308 -0.5142376 0.0001295 6.52284048
6 0.6426323 0.5670451 -0.5152508 0.6390457 7.90108999
7 -0.9141441 0.2145188 -0.3439800 0.0175335 8.15356091
8 -0.6633066 -0.6523793 0.3666407 -0.0198075 9.07264206
9 -0.4968498 -0.8534603 -0.1573075 0.0025204 9.24410297
10 0.4561177 -0.7759229 0.4357753 -0.1291505 9.30816713
11 -0.6449198 -0.5507646 0.5298459 0.0516473 9.97032291
12 0.9794782 -0.1982747 0.0361857 0.0967973 10.0548807
13 -0.2161351 0.9213140 -0.3232119 0.0362890 13.7804945
14 0.1003162 -0.5648716 -0.8190583 0.0430362 37.6037440
15 0.8001243 0.1449203 0.5820644 -0.1991801 52.2930848
16 0.0428010 0.5580832 0.8286804 -0.0557997 65.2624252

TABLE 3.4: The 16 real solutions in ascending order with respect to the distance d (given in Eq.
(3.2)) from G. The corresponding values of missing variables u4,u5,u6,λ1 are obtained by substituting
u1,u2,u3,λ2 into the expressions for u4,u5,u6,λ1. For the global minimizer (solution 1) these values
are u4 = 2.296688437, u5 = 3.479406728, u6 = 1.835729103 and λ1 = −4.720444174.

3.2.4 Equiform Motions

We can simplify the problem by considering equiform transformations of the linear platform
`. This means that we can cancel the side condition G = 1. The computation can be done in
a similar fashion to Example 22 with the sole difference that we set λ1 = 0.

Example 23. Random examples show that this reduced problem has only 28 solutions over C

in the general case and it turns out that only 6 solutions are real, which are given in Table 3.5.
Moreover the global minimizer N is displayed in Fig. 3.3-right. Important for application
is that d(N,G) ≤ d(M,G) and therefore the value of d(N,G) gives us the radius of hyper-
sphere, which is guaranteed singularity free.

u1 u2 u3 λ2 d µ

1 0.5055836 0.6656442 0.3718172 0.0000990 1.4517670 0.9148471
2 0.6486166 0.5542384 -0.3254994 0.0118010 6.3636100 0.9131449
3 0.6200661 0.6110910 -0.3126505 0.0283247 6.3914193 0.9250214
4 0.8789381 0.2541301 -0.0569840 0.0548756 6.4897306 0.9167124
5 0.5220226 0.4591892 -0.4197574 9.9482986 7.8756112 0.8121322
6 0.6513903 -0.9060852 0.5534569 -0.1501405 9.2038614 1.2456382

TABLE 3.5: The 6 real solutions in ascending order with respect to the distance d (given in Eq. 3.2)
from G. The scaling factor of the corresponding equiform displacement of the platform is given by
µ . The corresponding values of missing variables u4,u5,u6 are obtained by substituting u1,u2,u3,λ2
into the expressions for u4,u5,u6. For the global minimizer N (solution 1) these values are u4 =
2.5031164070, u5 = 3.7266491740 and u6 = 1.9989579769.

3.3 Simple Pentapods

In this section we compute singularity-free zones for linear pentapods with a simple singu-
larity variety studied in Sections 2.3.1, 2.3.2 and 2.4.
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P G O

N
M

G

FIGURE 3.4: Left: For fixed orientation the unique pedal point has coordinates ( 61
33 , 38

33 , 92
33 )∈R3 which

has a distance of 1.21854359 units from the given position. Middle-left: For fixed position the four
pedal points are illustrated, where the one with coordinates (0.12661404,0.81506780,0.56536126) ∈
R3 is closest to the given orientation. The corresponding spherical distance equals 15.75049156◦. The
second pedal point is antipodal to the first one and the spherical distance is the supplementary angle.
Middle-right: Illustration of the pose G (green) of the linear pentapod studied in Section 3.3.1. The
closest singular configurations in the position/orientation workspace are given by the pose P (yellow)
and O (blue), respectively. Right: M (red) is the closest singular pose under Euclidean motions of `
and N (yellow) is the closest singularity under equiform motions of `.

3.3.1 Linear in Position Variables (LP)

The architecture matrix of the linear pentapod used in the examples of Section 3.3.1 is:
r2 x2 y2 z2
r3 x3 y3 z3
r4 x4 y4 z4
r5 x5 y5 z5

=


1 −1/2 0 0
2 1 2 0
4 −3 −1 0
6 −1 2 0

 , (3.10)

where α = −2 and β = 2 in Eq. (2.18). Moreover we consider the non-singular pose G =
( 1

3 , 2
3 , 2

3 ,1,2,3).

Positions (Fixed Orientation Case)

We ask for the closest singular configuration O having the same orientation (g1,g2,g3) as the
given pose G. The distance to the singularity pose with respect to (g4,g5,g6) is computed
according to the ordinary Euclidean metric. The singularity polynomial is linear in position
variables and under fixed orientation condition it will be a plane passing through the origin
in position space R3. Naturally, there will be only one pedal point and hence the number of
solutions in this case will only be one.

Example: A general example with O= ( 1
3 , 2

3 , 2
3 , 61

33 , 38
33 , 92

33 ) is illustrated in Fig. 3.4.

Orientations (Fixed Position Case)

Now we ask for the closest singular configuration P, which has the same position (g4,g5,g6)
as the given pose G. In this case the distance to the singularity curve with respect to
(g1,g2,g3) is computed according to the Riemannian distance s on the sphere. This means
that the shortest path between two poses on the sphere is the shorter curve of the great circle
connecting the two points.
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Under the fixed position the singularity polynomial factors into two planes in R3:

u3 (A1 u1 +A2 u2 +A3 u3 +A4) = 0, (3.11)

where the design variables are encoded in the coefficients Ai.
As a consequence the singular orientations are obtained as the intersection of these two

planes with the unit-sphere, which is given by the normalizing condition u2
1 + u2

2 + u2
3 = 1.

One of these planes always passes through the center of the sphere and hence the intersection
is a great circle. For the second plane different cases can occur:

(a) A2
4 < A2

1 +A2
2 +A2

3: the plane intersects the sphere.

(b) A2
4 = A2

1 +A2
2 +A2

3: the plane is tangent to the sphere.

(c) A2
4 > A2

1 +A2
2 +A2

3: the plane doesn’t intersect the sphere.

Depending on the case the total number of pedal points equals (a) 4, (b) 3 and (c) 2, respec-
tively.

Example: A general example with P = (0.1266,0.815,0.5653,1,2,3) is illustrated in Fig.
3.4. In the example at hand there exist 4 pedal points, which are listed in Table 3.6.

Remark 15. It should be noted that if the given non-singular orientation is normal to one of
the planes intersecting the unit-sphere, then there exists an infinite number of pedal points. �

u1 u2 u3 s

1 0.12661404 0.81506780 0.56536126 15.75049156◦

2 0.44721359 0.89442719 0 41.83152170◦

3 -0.44721359 -0.89442719 0 138.25977700◦

4 -0.60029825 -0.34138359 -0.72325600 155.56475890◦

TABLE 3.6: The 4 real solutions in ascending order with respect to the spherical distance s to the given
orientation.

Euclidean Motion

With respect to the metric d of Eq. (3.2), we can compute the closest singular configuration
M to G in the following way:
We determine the set of pedal points on the singularity variety with respect to G as the variety
V ( ∂L

∂u1
, ∂L

∂u2
, · · · , ∂L

∂u6
, ∂L

∂λ1
, ∂L

∂λ2
) where λ1 and λ2 are the Lagrange multipliers of the Lagrange

equation:

L(u1,u2, · · · ,u6,λ1,λ2) := d(M,G)2 +λ1(u2
1 + u2

2 + u2
3−1)+λ2F . (3.12)

Note that here F is the singularity polynomial linear in position variables, obtained from
Theorem 3.

Example: Considering the example of the design parameters indicated in Eq. 3.10, there
are 10 solutions out of which 6 are real3. These solutions were calculated as follows:

After solving { ∂L
∂u4

, ∂L
∂u5

, ∂L
∂u6
} for {u4,u5,u6} and substituting the values obtained into the

rest of the equations of the system, we can use the Gröbner basis method to solve the new
system for the remaining variables. Using the order u3 > u2 > u1 > λ2 > λ1 one of the

3It is unknown if examples with 10 real solutions can exist.
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Gröbner basis generators solely depends on λ1 while the rest depend on λ1 and another
orientation variable or λ2, respectively. Based on this elimination technique the follow-
ing table is obtained: The first row in Table 3.7 corresponds to the global minimizer M

u1 u2 u3 λ1 λ2 d

1 0.19954344 0.75426388 0.62551450 0.22471412 0.00242829 0.37163905
2 0.44721359 0.89442721 0.00000000 -1.18154819 0.15475648 1.53723662
3 -0.44720571 -0.89444123 0.00001503 -8.09845180 0.00888318 4.02454431
4 -0.72878205 -0.23306556 -0.64396839 -9.46430882 0.00812550 4.13597163
5 0.50116745 0.86532314 0.00686193 -1.24444052 63.53263267 4.98948239
6 -0.44100968 -0.89750916 -0.00554456 -8.10658006 -11.11676392 6.20308215

TABLE 3.7: The 6 real solutions in ascending order with respect to the distance d from G. The
corresponding values of missing variables u4,u5,u6 are obtained by substituting u1,u2,u3,λ1,λ2 into
the expressions for u4,u5,u6.

illustrated in Fig. 3.4, which has position variables u4 = 1.42386285, u5 = 1.69623807 and
u6 = 3.11364494.

Equiform Motion

We can simplify the problem by considering equiform transformations of the linear platform
`, which is equivalent to the cancellation of the normalizing condition Γ. This would be equal
to canceling the first constraint in Eq. 3.12. It turns out that for this reduced set of equations
only 3 pedal points exit over C. For details see Theorem 9 given later on.

Example: For the example under consideration, the computations can be done in the same
way as in Section 3.3.1 with the sole difference that λ1 is now absent. We end up with the
following table:

u1 u2 u3 λ2 d µ

1 0.22077150 0.77922849 0.65664594 0.00209764 0.35854952 1.04265095
2 0.33333333 0.66666666 0 0.04901408 1.43604394 0.74535599
3 0.36256185 0.63743814 0.01002046 26.26334956 4.95602764 0.73340227

TABLE 3.8: The 3 real solutions in ascending order with respect to the distance d from G. The scaling
factor of the corresponding equiform displacement of the platform is given by µ . The corresponding
values of missing variables u4,u5,u6 are obtained by substituting u1,u2,u3,λ2 into the expressions for
u4,u5,u6.

The first row in Table 3.8 corresponds to the global minimizer N illustrated in Fig. 3.4,
which has position variables u4 = 1.36501824, u5 = 1.63498176 and u6 = 3.03249538.

3.3.2 Linear in Orientation Variables (LO)

The architecture matrix of the linear pentapod used in the examples of Section 3.3.2 is:
r2 x2 y2 z2
r3 x3 y3 z3
r4 x4 y4 z4
r5 x5 y5 z5

=


1 1 0 0
3 −1/2 3/2 0
5 −3 4 0
6 −1 2 0

 , (3.13)

where α = β = 1 in Eq. 2.29. Moreover we consider the non-singular pose is given as
G= (1/3,2/3,2/3,1,2,3).
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P

G

O

N
M G

FIGURE 3.5: Left: For fixed orientation there exits for each of the two planes a unique pedal
point. One pedal point has coordinates (−8/17,9/17,12/17) and a distance of 4.80196038 units
to the given position and the other pedal point has coordinates (2,3,0) and a distance of 4 units.
Middle-left: For fixed position the two pedal points are illustrated, where the one with coordinate
(0.11346545,0.47007115,0.87530491) is closest to the given orientation. The corresponding spherical
distance equals 20.82450533◦. Middle-right: Illustration of the pose G (green) of the linear pentapod
studied in Section 3.3.2. The closest singular configurations in the position/orientation workspace are
given by the pose P (yellow) and O (blue), respectively. Right: M (red) is the closest singular pose
under Euclidean motions of ` and N (yellow) is the closest singularity under equiform motions of `.

Positions (Fixed Orientation Case)

Once again we ask for the closest singular configuration O having the same orientation
(g1,g2,g3) as the given pose G. The distance to the singularity pose with respect to (g4,g5,g6)
is computed according to the ordinary Euclidean metric. Under fixed orientation condition it
is revealed that the singularity polynomial is factored to:

u6 (B1 u4 +B2 u5 +B3 u6 +B4 ) = 0, (3.14)

where again the design information is encoded in coefficients Bi. For each of the two planes
in position space R3 we can compute the pedal point with respect to the given pose (cf. Fig.
3.5).

Example: The closer pedal point implying O= ( 1
3 , 2

3 , 2
3 ,2,3,0) is illustrated in Fig. 3.5.

Orientations (Fixed Position Case)

Now we ask again for the closest singular configuration P, which has the same position
(g4,g5,g6) as the given pose G. As the singularity polynomial is linear in orientation vari-
ables and does not possess an absolute term, the singularity loci is a great circle for the fixed
position case. If the given orientation differs from the pole of the great circle, then there exist
two pedal points (otherwise infinitely many).

Example: The results for the example at hand and the pose

P= (0.1134,0.4700,0.8753,1,2,3)

are displayed in Fig. 3.5.
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Euclidean Motions

Similar “experimental" computations as in Section 3.3.1 show that there are again 10 solu-
tions.

Example: For the example at hand we obtain 6 real solutions, which are given in Table
3.9:

u1 u2 u3 λ1 λ2 d

1 0.24002202 0.57831003 0.77970951 -0.07616071 0.00198708 0.41484860
2 0.16067752 0.32134537 0.93924532 5.58789193 -0.03317073 2.44661840
3 -0.20843306 -0.55064498 -0.80863487 -10.27182281 0.00088059 4.53615852
4 -0.35275218 0.88481355 -0.34421986 -3.79940039 0.38394736 6.70384275
5 -0.02624291 -0.92437183 0.38072309 -7.13002767 0.19314992 7.16835476
6 -0.06268654 -0.12537309 -0.99012725 -32.85080126 0.07233642 9.04867032

TABLE 3.9: The 6 real solutions in ascending order with respect to the distance d from G.

The first row in Table 3.9 corresponds to the global minimizer M illustrated in Fig. 3.5,
which has position variables u4 = 1.35978906, u5 = 2.34492506 and u6 = 2.57706069.

Equiform Motions

Similar computations as in Section 3.3.1 show again that the number of solution reduces to
three (this is discussed in the Theorem 9 below).

Example: For the example at hand all three are real and read as follows: The first row in

u1 u2 u3 λ2 d µ

1 0.23632218 0.56965551 0.76841946 0.00196374 0.41349741 0.98530404
2 0.33333333 0.66666666 1.30046948 -0.02111913 1.81542685 1.49892509
3 -0.06965551 0.26367781 -0.10175277 3.26647730 6.49924087 0.29108677

TABLE 3.10: The 3 real solutions in ascending order with respect to the distance d from G.

Table 3.10 corresponds to the global minimizer N illustrated in Fig. 3.5, which has position
variables u4 = 1.36986410, u5 = 2.36986410 and u6 = 2.61205791.

Theorem 9. Consider an arbitrary point p in R6. Then with respect to the object-oriented
metric, Eq. 1.12, the corresponding number of pedal points on the Σ-variety of a simple
pentapod is up to 3 and the pedal point coordinates can be obtained in a closed form.

Proof: In Theorem 8, it is shown that the Σ-variety decomposes into the hyperplane Σ1 and
the hyperquadric Σ2. Trivially, one of the pedal points is located on Σ1, namely, the closest
point (with respect to the distance function) to the arbitrary point p. Now, knowing this fact it
is possible to focus on Σ2 for retrieving the pedal points information. Consider the following
Lagrange equation

L := d2 (p,u)+λ F (3.15)

where λ is the Lagrange multiplier, F is the singularity polynomial of Σ2 and d is the object-
oriented metric describing the distance between the point p and a sample point u on Σ2 with
symbolic coordinates (u1,u2, . . . ,u6). Then, computing

I := 〈 ∂L
∂u1

,
∂L
∂u2

, . . . ,
∂L
∂u6

,
∂L
∂λ
〉 (3.16)
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Number of Pedal Points
Motion Generic LP LO
Translations 8 1 2
Orientations 6 4 2
Euclidean motion 80F 10F 10F

Equiform motion 28F 3 3

TABLE 3.11: Illustration of the generic number of pedal points under different metric conditions.
LP/LO terms stand as linear in position/orientation variables while “generic case" refers to the general
pentapod (not necessarily with a simple singularity variety). Note that they are computed over the field
of complex numbers and hence the real solutions might be lower. The entries marked withF indicate
that these numbers are just experimental while the rests are mathematically proven and reliable in all
situations.

results in a system of polynomial equations, where ∂L/∂u1, . . . ,∂L/∂u6 are linear in the
pose variables. By solving them for u1, . . . ,u6 and substituting them in ∂L/∂λ one obtains a
univariable polynomial quadratic in λ . Since this polynomial is of degree 2 it shows that for
the arbitrary point p there will be at most 2 pedal points on Σ2. Finally, the pedal point co-
ordinates are obtained through solving the quadratic polynomial for λ and back-substituting
its value. �

3.3.3 Summary of Results

We demonstrated in this section that these designs imply a degree reduction of the polyno-
mials associated with the problem of determining singularity-free zones. One should note
that the results (cf. Table 3.11) obtained for singularity-free zones regarding manipulators
with singularity varieties linear in position/orientation variables in the cases of fixed position
variables and fixed orientation variables are general while for the general case with normal-
izing condition the given numbers are just based on a set of random examples4. Theorem 9
shows that the pedal point problem in the equiform motions case is a cubic one. Therefore
the closest singular configurations under equiform motions (cf. Sections 3.3.1 and 3.3.2) are
of interest, as they can be computed in closed form. This property will also be stressed in the
next section.

4In this context we also refer to Section 6 “What is a proof?" of [Faugère and Lazard, 1995], where the authors
Faugere and Lazard were faced with a similar problem.
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Chapter 4

Variational Path Optimization of
Simple Pentapods

4.1 Preparatory Work

Assume that a path between a given start- and end-pose of the end-effector is known, which
is singularity-free and within the manipulator’s workspace. An optimization process of this
initial path is proposed in such a way that the parallel robot increases its distance to the sin-
gularity loci while the motion is being smoothed. In our case the computation time of the
optimization is improved as we are dealing with pentapods having simple singularity vari-
eties allowing a closed form solution for the local extrema of the singularity-distance func-
tion. Formally, this process is called variational path optimization which is the systematic
optimization of a path by manipulating its variations of energy and distance to the obstacle,
which in this case is the singularity variety. In this process some physical limits of the me-
chanical joints are also taken into account. Furthermore, for the sake of simplicity, from time
to time, the theoretical aspects of the current chapter are accompanied by examples in R2.
The rest of the chapter is organized as follows: First the concept of distance to the singularity
loci of a simple pentapod is investigated. Thanks to the results of Chapter 3, we now have a
thorough understanding of the possible outcomes. However, there are still some details to be
investigated further, namely, the pedal points on the singular points of singularity loci and
pose points that are located on cut locus of singularity loci. On the next pace, a cost function
is defined. This cost function gives us a global control over the motion optimization. This
function is designed in such a way to control the smoothness of the motion while keeping
the motion at a reasonable distance to the singularity loci. Furthermore, the conditions under
which the motion is kept within the joint rate limits is studied. These include the case of
prismatic and base spherical joints. Finally, the algorithm’s steps are studied in detail and
some examples are illustrated. These examples are created in such a way to cover general
case but also to contain some possible emerging extreme cases.

4.1.1 Distance to Σ-variety & Modified Orthogonal Projection

Obtaining the closed form pedal point coordinates, enables one to compute the vector field
of normals to Σ-variety at these points. Assuming a pose point p ∈ R6, the natural way of
increasing distance to the Σ-variety is to move on the line spanned by p and the closest pedal
(from now on called normal lines). However, this natural primary idea needs to be modified
as the following cases may occur:

Pedal points on Σ3

Despite the fact that, based on Definition 4, there is no restriction for the closest point to any
specific subset of the Σ-variety, if such a point is located on Σ3, Definition 9 does not reveal
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FIGURE 4.1: Illustrations of overshooting over the cut locus. On the left, if the points of an initial curve
(blue) tend to increase their distance to the ellipse by travelling along the normal lines it is expected to
witness the breakpoints to first land on the medial axis and then all pile up at the center of the ellipse.
But in practice, due to the jump of the corresponding pedal point, an overshooting takes place. On the
right, it is expected to see the breakpoints to land on the medial axis and slowly go to infinity. However,
in practice, the break points oscillate horizontally and slowly move vertically.

it. The reason behind it is that the Lagrange multiplier technique nourishes from the tangency
of the distance function and the constraint at the pedals. In another word, such minimizer
is found whenever the corresponding gradients of the distance function and the constraint
are linearly dependent. On the other hand, at singular points of the constraint the gradient
vanishes which results the incapability of the Lagrange multipliers in identifying pedals on
Σ3 (cf. Chapter 1 and Fig. 1.11). One might try to overcome this hardship through redefining
the pedal points as the solutions to the system of polynomials obtained by calculating the
derivatives of the distance function with respect to parameters of Σ2. In such a method one
obtains the pedals on Σ3 at the cost of expensive symbolic computation of non-linear systems.
Though this technique is not reasonable, resolving this issue is not hard as one can find the
closest point on Σ3 separately. Hence, from now on we loosely call this point a pedal point
as well (for details of Σ3 cf. Theorem 8). Note that in the light of Lemma 1 we can still call
the connecting line between the arbitrary point and its corresponding pedal point on Σ3, a
normal line.

Pose points on cut locus

By Theorem 9 and previous case, we know that p can be located on up to four normal lines.
A natural question would be which of these line to travel along with to increase the distance
to Σ. One idea would be to consider taxing along the normal line at the closest pedal. But
if the pose point is located on the cut locus of Σ then more than one closest point already
exist (for definition and properties of cut locus see Section 1.1.6 and [Carmo, 1992]). On
the other hand, as pose point updating is discrete, with respect to a step size, it may create
problems such as overshooting the cut locus. Such overshooting happens due to a jump of the
corresponding closest pedal (see Fig. 4.1). In order to resolve both issues at once and create a
smooth update of the pose point, a weight factor is introduced in such a way that it considers
the effect of the pedal points in dependence of their distances to the pose p.
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Modified orthogonal projection

Due to the reasons mentioned above, we modify Definition 4 into the following shape:

Definition 30. The orthogonal projection with respect to object-oriented metric is a relation
π ⊂ Σ×R6, such that for each p ∈R6 we have

π (p) := {closest point on Σ1}∪V (I)∪{closest point on Σ3}, (4.1)

where I is Eq. 3.16 (cf. Theorem 9). From now on through the entire chapter, π refers to the
“modified orthogonal projection".

Note that in a generic case, π (p) is finite and yields four pedal points (one on Σ1, two on
Σ2 and one on Σ3).

Remark 16. Note that, it is not immediately known whether the non-real complex pedal
points or double pedal points exist or not. Calculating Eq. 3.16 for the case of a parabola as
an obstacle shows that the pedal points are not always distinct real points.

Definition 31. Assume p ∈ R6 and π to be an orthogonal projection relation mentioned
above. Additionally, assume mp to be the number of the real pedal points on Σ with respect
to the point p. Now, the goal is to find a preferred direction such that if point p travels along
with, it can increase its distance to the Σ-variety. Assuming u to be the update of p, the
following function fulfills the goal:

D (p,u) := −
mp

∑
i=1

wi〈
p−πi (p)
‖p−πi (p)‖g

,u− p〉, (4.2)

where the wi := H/d (p,qi) are the “positive weights" and H given by

H :=
∏

mp
i=1 d (p,qi)

∑
mp
j=1 ∏k 6= j d (p,qk)

(4.3)

is the “regulation factor" implying ∑
mp
i=1 wi = 1.

Eq. 4.2 refers to a weighted projection of the vector−→pu on the four normal lines. As it can
be inferred from Eq. 4.3, these weights are disproportional to the corresponding distance to
pedals and their sum is equal to one. In another word, if p is far away from a pedal then the
projection of movement direction, −→pu, on that normal is a smaller vector (going away from
that pedal is less important). On the contrary, if p is close to a pedal then the projection of
−→pu would be mainly along that normal line (it will repel the point p with more efficiency). In
Fig. 4.2-left an example regarding such weighted factors is depicted.

4.1.2 Cost Function

In order to find the desired nice motion the idea is to use gradient descent, which is a first-
order iterative optimization algorithm, to find the local minimum of a cost function. Though
in many similar applications, especially in the context of machine learning, the step size
(learning rate) is considered a constant small number, here it will not be accurate enough and
hence a more intelligent step should be taken for that purpose. Additionally, the function
whose descent per iterations is monitored is slightly different from the original cost function
and will be introduced under the name of objective function (cf. Section 4.1.4).
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p

q1

q3

q2

−→up

FIGURE 4.2: Left: The green vector shows the optimized direction for the vector u− p. The projection
on the 1st, 2nd and 3rd gradient lines are indicated by red, pink and cyan respectively. Note that, one
can check the correctness of the optimized move as the green direction refers to moving closer to the
medial axis and increasing distance to the parabola eventually. Right: Depending on the geometrical
structure of the obstacle, geodesic and bending weight factors, the algorithm may not have a final result.
The initial path (blue) variates (green) along the parabola’s medial axis till infinity under zero geodesic
and bending weight inputs.

Definition 32. Assume that an initial singularity-free curve between start-pose a′ and end-
pose b′ is given, while it is discretized into a “piecewise smooth" curve with a set of n break-
points {a′ = p1, p2, ..., pn = b′} in R6. Assuming u j to be the update of p j, the cost function,
subject to optimization, is defined as follows:

C (p,u) :=
λ (n−1)

2L′
E (u)+

η (n−2)
2τ ′

B (u)−
1

(n−2)

n−1

∑
j=2

D
(

p j,u j) , (4.4)

where D is the function of Eq. 4.2, λ and η are real numbers called “geodesic weight"
and “bending weight", respectively and L′ and τ ′ are the discrete length and discrete total
curvature obtained from previous iteration (at the first iteration they are substituted by the
corresponding values of the initial curve). Finally, we have uT :=

(
(u2)T , ..., (un−1)T

)
and

pT :=
(
(p2)T , ..., (pn−1)T

)
.

Geodesic and bending weights increase/decrease the geodesic energy and bending energy
by blocking/unblocking their increase when substituted by high/low values.

Remark 17. In the absence of the coefficients 1/L′ and 1/τ ′ in Eq. 4.4, the geodesic energy
and bending energy terms which are the sum of the “squared values" would heavily outgrow
the distance term containing the projection on the normal lines which is single valued (cf.
Fig. 4.3). This fact forces the cost function to be heavily dependant on the number of chosen
breakpoints. Consequently, the existence of these coefficients are necessary.

Remark 18. It is noteworthy that the coefficients of the geodesic and bending energy terms
in Eq. 4.4 are multiplied by a factor involving the number of breakpoints while the projection
term’s coefficient plays the role of a mean value for the number of breakpoints. These coeffi-
cients are designed in this way to reduce the effect of the number of breakpoints on the shape
of the optimized curve. This is important as later it is shown that the number of break points
may vary at different iterations of the optimization algorithm.
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The cost function, C , is a quadratic polynomial in 6 (n−2) variables. Optimizing Eq. 4.4
requires solving the following equation

∇C = 0, (4.5)

for u ∈R6 (n−2) which is equivalent to solving the linear system of equations

Au = b, (4.6)

Where A is the 6 (n− 2)× 6 (n− 2) matrix of coefficients, u is the 6 (n− 2)× 1 matrix of
variables and b is the 6 (n− 2)× 1 matrix of constants. The computational details of these
matrices and the patterns they obey are given in Appendix C.

4.1.3 Step Size

The idea is to calculate two step sizes, namely γ1 and γ2, in such a way that they yield
±growth% of variations of geodesic and bending energy respectively. In doing so, the cost
function, which can be seen as a quadratic approximation of the objective function yielding
a linear solution for the gradient descent approach, is leashed to the objective function in a
computational efficient way, as γ1 and γ2 can be computed in closed form as follows.

P(γ1) :=
n

∑
i=2
‖
(

pi + γ1 ui)− (pi−1 + γ1 ui−1)‖2
g, (4.7)

and its bending energy by

Q(γ2) :=
n−1

∑
j=2
‖
(

p j−1 + γ2 u j−1)+ (p j+1 + γ2 u j+1)−2
(

p j + γ2 u j)‖2
g, (4.8)

and having the previous geodesic energy E ′ and previous bending energy B′, then the real
roots of the following quadratic equations will guarantee ±growth% variation in energies:

P(γ1)− (1± growth

100
)E ′ = 0, Q(γ2)− (1± growth

100
)B′ = 0. (4.9)

Finally, the step size is chosen as the minimum of the positive real roots of Eq. 4.9 and 1.

4.1.4 Objective Function

Now, in order to monitor the descent of the cost function with respect to iteration we propose
a slightly different function called objective function.

Definition 33. Assume u to be the vector obtained by solving the linear system (cf. Section 4.1.2)
and π the orthogonal projection into the Σ-variety. Then the “objective function" for moni-
toring the gradient descent is

C ′ (u, p) :=
λ (n−1)

2L
E (u)+

η (n−2)
2τ

B (u)−
1

(n−2)

n−1

∑
j=2

d
(

u j, π
(

p j )) . (4.10)

Note that, as we have the updated curve breakpoint coordinates, it is possible to compute
length and total curvature now. Hence, the terms 1/L and 1/τ replace the terms 1/L′ and
1/τ ′ from Eq. 4.4 respectively. Additionally, since the goal is to increase the distance to the
Σ-variety, the corresponding terms are replaced by the sum of distances to corresponding
closest pedals.
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Σ

a′

b′

FIGURE 4.3: Left: Illustration of the pull effect of geodesic energy on the breakpoints. The pattern
of the breakpoints preserves a regular shape after variation. Right: A geometrical visualization of
the errors. The blue boxes describe the calculated value for the geodesic energy before variation,
while the green ones depict this energy after the variation. The red arrows connect a breakpoint to its
corresponding update. One way to realize the error’s occurrence would be through assigning physical
units to the calculations, namely cm. In that way the the value computed for the geodesic energy will
be of physical dimension cm2 while the distance is cm. Both figures are created for the case of the
variation of an initial curve t 7→

(
t + 1.25, t3 + 2

)
where t ∈ [−1,1] with respect to a parabola and with

λ = η = 10 as weight factors.

4.1.5 Remarks on the Curve’s Energies

In the light of Definition 10, one can define the bending energy by ∑
n
i=1 θ 2

i , but Definition 12
is slightly different. Due to the fact that the measure of a central angle and the arc it intercepts
are equal in value, in the case that the curve is parametrized by arc length the two definitions
are equivalent. However, such values obtained may differ if the curve under consideration is
not arc length parametrized (i.e. consider a line not possessing arc length parametrization,
then based on Definition 12 the bending energy is not zero). But such a deviation creates
a computational advantage as otherwise a denominator containing the norms of every two
adjacent edges would appear in the bending energy term B of the cost function (Eq. 4.4).
This denominator then diminishes bending energy term being a quadratic polynomial and
consequently denying the advantage of possessing a linear system after derivation. Finally,
the geodesic energy term contributes significantly to resolving this issue as it creates a pull
effect which preserves a regular distribution of breakpoints across the curve after variation
(see Fig. 4.3 - right).

4.2 Orthogonal Projection into the Configuration Space

In the process of updating breakpoints, by obtaining the preferred direction and step size (cf.
Eq. 4.9), one may end up with a curve not necessarily belonging to the cylinder Γ. Having
in mind that Γ is the set of all performable motions for the pentapod, it is important to find
an update restricted to it. In order to resolve it, one immediate idea is to keep the update of
each breakpoint p restricted to its corresponding tangent space Tp (Γ) of the cylinder Γ. In
the next step, the updated curve is orthogonally projected into the cylinder.

4.2.1 Projection on Cylinder’s Tangents

For a breakpoint p we are interested in its update u belonging to Tp(Γ). The Lemma 2 creates
the first step in building a systematic update of

{
p2, . . . , pn−1

}
on T Γ.
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p j

u j

R6

Γ Σ
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Γ Σ

Tp j (Γ)

R3

T(
p j

1 ,p j
2 ,p j

3

) (S2)

FIGURE 4.4: Imaginative illustration of the “generalized cylinder" Γ ⊂ R6. Left: The blue curve
indicates the initial path while the green one stands as the updated curve (not necessarily belonging to
Γ). The red dots are in fact the possible imaginative pedal points on the singularity surface Σ. Middle:
The projection of the updated curve into the the tangent space. Right: A “realistic" interpretation of
such projections in the orientation space. The blue vector shows the original orientation of the pose p j

and the green vector depicts the orientation after update. The cross, x, stands as the back-projection
into the “tangent to sphere at p j", while the red vector describes the final accepted motion after back-
projection from the tangent to sphere.

Each breakpoint of the piecewise smooth curve is located in the ambient space R6. Define

p̂ =
( (

p 2
6×1

)T ,
(

p 3
6×1

)T , · · · ,
(

p n−2
6×1

)T
)T

6(n−2)×1
, (4.11)

where p i
6×1 denotes the 6-dimensional coordinate vector of the i-th breakpoint of the piece-

wise smooth curve. In this way the point p̂ ∈R6(n−2) stands for the piecewise smooth curve.
Defining the updated breakpoint u in exactly the same fashion we have

û =
( (

u 2
6×1

)T ,
(
u 3

6×1

)T , · · · ,
(
u n−1

6×1

)T
)T

6(n−2)×1
. (4.12)

Now, using the above terminology one trivially finds that the vector û− p̂ is in fact the (∇C ) p̂

on the level sets of the cost function in R6(n−2).

Lemma 10. Assume p̂ ∈ Γn−2 ⊂R6(n−2). Then

(∇C |Γ (n−2)) p̂ =
( (

U 2
6×1

)T ,
(
U 3

6×1

)T , · · · ,
(
U n−1

6×1

)T
)T

6(n−2)×1
− p̂, (4.13)

where ∀i, 2≤ i≤ n−1 we have(
U i

6×1
)T

=
(

Pr(pi
1,pi

2,pi
3)

(
ui

1,ui
2,ui

3
)

,ui
4,ui

5,ui
6

)T
, (4.14)

where Pr(pi
1,pi

2,pi
3)

: R3 −→ T(pi
1,pi

2,pi
3)
(
S2
)

is the orthogonal projection onto the sphere’s

tangent plane at
(

pi
1, pi

2, pi
3

)
.

Proof: Γ is a regular submanifold of R6. This implies Γn−2 being a regular submanifold
of R6(n−2). Now, using Lemma 2 we have (∇C |Γ (n−2)) p̂ = Pr p̂ (∇C ) p̂ = Pr p̂ (û− p̂) where

Pr p̂ : R6(n−2) −→ Tp̂
(
Γn−2

)
is the orthogonal projection into the tangent of Γn−2 at p̂. This
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FIGURE 4.5: Imaginative illustration of minimal singularity-free cover of the curve. Left: If a seg-
ment is not fully covered by singularity-free balls then a breakpoint will be added in the mid of the
uncovered part. Right: If two adjacent singularity-free balls are covering a breakpoint that breakpoint
is removable. Note that such a removal should be in such a way that it does not alter the cover for
adjacent to the neighboring breakpoints.

results in( (
Prp2

(
u2
))T ,

(
Prp3

(
u3
))T , · · · ,

(
Prpn−1

(
un−1

))T
)T

6(n−2)×1
− p̂, (4.15)

where Prpi : R6−→ Tpi (Γ) is the orthogonal projection onto the tangent space at pi ∈ Γ. Now
having in mind that:

Tp̂
(
Γn−2) ∼= Tp2 (Γ)×Tp3 (Γ)× . . .Tpn−1 (Γ) ∼= (4.16)

T(p2
1, p2

2, p2
3)

(
S2)×T(p3

1, p3
2, p3

3)

(
S2)× . . .T(pn−1

1 , pn−1
2 , pn−1

3 )

(
S2)×R3(n−2), (4.17)

one deduces that orthogonal projections of Eq. 4.15 are merely the orthogonal projection on
the sphere and hence Eq. 4.13 is fulfilled (Fig. 4.4 illustrates the steps of the proof). �

4.2.2 Projection from Cylinder’s Tangents to the Cylinder

In the final step we desire the projection of the updated piecewise smooth curve from the
cylinder’s tangents to the cylinder. Such projection is easily done through normalization of
the orientation variables, namely by the following map (cf. Fig. 4.4 - right):

(u1,u2,u3,u4,u5,u6) 7−→
(

u1

‖u2
1 + u2

2 + u2
3‖

,
u2

‖u2
1 + u2

2 + u2
3‖

,
u3

‖u2
1 + u2

2 + u2
3‖

,u4,u5,u6

)
.

4.3 Finite Singularity-free Cover

The obtained variation of the initial path is compact in R6 and hence has a finite open cover.
This leads one to the idea of a finite singularity-free cover. Such a cover is consisted of
singularity-free balls which are extensively discussed in Chapter 3. In this context we ap-
proach the concepts of inclusion and exclusion of breakpoints. In the following discussions,
ri stands for the distance to the closest pedal point with respect to breakpoint pi, guaranteeing
the existence of the singularity-free ball Nri(pi).

4.3.1 Inclusion of Breakpoints

For each two consecutive breakpoints, namely pi and pi−1, the algorithm checks whether
singularity-free balls Nri(pi) and Nri−1(pi−1) cover the segment in between. If the segment
is not fully covered the algorithm implements a new breakpoint in exactly the midway of
uncovered part of the segment as depicted in Fig. 4.5 - left.
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Q-variety

safe zone

FIGURE 4.6: Left: Illustration of a simple pentapod with the LP-property in addition to a magnified
view of the base spherical joints. Base joint limit is modelled by a cone with an axis orthogonal to the
base plane. Right: Imaginative illustration of the projection on a tangent of a Q-variety.

4.3.2 Exclusion of Breakpoints

While the previous step assures one of singularity freeness of the curve, it is adequate not
to have excessive included breakpoints. The initial idea is to exclude a breakpoint pi if it is
covered by the adjacent balls Nri−1(pi−1) and Nri+1(pi+1) (cf. Fig. 4.5 - right). However, one
should be mindful of the fact that the breakpoint pi itself creates the ball Nri(pi) which along
with Nri+2(pi+2) play the role of the cover for pi+1. Deleting pi then may cause the removal
of its corresponding ball and hence a blown possible cover for pi+1. In order to avoid such
an undesirable situation the algorithm first labels the breakpoints which are doubly covered
by adjacent balls (a point pi is doubly covered if it belongs to Nri−1(pi−1)∩Nri+1(pi+1), see
Fig. 4.5 - right). Then the algorithm groups such breakpoints into packs based on the number
of consequent occurrence of double covers. Calling the number of breakpoints in each pack
the size of the pack, the algorithm takes the following strategy:

• Packs of size 1 are deleted,

• In the packs of size bigger than 1 the breakpoints with odd numbers are removed.

Finally, the algorithm repeats these steps till no pack can be found 1. Naturally, in the above
process the start- and end-pose are entirely neglected.

4.4 Joint Analysis

From the computational kinematics point of view, feasibility of optimized motion by the
joint and linkages is of utmost importance. These physical limits restrict the end-effector
movements and are of two types, namely, spherical joint limits and prismatic joint limits. It
turns out that dealing with these restrictions can be translated into the language of variational
path optimization. In fact, as it will be described in the coming subsections, it is possible to
think of these restrictions as hypersurfaces in R6. One last remark before plunging into the
details, would be regarding the design of the pentapod. In the theorems to come within this
section, it is not necessary to restrict ourselves to simple pentapods since they are valid for
general linear pentapods in which the base anchors belong to R3. Hence, the findings in this
section are more general and can be considered for a more general framework as well.

1In practice, due to computational reasons that are discussed in Appendix C the algorithm is set to keep 6
number of breakpoints at least.
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4.4.1 Prismatic Joint Limits

In the position space a point on the prismatic extendible part can be located within two
spheres with radii ρmin and ρmax. Considering this setting in pose space R6 results the fol-
lowing theorem:

Theorem 10. Assume a “general linear pentapod" with minimum possible prismatic length
ρmin > 0 and maximum ρmax, then the set of all feasible poses with ρmin ≤ ρ ≤ ρmax forms a
“smooth hyperquadric" in R6.

Proof: Writing down the equations of the sphere with the radius ρmin ≤ ρ ≤ ρmax around a
base spherical joint with coordinates (xi,yi,zi)T gives

fp := (ri u1 + u4− xi)
2 +(ri u2 + u5− yi)

2 +(ri u3 + u6− zi)
2−ρ

2 (4.18)

once again by considering fp ∈ C [u1,u2,u3,u4,u5,u6], Eq. 4.18 describes a quadric hyper-
surface in pose space R6. Calculating ∇ fp = 0, one observes that it vanishes on V ( fp) iff
ρ = 0. Hence V ( fp) is a smooth algebraic variety. �

4.4.2 Base Spherical Joint Limits

Theorem 11. Assume a “planar" pentapod with base spherical joints, whose limits can be
modelled as cones of revolution with axes orthogonal to the base plane, then the set of all
poses resulting in the maximum freedom of movement of the i-th leg with respect to the i-th
base joint limit forms a “hyperquadric" in R6.

Proof: The base spherical joints located on the plane allow motions inside a cone of rev-
olution with vertical axis (cf. Fig. 4.6 - left). The implicit equation of such a cone with apix
angle θ and base anchor coordinates (xi,yi,0)T is:

fbc = (u6 + riu3)
2− cot2

(
θi

2

)[
(u4 + riu1− xi)

2 +(u5 + riu2− yi)
2
]

. (4.19)

One may think of Eq. 4.19 as a polynomial in C [u1,u2,u3,u4,u5,u6]. Hence, the i-th base
cone with an apix limit of θi forms a hyperquadric in R6. Calculating ∇ fbc = 0, one observes
that it vanishes on V ( fbc) iff the platform anchor point collapse with its corresponding base
anchor point. Note that due to the fact that ρmin 6= 0 such a collapse is unreachable. �
Now, the idea is to implement new terms into the cost function in such a way that if a penta-
pod’s leg is at

• its maximum/minimum extent,

• its maximum angular limit with respect to base cones,

the algorithm allows a slide of the end-effector at the maximum/minimum extent or angular
limit. Geometrically, this means that if a breakpoint pk is located on one of the hyperquadrics
(from now on called Q-variety), mentioned in Theorems 10 / 11, in such a way that if the
update of pk is going out of the Q-variety then the algorithm permits an update of it on
Tpk (Q). Naturally, due to practical reasons, the algorithm must consider such breakpoint
already located on Q if the breakpoint is closer than a certain positive real value ε to it (cf.
Fig. 4.6 - right). Hence in such a terminology the projection on the tangent will happen only
if 〈uk− pk, pk−qk〉< 0, where qk is the corresponding closest pedal to pk on Q-variety.
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Definition 34. Assume a breakpoint pk of a piecewise smooth path in R6 and a Q-variety,
as mentioned in Theorems 10 / 11, such that d

(
pk,Q

)
< ε where ε ∈R+. If uk is the corre-

sponding point to pk after variation and if qk is the orthogonal projection of pk on Q then
define

T̂pk := (uk− pk)−〈(uk− pk),Npk〉g Npk , (4.20)

where Npk :=
(

pk−qk
)

/‖pk− qk‖g. Then the k-th breakpoint’s update should be replaced
by T̂pk .

Remark 19. In the variational path optimization process it often happens that a breakpoint
pk breaches the ε vicinity of more than one Q-variety (e.g. by almost reaching the maximum
extent of more than one leg). In such a situation the vector (uk− pk) should be projected on
the intersection of the corresponding tangent spaces. Computationally, consider the vector
space V spanned by the vectors {(pk− qk

1), ..., (pk− qk
m)} where ∀ i ,1 ≤ i ≤ m, qk

i are the
corresponding pedal points on the Q-varieties whose ε vicinities are breached by pk. Then
the update vector (uk− pk) should be projected on V⊥. Reshaping the basis of V into the rows
of a m×6 matrix A and having in mind that g is the object-oriented metric tensor matrix, one
can compute the basis of V⊥ using the following MATLAB code (the null command is based
on SVD, cf. Section 1.2.7):

U = n u l l (A ∗ g ) ;
p r o j = ( u ( k , : ) − p ( l , : ) ) ∗ U;
u ( k , : ) = sum ( b s x f un ( @times , p r o j , U) , 2 ) ;

4.5 Variational Path Optimization Algorithm’s Manual

This section represents a short manual of using the variational path optimization algorithm.
The manual is accompanied by an algorithm’s flowchart given in Appendix B.

4.5.1 Input

The algorithm will ask for two main sets of inputs namely, design parameters and optimiza-
tion parameters.

Design parameters

These variables define the architectural structure of the pentapod and hence its singularity
variety. These variables of r, X and Y stand as the defining parameters of the base and
platform anchor points while the parameters α and β describe either the pattern of platform
anchor points (in the LP-case) or the co-linearity of certain number of base anchor points (in
LO-cases). In a more general terminology, the design parameters inform the algorithm on
building up the geometric obstacle (i.e. Σ-variety).

Optimization parameters

These variables globally control the variations of the initial curve. These parameters are read
as follows:

• n: the number of breakpoints required for the piecewise smooth curve,

• λ : the geodesic weight,
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• η : the bending weight,

• growth: is a percentage value indicating the maximum and minimum permitted varia-
tion of the curve at each iteration. Experimentally, it is recommended to be ±5%.

4.5.2 Process I

The main task of process I is to create a data collection of the inputs. In fact, these are the
calculations that the algorithm needs to do to have an initial understanding of the situation of
the initial path and the singularity variety (obstacle). This process is done only once per run.
During this process the manipulator will not perform any action and hence the clock will not
tic.

1. Retrieving the data on the given singularity-free initial path within the joint limits.

2, 3. The algorithm evaluates the situation of the initial curve with respect to the Σ-variety
(obstacle) by obtaining the corresponding pedal points on the Σ-variety (obstacle).
This act is done in the fashion of the following consecutive steps:

• finding the real pedal points (cf. Section 1.1.8),

• finding distances corresponding to the real pedal points,

• sorting the real pedal points with respect to their distance in such a way that the
closest pedal point is labelled as the first.

4. The algorithm calculates the minimal singularity-free cover by including/excluding
breakpoints (upon user’s request).

5. At this point, the algorithm runs a check on joint rate limits. Additionally, the safe
zone breaches are flagged (upon user’s request).

6. The objective function is evaluated. In the coming iterations one must expect the mono-
tonic descent of the objective function per iteration till convergence at a possible local
minimum.

4.5.3 Decision I

Though Decision I could be written as a while loop, due to imposing more control over
the outcomes by the user (i.e. user can call a result before the final convergence) it is
presented as a for loop (cf. Appendix B). Additionally, by the start of Decision I, the
clock ticks to measure the elapsed time.

4.5.4 Process II

The core of the algorithm is located within the Process II.

1. By solving the linear system, the preferred direction u− p is obtained.

2. The algorithm monitors whether the safe zone of Q-varieties is breached or not.
If the answer is positive then the update of breakpoints responsible for the breach
is done in the fashion of Eq. 4.20 (cf. Remark 19).
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3, 4, 5. Computing the step size as explained in Section 4.1.3.

6. Having the step size, the curve’s new pose is updated as follows:

up ( 2 : n−1 , : ) = p ( 2 : n−1 , : ) + ( s t e p _ s i z e ) ∗ ( u ( 2 : n− 1 , : ) ) ;

7, 8. Back-projection into Γ as explained in Section 4.2.

9. As we project the result into Γ there is no guarantee for the minimal singularity-
free cover to remain intact. Hence, based on the two algorithms described in
Section 4.3, the inclusion and exclusion should be redone.

10. The cost function is calculated for the current iteration label i+ 1.

4.5.5 Decision II

The new cost function, cost_function(i+ 1) is compared with the previous one, namely
cost_function(i). Since by the gradient descent it is expected of the cost function per it-
eration to decrease, in Decision II a while loop is commenced. As long as the cost function
is not descending and the value of step size is not zero (this can be changed by user to a small
number such as 10−6 for being real-time preservation) the algorithm executes the while loop.
If the cost function’s value is remained intact (almost intact with respect to an accuracy of
10−6) for a certain number of iteration the algorithm terminates.

4.5.6 Process III

At each iteration of the while loop the algorithm halves the step size and reruns Process II.
This gives the opportunity for the preferred direction to find the proper direction to a local
minimum.

4.5.7 Output

The coordinates of the final curve, the plot of the optimized motion and the objective function
per iteration diagram are printed.

4.6 Results & Discussions

The results are demonstrated in the form of the following examples. The algorithm used
to produce these results is a Matlab first implementation and can be subject to further im-
provements, especially through recoding in C++. Finally, the Matlab source codes for the
algorithm are downloadable via http://www.geometrie.tuwien.ac.at/rasoulzadeh/.

4.6.1 Example I

Consider a simple pentapod of the 3rd-LO type (cf. Fig. 2.6, the manipulator on the left side
of the cube) with the following architecture matrix (cf. Eq. 2.4):

r2 x2 y2 z2
r3 x3 y3 z3
r4 x4 y4 z4
r5 x5 y5 z5

=


0 5 0 0
0 0 5 0
5 8 3 0
9 12 12 0

 . (4.21)

http://www.geometrie.tuwien.ac.at/rasoulzadeh/
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1st leg

2nd cone

intersection

FIGURE 4.7: Illustration of the paths in R6 and their corresponding pedals as vector fields along paths
in R3. Top-left: Initial path (blue) and its corresponding pedals (purple), Top-right: Final path (green)
and its corresponding pedals (red) (blue objective curve), Middle-left: Modification of the final path
under 1st prismatic leg’s safe-zone breach (golden objective curve), two golden sphere’s portions depict
the minimum contraction and maximum extension of the first leg, Middle-right: Modification of final
path under 2nd base cone’s safe-zone breach (magenta objective curve). Bottom-right: Modification of
final path under 2nd base cone’s safe-zone breach and 1st prismatic leg’s maximum extent safe-zone
breach at the same time (cyan objective curve). Bottom-left: Objective function (vertical axis) per
number of iterations (horizontal axis) descent. Note that this descent fully makes sense with respect to
the geometry of the optimized motions. The animated versions of these figures are downloadable via
http://www.geometrie.tuwien.ac.at/rasoulzadeh/.

http://www.geometrie.tuwien.ac.at/rasoulzadeh/
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Additionally, the second base cone’s apex angle (resembling the physical limits of base spher-
ical joints) is set at 108◦ while the range of the first leg’s prismatic joint varies in the closed
interval [5.1,16]. The initial singularity-free path is given by the curve

α : [2,5] −→ Γ ⊂R6, (4.22)

x 7−→
(

sin (θ )cos (φ ) , sin (θ ) sin (φ ) , cos (θ ) ,
x+ 10

3
,
x2 + 10

3
,

x3

30
+ 5.333

)
, (4.23)

where (
θ

φ

)
=

5− x
3

(
0.4π

6.8π

)
+

x−2
3

(
0.25π

2π

)
. (4.24)

The illustrated cases are computed for 30 breakpoints with the geodesic weight λ = 0.05 and
the bending weight η = 0.031. Furthermore, the curve’s growth is given by growth = 5%
and safe zone’s vicinity is given by ε = 0.4 (cf. Definition 34).
Finally, the development of the motion curve are depicted in Fig. 4.7 and the geometric de-
tails of the final optimized motion is given in Table 4.1 while Fig. 4.7-bottom left shows the
descent of the related objective functions per iteration.

Top left Top right Middle left Middle right Bottom right

Length 11.1822 18.5233 14.1764 18.2383 14.3301
Total curvature 0.2379 3.2707 2.0867 3.4071 2.3987
Elapsed time - 1.6314 s 3.9546 s 6.7991 s 8.4724 s

TABLE 4.1: Length and total curvature are computed for the final curve in R6 with respect to “object
oriented metric" while the elapsed time gives simply the amount of the passed time for the algorithm
to find the final curve.

4.6.2 Example II

Preserving the architectural and optimization parameters mentioned in Example 4.6.1 and
allowing the minimal singularity-free cover to take place, the result will be as depicted in
Fig. 4.9. It is noteworthy that the final number of breakpoints will be 6. Finally, the geometric
details of the motion is found in Table 4.2 and the related objective function per iteration
descent in Fig. 4.9 - bottom-left.

Remark 20. The jumps in the objective functions in Fig. 4.9 refer to the inclusion of break
points. Fig. 4.8 depicts the changes of number of breakpoints for the cases under study.

Top left Top right Middle left Middle right Bottom right

Length 11.1822 20.6106 15.7346 16.8231 14.6214
Total curvature 0.2379 12.9031 10.5039 11.7041 7.7174
Elapsed time - 2.3237 s 3.3512 s 3.7472 s 3.5261 s

Number of breakpoints 30 7 6 6 6

TABLE 4.2: Length and total curvature are computed for the final curve in R6 with respect to “object
oriented metric", the elapsed time gives the amount of the passed time for the algorithm to find the final
curve. The number of final breakpoints is intact as the singularity-free minimal cover was not active
for this optimization.
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FIGURE 4.8: Illustration of changes in number of breakpoints per iteration during the exclusion/in-
clusion process. The blue curve depicts the case where no joint limit is applied while the golden and
purple ones stand as the changes under 1st prismatic joint limit and 2nd base spherical joint limits. The
cyan curve (not visible) describing the consideration of 1st prismatic and 2nd cone limit simultaneously
is fully covered by the golden curve due to the similarity of change per iteration.

4.6.3 Example III

One other constructive example, to show the strength of the algorithm, is to depict how it
smooths undesired non-smooth path. Assume a 3rd-LO pentapod with the same architectural
design as Eq. 4.21 but with the following singularity-free given motion:

α : [9,14] −→ Γ ⊂R6, (4.25)

x 7−→ (cos (T ) , sin (T ) ,0, t−5, t−2,arccos (cos (t))+ 5) , (4.26)

where

T =

(
t−4

9

)
π

2
. (4.27)

Note that the orientation part of this motion simply sweeps a circle and the end effector is
always parallel to the ground while the position curve creates a sawtooth due to the presence
of arccos (cos (t)) term. Clearly such sawtooth motions are undesirable for the maintenance
and safety of the manipulator and should be avoided (cf. Fig. 4.10-Top). The illustrated final
optimized motion is computed for 20 breakpoints with the geodesic weight λ = 0.05, the
bending weight η = 1 and a curve growth of 5% (cf. Fig. 4.10-Bottom).

Top Bottom

Length 11.0090 11.6501
Total curvature 1.4055 1.6386
Elapsed time - 0.8880 s

TABLE 4.3: Length and total curvature are computed for the final curve in R6 with respect to “object-
oriented metric", the elapsed time gives the amount of the passed time for the algorithm to find the final
curve.
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1st leg

2nd cone

intersection

FIGURE 4.9: Illustration of the same example as in Fig. 4.7 but allowing the inclusion and exclusion of
breakpoints to obtain a minimal singularity-free cover. Bottom-left: The jumps in the objective func-
tions result from the inclusion of breakpoints. Bottom-right: The green breakpoints are not “exactly"
on the intersection curve (cyan) due to the fact that a certain small gap for computational insurance has
been taken into account

4.6.4 Variational Path Optimization Through Graphical User Interface (GUI)

The nature of variational path optimization algorithm is quite general, allowing it to be used
for purposes other than optimization of a manipulator’s trajectory (e.g. such as optimiza-
tion of path with respect to parabola or ellipse in R2 or higher dimensions). Henceforth, we
would like to have program allowing the user to utilize this algorithm for different purposes.
Widely distributed programs typically interact with their users not only through characters
on keyboard and the screen but also through pictures, mouse clicks and screen touches. The
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FIGURE 4.10: Illustration of the sawtooth motion and its smoothed optimized version. Top: Initial
path (blue) and its corresponding pedals (purple), Bottom: Final path (green) and its corresponding
pedals (red).

scheme of interaction that such a program presents to its users is called graphical user inter-
face which is famously abbreviated as GUI [Fitzpatrick and Ledeczi, 2015].
As it is evident from this chapter the variational path optimization algorithm depends on a
variety of optimization and design parameters. Typing these parameters on keyboard for a test
is a time consuming task, aside from the fact that it is quite error prone. In order to alleviate
such a conspicuous burden, we developed two graphical user interfaces covering the imple-
mentation of variational path optimization for two families of planar quadric curves plus the
class of simple pentapods. These GUIs are created in MATLAB and the last version of their
source codes are accessible via http://www.geometrie.tuwien.ac.at/rasoulzadeh/.
Here we present a brief demonstrating documentation of these GUIs.

GUI for the Variational Path Optimization of Quadrics

The graphical user interface will appear by typing variational_UI in MATLAB command
windows. The GUI contains several control panels (see Fig. 4.11) where their description is
as follows:

1. Initial Curve: This panel contains four Edit Text regions receiving the coordinates of
start/end points of the initial curve for the coming proper variation. Additionally, this
panel contains a Radio Button which allows the user to choose an already pre-defined
special path to be used for the optimization. In future updates a variety of choices in
the form of pop-up menu will be made available to users.

http://www.geometrie.tuwien.ac.at/rasoulzadeh/
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FIGURE 4.11: The graphical user interface of the variational path optimization of the quadrics.

2. Advanced Options: Presents a panel containing three sub-panels:

• Quadric Curve Avoidance Method: Provides two options namely Classical
Pedal Method, which considers only the closest pedal points, and All pedals
Method which considers all pedals on the quadric in a weighted fashion,

• Pedal Finder Method: Allows the user to choose between the Differential of
Distance function and the Lagrange Multipliers technique to obtain the pedal
points,

• Quadric Curve: Presents a radio button panel which allows the user to choose
between the two possible options of the ellipse and parabola. In future updates
the rest of the planar quadrics will be added.

3. The Ribbon: Finally, after choosing the desired options for the output, on the white
ribbon, on top, the user must set the optimization parameters. This part consists of two
slide bars by which the user indicates the level of the desired geodesic and bending
weights. There are five edit text regions which should be filled with values that indicate
the following items:

• Number of breakpoints: Attains any natural number between 6 and 300, indi-
cating the chosen breakpoints on the initial curve,

• Growth rate: Attains any positive real number in the interval (0,100], indicating
the variational growth of updated curve. This value by default is set to 5%,

• Epoch: attains any natural number between 1 and 2000, indicating the desired
number of iterations. This value is by default set to 250,

• Curve Parameter 1: Presents the value A in parabola y = Ax2 and ellipse
x2/A2 + y2/B2 = 1. It attains any positive real number between 0.25 and 200,

• Curve Parameter 2: Presents the value B in ellipse ellipse x2/A2 + y2/B2 = 1.
It attains any positive real number between 0.25 and 200.

The ribbon also contains some check boxes, allowing the user to control the plottings
and visibility of geometrical objects. The description is as follows:

• Minimal Singularity-free Open Cover: Covers the curve at each iteration with
open disks guaranteeing the lack of intersection with the quadric. The detailed
explanation is given in Section 4.3,
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FIGURE 4.12: The graphical user interface of the variational path optimization of the simple pen-
tapods.

• Elapsed Time: Prints out the run-time of the optimization process,

• Show All Pedals: Shows all the pedal points on the quadric,

• Plot in Maple: Plots the results with a high resolution in Maple.

• Print Technical Info: Prints the technical information of the optimization and
chosen options in MATLAB command window,

• Hold Previous Plot: Maintains the previous plot to compare the current and the
previous plot,

• Show Animation: Animates the point tracing the final optimized curve,

• Show Variation: Animates the development of the initial curve through the num-
ber of iterations till it gets its final form. This part will be available in a future
release,

4. Cost Function Plot: This panel contains one Axes, allowing the user to monitor the
descent of the cost function per iteration.

5. Path Plot: This panel contains one Axes, allowing the user to view the final optimized
curve.

Finally, on the bottom right the Version of the GUI is printed. The very original version starts
from 1.00 and will increase by each update.

GUI for the Variational Path Optimization of Simple Pentapods

The graphical user interface will appear by typing gui in MATLAB command windows. The
GUI contains several control panels (see Fig. 4.12) where their description is as follows:

1. Architectural Parameters & Initial Path Options: This panel contains a couple
of Edit Text regions receiving the architectural information of the manipulator. This
information helps the algorithm to build the singularity variety. Additionally, this panel
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contains a sub-panel called Initial Path Options, which itself has two Radio Buttons and
two rows, each containing six edit texts receiving the coordinates of a start- and an end-
pose of the pentapod and creates an initial singularity-free motion. The radio button
allows one to choose between path planning option and already saved special paths
to be used for further optimizations. At the moment the path planning option of the
simple pentapods is disabled and will be available in a future release. For theoretical
details see Section 2.4 and Section 5.1.

2. Optimization Parameters: This panel has three Edit Texts, a Check Box, two Sliders
and a push button. The accurate description is as follows:

• Number of Breakpoints: Attains any natural number between 6 and 300, indi-
cating the chosen breakpoints on the initial curve,

• Growth rate: Attains any positive real number in the interval (0,100], indicating
the variational growth of updated curve. This value by default is set to 5%,

• Epoch: Attains any natural number between 1 and 2000, indicating the desired
number of iterations. This value is by default set to 250,

• Geodesic Weight: Attains any positive real number in the interval (0,1], indicat-
ing the emphasize on geodesic energy of the motion,

• Elastic Weight: Attains any positive real number in the interval (0,1], indicating
the emphasize on bending energy of the motion (smoothness of the motion),

3. Joint Limits: This panel hosts three rows of five edit texts each, indicating the limits
of prismatic joints and base spherical joints. Upon checking the corresponding boxes
these physical workspace limits are taken into account during the path optimization and
planning. The edit texts accept values in the range of (0,100] for the prismatic joints’
extension/collapse and [10◦,178◦] for the apex of the base spherical joints’ cone. For
theoretical details see Section 4.4,

4. Advanced Options: Contains a series of check boxes in order to enable the user to
have more control over the final plot which are demonstrated below:

• Print Technical Info: Prints the technical information of the optimization and
chosen options in MATLAB command window,

• Show All Pedals: Shows all the pedal points on the singularity variety in the
form of vector fields in R3,

• Elapsed Time: Prints out the run-time of the optimization process,

• Hold Previous Plot: maintains the previous plot for comparison,

• Plot in Maple: Plots the results with a high resolution in Maple. Since Maple has
several plot options, the user can convert all the optimization’s data from MAT-
LAB to Maple in order to obtain a detailed plot. Upon checking this box, after
the optimization process is finished the file "plot.mw" is automatically opened.
At this point the user has to open the file "pentapod.mw" manually and execute
this worksheet before executing "plot.mw".

• Show Animation: Animates the point tracing the final optimized curve in the
form of the platform tracing the final optimized vector field in R3 (will be avail-
able in a future release),

• Show Variation: Animates the development of the initial curve through the num-
ber of iterations in the form of development of vector fields in R3 (will be avail-
able in a future release),



84 Chapter 4. Variational Path Optimization of Simple Pentapods

• Projection: projects the optimized curve on the cylinder Γ (This box is created
for designer’s control over development of the GUI and is always checked. This
check box is not in user’s access domain.),

• Singular points: Considers the pedal point on the singular points of the singu-
larity variety, namely Σ3 (This box is created for designer’s control over devel-
opment of the GUI and is always checked. This check box is not in user’s access
domain.). For theoretical details see Section 4.1.1,

• Numerical Check: Numerically checks the accuracy of placement of the pedal
points on the singularity variety,

• GCA test: Tests the singularity variety’s structure through Grassmann-Cayley
algebra method. (This check box is not currently in user’s access domain.),

5. Cost Function Plot: This panel contains one Axes, allowing the user to monitor the
descent of the cost function per iteration.

6. Path Plot: This panel contains one Axes, allowing the user to view the final optimized
motion of the manipulator.

7. Animation: Aside from static plots, the goal is to have a full animation of the penta-
pod’s motion in both MATLAB and Maple environment upon user’s request. Fulfilling
this goal allows one to have a full kinematic simulation of simple pentapods.

Once again, on the bottom right the Version of the GUI is printed. The very original version
starts from number 1 and will be updated in future. The current manual will be updated and
released as a PDF alongside the source code files under the title Manual.
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Chapter 5

Conclusion and Future Works

In this thesis, the design, path optimization and geometry of the linear pentapod’s singularity
variety are thoroughly discussed and investigated. However, there are still scientifically open
questions regarding the linear pentapods that could be drawn. In this last chapter these pos-
sible future projects are discussed. It is expected that using the contents of this thesis, these
problems are resolvable in near future.

5.1 Analytical Path Planning of the Simple Pentapods

There are many different techniques for the path planning of manipulators in which many of
them resort to numerical techniques [Li et al., 2017].
In Chapter 2, we observed that the singularity variety of a general linear pentapod is cubic in
pose variables and hence is complex enough to smoke away any idea of obtaining an analyt-
ical singularity-free path. However, the case of simple pentapods may give a hope of finding
such a path without the aid of numerical techniques.
In the case of simple pentapods the singularity variety breaks into the union of a hyperplane
and a quadric in R6 (for details see Chapter 2). Since these are simple geometrical objects
one could expect finding an analytical path planning via the concept of road maps [Din and
Schost, 2017].
In this subsection, we present a geometrical argument which reveals the possibility of an an-
alytical path planning of the simple pentapods.

Definition 35. Assume P ∈ C [x1, . . . ,xn] then we define a “level set" of the polynomial P to
be the set of all zeros of the polynomial Q ∈ C [x1, . . . ,xn],

Q (x1, . . . ,xn) := P (x1, . . . ,xn)−C, (5.1)

where C ∈R.

From the geometrical point of view the level set V (Q) has no intersection with V (P).
This is due to the fact that

〈Q , P〉= 〈P−C , P〉= 〈1〉 (5.2)

which yields V (P)∩V (Q) = /0. Additionally, if the polynomial P is a quadratic polynomial
then for all of the level sets with C 6= 0, the quadric V (Q) is a smooth variety. This can be
easily proven by resorting to the projective space. In fact homogenizing Q for a non-zero C
and computing its singular points reveals that these points can only exist on the (hyper)plane
at infinity and hence in finite space these level sets are smooth.
Coming back to the path planning problem, we assume that we have two non-singular poses
of the pentapod and we wish to connect them via a path which does not pass through the sin-
gularity variety. Since it is assumed that the start- and end-pose points are non-singular they
must be located on two level sets of the simple pentapod’s singularity polynomial, namely
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Q1 (u1, . . . ,u6) and Q2 (u1, . . . ,u6). Here, the idea is to orthogonally project one of the poses
into the level set of the other. However, this is not always a possibility as these poses might
belong to two different sides of the singularity variety (e.g. that C1 < 0 and C2 > 0) and hence
there might be no way to do it (e.g. the case when two point belong to two different sides of
a plane). In order to find out when such a possibility exist we must take a closer look at the
structure of the singularity variety.
The singularity variety of the simple pentapods are isomorphic to the zero sets of

u6 [u6 (u1 + u2)−u3 (u4 + u5−1)] , (5.3)

for the LO case and
u3 [u6 (u1 + u2−1)−u3 (u4 + u5)] , (5.4)

for the LP case. As mentioned in Chapter 2, the singularity variety of the simple pentapod
decomposes into a hyperplane and a quadric as it can be inferred from Eq. 5.3 and Eq. 5.4.
Now, assume that start-pose and end-pose belong to one side of the quadric Σ2 (C1C2 > 0) as
otherwise no singularity-free path exists. Now, orthogonally project one of the start- or end-
pose into the level set of the other and let’s call this level set Q. Now, it is natural to desire
the normal form of this (smooth) quadric in order to have a clearer view. If H is the related
Hessian matrix of the homogenization of the quadratic factors of Eq. 5.3 and Eq. 5.4, then
resorting to Sylvester’s law of inertia for the quadric forms [Friedberg, Insel, and Spence,
2013, page 443] gives a map

φ : P6 −→P6, (5.5)

u 7−→ E u, (5.6)

where u = (u1 : . . . : u6 : u0) is the homogenised pose coordinates in P6 and E is the ma-
trix whose columns are obtained through orthonormalization of the set of eigenvectors of
H. Under this transformation, the quadric is transformed into H = ET DE, where D is a
diagonal matrix containing the eigenvalues of H as the diagonal entries. By putting x =
(x1 : . . . : x6 : x0) = φ (u) we obtain a normalized form isomorphic (possibly after a rela-
belling of the variables) to the following quadric form in the projective space P6

QN := −x2
1− x2

2 + x2
3 + x2

4 + x2
0 (5.7)

for both LO and LP cases. QN forms a connected projective variety.

Remark 21. Note that, the Sylverster’s normalization of quadrics works on the smooth
quadrics. Hence, we could not directly use it to obtain the normal form of the singularity
variety.

One last step is to consider the fact that after the transformation of Eq. 5.6, the hyperplane
at infinity V(u0) and the hyperplane Σ1 (V(u6) for LO case and V(u3) for the LP case) now
attain new coordinates. In this fashion, through the transformation of Eq. 5.6, V(u0) and Σ1
are isomorphic to

u0 = −x5 + x6 (5.8)

u6 = −x1 + x2, (5.9)

for the LO and

u0 = x1 + x2 + x3, (5.10)

u3 = −x4− x5− x6 + x0, (5.11)
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FIGURE 5.1: Illustration of the workspace in position space under constant orientation (u1,u2,u3)T =
(1,0,0)T .

for the LP case. Now, in order to find the path between the two end points belonging to the
level set QN they must belong to one side of both transformed hyperplane at infinity and the
transformed Σ1 otherwise there will no possible path between them. If these conditions are
fulfilled the only thing that remains is to choose the path in such a way that it does not pass
through these planes. This last step requires computational considerations if it is to be nicely
done and hence remains for a possible future project.

5.2 Workspace Analysis of Simple Pentapods

Another topic of interest related to linear pentapods is their workspace analysis. Workspace
analysis takes place at its simplest whenever the five prismatic joints are confined to intervals
rather than the entire positive real numbers. Since the linear pentapods are 5-DoF parallel
manipulators, their workspace will be cells in R6 (see Section 1.2.6 for definitions of the
cells). The main idea is to use an already built-in algorithm under the name of cylindrical
algebraic decompositions to analyse these volumes.
The following example shows an initial attempt in obtaining the workspace analysis for the
LO class pentapods (see Section 2.3):

Example 24. Consider a linear pentapod possessing 1st LO property with the following
architectural design: 

r2 x2 y2 z2
r3 x3 y3 z3
r4 x4 y4 z4
r5 x5 y5 z5

=


1 5 0 0
3 0 −5 0
5 −2 −7 0
9 8 3 0

 , (5.12)

with α = 0.2 and β = −0.2. Now, assume that the prismatic joint’s maximum length is the
value 15. In another word, the each prismatic joint variable ρi (for i = 1, . . . ,5) sweeps the
interval [0,15]. Now in order to be able to visualize the related volumes in R3 we let the
manipulator attain the orientation u1 = 1, u2 = 0 and u3 = 0.
Using the library of SIROPA, the following Maple code gives the volume depicted in Fig. 5.1:
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w i t h ( SIROPA ) :
c e l l := C e l l D e c o m p o s i t i o n P l u s ( subs ( u1 =1 , u2= 0 , u3 =0 , r o b o t :−E q u a t i o n s ) ,
subs ( u1=1 , u2= 0 , u3 =0 , [F , rho1 , rho2 , rho3 , rho4 , rho5 , 15−rho1 , 15−rho2 ,
15−rho3 , 15−rho4 , 15−rho5 ] ) , [ rho1 , rho2 , rho3 , rho4 , rho5 ] , [ u4 , u5 , u6 ] ) :

In the above code F stands as the singularity polynomial of Eq. 2.8 and rho stand as the
prismatic joint limits. Hence, the command creates the volume that is confined by between
upper bound and lower bound of the prismatic joints while the singularity polynomial is also
taken into account.

The above procedure, is repeatable for other main axis of the orientation space, namely,
(0,1,0)T and (0,0,1)T . However, as soon as we use a mixed orientation (which is not one
of the main axis but rather is a generic point on S2) the computation collapses. One of the
possible future projects is to investigate these volumes in a proper way both on position and
orientation space.

5.3 Leg Collision Analysis and Platform Spherical Joints Limits

We demonstrated that simple pentapods imply a reduction in the number of pedal points
in addition to their closed-form coordinates (cf. Section 1.1.8). We studied the geometric
properties of simple pentapod’s loci (cf. Section 2.4).
Since the main purpose of the paper was to optimize a given singularity-free path between
two fixed poses, we setup a cost function involving energy terms and distance to the Σ-
variety (cf. Section 2.4.1). Obtaining the local minimum of the cost function by imploring
the gradient descent method resulted in an optimized motion with the following properties:

• increased distance to the Σ-variety,

• smoothness,

while considering the extension/contraction limits of prismatic joints and angular limits of
the base spherical joints. Finally, the details of the algorithm along with a flowchart are given
in Section 4.5 and Appendix B.
Though the problem of feasible motions with respect to physical limits of the base spherical
joints and prismatic joints yields rather simple surfaces, namely, hyperquadrics in R6, the
problem of leg collision avoidance and angular limits of platform spherical joints implore
a more sophisticated situation as they yield hyperquartics in R6. Consequently, obtaining
pedals on such varieties gets more complex as even the Gröbner basis approach does not
yield a solution in the general case. One idea to ameliorate this problem is by resorting to a
numerical method such as homotopy continuation method performed by Bertini [Bates et al.,
2013] which will be subject to a future research.

Summarized Open problems

As the object-oriented distance d is of interest for many tasks such as quality index for path
planning/optimization or radius of the maximal singularity-free hypersphere the following
items are still the open problems and can be considered as a generalization of the design and
path planning/optimization of the simple pentapods:

• Fast computation of the pedals points (Bertini) alternatively we can look for the
minimizer under similarity transformations of ` (⇔ omitting the normalizing condition
u2

1 + u2
2 + u2

3 = 1) for the class of general linear pentapods,
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• Leg collision avoidance for the classes of simple and general pentapods,

• Motion platform angular limits consideration for the classes of simple and general
pentapods,

• Workspace analysis of simple and general pentapods,

• Analytical path planning of simple pentapods.

Having the above cases included results in a consistent and thorough understanding of the
kinematics of the linear pentapods of all classes.
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Appendix A

Derivation of Pentapod’s Jacobian
Matrix

Kinematic singularities occur whenever the Jacobian matrix J becomes rank deficient, where
J can be written as follows (cf. [Borràs, Thomas, and Torras, 2010b]):

J =

(
l1 . . . l5
l̂1 . . . l̂5

)T

with l j =

u4 + r ju1− x j

u5 + r ju2− y j

u6 + r ju3− z j

 , l̂ j =

z j(u5 + r ju2)− y j(u6 + r ju3)
x j(u6 + r ju3)− z j(u4 + r ju1)
y j(u4 + r ju1)− x j(u5 + r ju2)

 .

As (l j, l̂ j) are the Plücker coordinates of the jth leg, the condition rk(J) < 5 is equivalent
with the statement that the five legs belong to a linear line congruence. Now the idea is to
add a sixth line in a way that it does not belong to this line congruence for all poses of `. The
simplest way for doing that is to consider the ideal line of a plane perpendicular to `, which
has Plücker coordinates:

(l6, l̂6) := (0,0,0,u1,u2,u3). (A.1)

This line cannot belong to the line congruence because it does not intersect the linear platform
` (cf. [Pottmann and Wallner, 2009]). Therefore rk(J)< 5 is equivalent to det(J+) = 0 with

J+ =

(
l1 . . . l6
l̂1 . . . l̂6

)T

. (A.2)

By embedding this matrix into a 7×7 matrix

S∗ =
(

1 o
o J+

)
(A.3)

with det(J+) = det(S∗) and by applying row and column operations to S∗, using MAPLE

"Insert Code Edit Region" notations, we end up with the matrix S:

wi th ( L i n e a r A l g e b r a ) :
x [ 1 ] := 0 : y [ 1 ] := 0 : z [ 1 ] := 0 : r [ 1 ] := 0 :
f o r i from 4 t o 7 do

S∗ := RowOperat ion ( S∗ , [ i , 2 ] , −1)
end do :
f o r i from 4 t o 7 do

S∗ := RowOperat ion ( S∗ , [ i , 1 ] , −r [ i −2])
end do :
S∗ := ColumnOpera t ion ( S∗ , [ 2 , 1 ] , u1 ) :
S∗ := ColumnOpera t ion ( S∗ , [ 3 , 1 ] , u2 ) :
S∗ := ColumnOpera t ion ( S∗ , [ 4 , 1 ] , u3 ) :
S∗ := ColumnOpera t ion ( S∗ , [ 5 , 4 ] , −u5 ) :
S∗ := ColumnOpera t ion ( S∗ , [ 5 , 3 ] , u6 ) :
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S∗ := ColumnOpera t ion ( S∗ , [ 6 , 4 ] , u4 ) :
S∗ := ColumnOpera t ion ( S∗ , [ 6 , 2 ] , −u6 ) :
S∗ := ColumnOpera t ion ( S∗ , [ 7 , 2 ] , u5 ) :
S∗ := ColumnOpera t ion ( S∗ , [ 7 , 3 ] , −u4 ) :
S∗ := ColumnOpera t ion ( S∗ , 6 , u2 ) :
S∗ := ColumnOpera t ion ( S∗ , [ 6 , 5 ] , u1 ) :
S∗ := ColumnOpera t ion ( S∗ , [ 6 , 7 ] , u3 ) :
S∗ := ColumnOpera t ion ( S∗ , 6 , 1 / ( u1 ^2+ u2 ^2+ u3 ^ 2 ) ) :
S∗ := ColumnOpera t ion ( S∗ , [ 5 , 6 ] , −u1 ) :
S∗ := ColumnOpera t ion ( S∗ , [ 7 , 6 ] , −u3 ) :
f o r i from 4 t o 7 do

S∗ := RowOperat ion ( S∗ , i , −1)
end do :
f o r i from 4 t o 7 do

S∗ := RowOperat ion ( S∗ , [ i , 3 ] , r [ i −2]∗y [ i −2])
end do :
S∗ := RowOperat ion ( S∗ , [ 1 , 3 ] , u5 ) :
S∗ := RowOperat ion ( S∗ , 3 , u2 ) :
S∗ := ColumnOpera t ion ( S∗ , [ 5 , 6 ] , u3 ) :
S∗ := ColumnOpera t ion ( S∗ , [ 7 , 6 ] , −u1 ) :
S∗ := ColumnOpera t ion ( S∗ , 5 , 1 / u2 ) :
S∗ := ColumnOpera t ion ( S∗ , 7 , −1/u2 ) :
S∗ := ColumnOpera t ion ( S∗ , [ 5 , 7 ] , i n p l a c e = t r u e ) :
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Appendix B

Variational Path Optimization
Flowchart

For downloading the implementation in Matlab plus tools for plotting results in Maple visit
http://www.geometrie.tuwien.ac.at/rasoulzadeh/. The implemented algorithm might
be subject to minor updates in future releases.
The flowchart is modelled according to the current standard ISO 5807. Finally, due to the
fact that the variational path optimization algorithm, in its presented shape here, can be used
for different optimization goals involving a path and an obstacle to avoid, the flowchart is
presented as general as possible. The items exclusively related to the variational path opti-
mization of the simple pentapods are labelled by (∗). By disregarding these lines one would
be able to use the same techniques for other optimization goals such as the optimization of a
path with respect to a parabola in R2 (cf. Fig. 4.3) or similar goals in different Rn spaces.

http://www.geometrie.tuwien.ac.at/rasoulzadeh/
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start

1. design parameters: r, X, Y, α , β (∗),
2. optimization parameters: initial_curve, n, λ , η .

1. compute real_sorted_pedals,
2. compute all_real_distances,
3. do necessary inclusion or exclusion,
4. joint limit analysis (∗),
5. compute cost (1).

for i = 1 : iter

1. solve linear system,
2. joint limit analysis (∗),
3. compute geodesic growth: geodesic_candidate,
4. compute bending growth: bending_candidate,
5. choose step size,
6. update piecewise smooth curve: up = p+ step_size∗u,
7. projection into the cylinder’s tangents and the cylinder (∗),
9. do necessary inclusion or exclusion,

10. compute cost (i+ 1).

while cost (i+ 1) > cost (i)

1. step_size = step_size/2

2. update piecewise smooth curve: up = p+ step_size∗u,
3. projection on the cylinder’s tangents and into cylinder (∗),
5. do necessary inclusion or exclusion,
6. compute cost (i+ 1).

final_curve stop

True

False

Input

Process I

Decision I

Process II

Decision II

Process III

Output

False

True
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Appendix C

Computational Details of the Linear
System of Eq. 4.6

The linear system of Eq. 4.6 is written as Au = b, where A is the matrix of coefficients, u
the matrix of variables and b the matrix of constants. Here, in this appendix, the detailed
internal structure of these matrices are investigated and the related codes are presented in the
programming language of MATLAB. Throughout the rest of the appendix the variables λ and
η (at i-th iteration) are defined as

lambda = ( lambda ∗ ( n − 1) / (2 ∗ L_prime ) ) ;
e t a = ( e t a ∗ ( n − 2) / (2 ∗ Tau_prime ) ) ;

where n is the number of breakpoints and L′ and τ ′ are respectively the length and total
curvature of the motion curve at the i−1-th iteration. Additionally, in the coming sections, J
and R are the values defined in Definition 29.

C.1 Matrix of Coefficients A

Having in mind that g is the metric tensor (i.e. object-oriented metric tensor, cf. Eq. 3.1), n is
the number of chosen breakpoints and λ and η are geodesic and elastic weights respectively,
the construction of the matrix A is as follows:

A = (4 ∗ lambda + 12 ∗ e t a ) ∗ eye ( n−2);

nn = s i z e (A , 1 ) ;
f o r i i = 2 : nn

A( i i − 1 , i i ) = (−2 ∗ lambda ) + (−8 ∗ e t a ) ;
end

f o r i i = 3 : nn
A( i i − 2 , i i ) = 2 ∗ e t a ;

end

A_prime = z e r o s ( n−2);
A_prime ( 1 ) = −2 ∗ e t a ;
A_prime ( end ) = −2 ∗ e t a ;

A = A + A_prime ;
A = t r a n s p o s e ( t r i l (A, 2 ) ) + A − diag ( diag (A ) ) ;

A = kron ( g , A ) ;
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if d is the dimension of the ambient space where the obstacle lies then the last line of the
above code is

A = g d×d ⊗A′′ (C.1)

where A′′, is the following d(n−2) × d(n−2) square matrix:

4λ + 10η −2λ −8η 2η 0 0 0 0 0

−2λ −8η 4λ + 12η −2λ −8η 2η

...
...

...
...

2η −2λ −8η 4λ + 12η −2λ −8η 2η 0 0 0

0 2η −2λ −8η 4λ + 12η
. . . −2λ −8η 2η 0 0

0 0 2η −2λ −8η
. . . 4λ + 12η −2λ −8η 2η 0

0 0 0 2η −2λ −8η 4λ + 12η −2λ −8η 2η

...
...

...
... 2η −2λ −8η 4λ + 12η −2λ −8η

0 0 0 0 0 2η −2λ −8η 4λ + 10η


It is noteworthy that for number of breakpoints lower than 6, the pattern of Eq. C.1 for matrix
of constants does not hold.

C.2 Matrix of Constants b

The structure of the matrix of constant is as follows:

b =
N1 ◦W1 ◦X1 + · · ·+N4 ◦W4 ◦X4

n−2
+Y, (C.2)

where ◦ stands as the Hadamard product. The rest of the symbols in Eq. C.2 are described
below.
Y is the d (n−2) × 1 defined by

Y =
( (

Y 1
n−2×1

)T ,
(
Y 2

n−2×1
)T , · · · ,

(
Y d

n−2×1

)T
)

(C.3)

where each Yi is the row of the following matrix Y:

Y = z e r o s ( n − 2 , 3 ) ;
f o r i i = 1 : 3

Y ( : , i i ) = [2 ∗ lambda ∗ ( J ∗ a ( i i + 3 ) + R ∗ a ( i i ) ) + . . .
4 ∗ e t a ∗ ( J ∗ a ( i i + 3 ) + R ∗ a ( i i ) ) ; . . .

−2 ∗ e t a ∗ ( J ∗ a ( i i + 3 ) + R ∗ a ( i i ) ) ; . . .
z e r o s ( n − 6 , 1 ) ; . . .
−2 ∗ e t a ∗ ( J ∗ b ( i i + 3 ) + R ∗ b ( i i ) ) ; . . .
2 ∗ lambda ∗ ( J ∗ b ( i i + 3 ) + R ∗ b ( i i ) ) +

4 ∗ e t a ∗ ( J ∗ b ( i i + 3 ) + R ∗ b ( i i ) ) ] ;
end

YY = z e r o s ( n − 2 , 3 ) ;
f o r i i = 1 : 3

YY( : , i i ) = [2 ∗ lambda ∗ ( J ∗ a ( i i ) + a ( i i + 3 ) ) + . . .
4 ∗ e t a ∗ ( J ∗ a ( i i ) + a ( i i + 3 ) ) ; . . .

−2 ∗ e t a ∗ ( J ∗ a ( i i ) + a ( i i + 3 ) ) ; . . .
z e r o s ( n − 6 , 1 ) ; . . .
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−2 ∗ e t a ∗ ( J ∗ b ( i i ) + b ( i i + 3 ) ) ; . . .
2 ∗ lambda ∗ ( J ∗ b ( i i ) + b ( i i + 3 ) ) + . . .

4 ∗ e t a ∗ ( J ∗ b ( i i ) + b ( i i + 3 ) ) ] ;
end

Y = [Y, YY] ;

which after reshaping creates Y:

Y = reshape (Y, [ ] , 1 ) ;

Ni is the d (n−2) × 1 matrix describing the normalized gradient filed on the Σ-variety.
Suppose p is a n− 2 × d matrix containing the pose coordinates of the i-th breakpoint in
its i-th row. Additionally, assume nq to be the maximum number of pedal points on the Σ-
variety (hence 4 based on Definition 30) then if q is a n− 2 × d× nq matrix consisting of
rows, columns and pages, containing the coordinates of the pedal points referring to the i-th
breakpoint in its i-th row then the structure of Ni is (in the code it is written as N1, N2, N3
and N4):

N = z e r o s ( n−2, nq ) ;
f o r kk = 1 : nq

vec = p ( 2 : n−1, : ) − q ( 2 : n−1, : , kk ) ;
N ( : , kk ) = s q r t ( sum ( vec ∗ g . ∗ vec , 2 ) ) ;

end

N1 = kron ( ones ( d , 1 ) , ( 1 . / N ( : , 1 ) ) ) ;
N2 = kron ( ones ( d , 1 ) , ( 1 . / N ( : , 2 ) ) ) ;
. . .
Nnq = kron ( ones ( d , 1 ) , ( 1 . / N ( : , nq ) ) ) ;

The Matrices Wi are the d (n−2) × 1 vectors containing the positive weights related to
each breakpoint (cf. Definition 31). In order to be able to construct them one must first build
the regulation factor (cf. Eq. 4.3).
If d1, d2, ..., dnq are the corresponding distances from the nq number of pedal points to a
breakpoint p then the regulation factor H is

H =
1

1
d1
+ ...+ 1

dnq

, (C.4)

which the related vectorized code is given by

H = 1 . / sum ( c e l l f u n (@sum, g d i v i d e ( 1 , . . .
a l l _ r e a l _ d i s t a n c e s ( 2 : n − 1 , : ) ) ) , 2 ) ;

Finally, with aid of H, the structure of Wis is as follows:

W1 = H . ∗ c e l l f u n (@sum, g d i v i d e ( 1 , . . .
a l l _ r e a l _ d i s t a n c e s ( 2 : n −1 , 1 ) ) ) ;

W2 = H . ∗ c e l l f u n (@sum, g d i v i d e ( 1 , . . .
a l l _ r e a l _ d i s t a n c e s ( 2 : n −1 , 2 ) ) ) ;

W3 = H . ∗ c e l l f u n (@sum, g d i v i d e ( 1 , . . .
a l l _ r e a l _ d i s t a n c e s ( 2 : n −1 , 3 ) ) ) ;

. . .
Wnq = H . ∗ c e l l f u n (@sum, g d i v i d e ( 1 , . . .

a l l _ r e a l _ d i s t a n c e s ( 2 : n −1,nq ) ) ) ;
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W1 = kron ( ones ( d , 1 ) , W1) ;
W2 = kron ( ones ( d , 1 ) , W2) ;
W3 = kron ( ones ( d , 1 ) , W3) ;
. . .

Wnq = kron ( ones ( d , 1 ) , Wnq ) ;

X is the d (n−2) × nq defined by

X =
( (

X 1
n−2×1

)T ,
(
X 2

n−2×1
)T , · · · ,

(
X d

n−2×1

)T
)

(C.5)

where each Xi is the row of the following matrix X:

X = z e r o s ( n − 2 , 3 , nq ) ;
f o r i i = 1 : 3

f o r kk = 1 : nq
X ( : , i i , kk ) = R ∗ ( p ( 2 : n − 1 , i i ) − . . .

q ( 2 : n − 1 , i i , kk ) ) + J ∗ ( p ( 2 : n − 1 , i i + 3 ) − . . .
q ( 2 : n − 1 , i i + 3 , kk ) ) ;

end
end

XX = z e r o s ( n − 2 , 3 , nq ) ;
f o r i i = 1 : 3

f o r kk = 1 : nq
XX( : , i i , kk ) = J ∗ ( p ( 2 : n − 1 , i i ) − . . .

q ( 2 : n − 1 , i i , kk ) ) + ( p ( 2 : n − 1 , i i + 3 ) − . . .
q ( 2 : n − 1 , i i + 3 , kk ) ) ;

end
end

X = [X, XX] ;

which after reshaping creates Y:

X = reshape (X, [ ] , 1 , nq ) ;

Now, having all the required ingredients, the final code for constructing b is:

b = ( N1 . ∗ W1 . ∗ X ( : , 1 ) + . . .
N2 . ∗ W2 . ∗ X ( : , 2 ) + . . .
N3 . ∗ W3 . ∗ X ( : , 3 ) + . . .
. . . .

Nnq .∗ Wnq . ∗ X ( : , nq ) ) / ( n − 2) + Y;

C.3 Matrix of Variables u

The command:

u = A \ b

solves the linear system of equation and yields the matrix of variables:

u =
( (

u 1
n−2×1

)T ,
(
u 2

n−2×1
)T , · · · ,

(
u d

n−2×1

)T
)T

d(n−2)×1
(C.6)
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