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Part I
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Basics
A planar quad-surface (PQ-surface) is a plate-hinge
structure made of quadrilateral panels connected by
rotational joints in the combinatorics of a square grid.

A generic PQ-surface is rigid, but there exist certain
classes allowing an isometric deformation having one
degree of freedom.

One such class are V-hedra, which are discrete
analogs of Voss (V) surfaces (i.e. smooth surfaces
with a conjugate geodesic net) and date back to
Sauer, R., Graf, H.: Über Flächenverbiegung in Analogie zur
Verknickung offener Facettenflache, Mathematische Annalen
105:499–535 (1931)
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Basics

The geodesic condition translates into the equality of opposite angles at every vertex.

Remark: Discrete analogs of conjugate nets are PQ-surfaces, which dates back to
Peterson, K.: Ueber Curven und Flächen, A. Lang’s Buchhandlung, Moskau; Franz Wagner, Leipzig (1868)

By replacing this equality condition by the closely related constraint that opposite angles
at every vertex are supplementary, we get so-called anti-V-hedra.
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Basics

V-hedra: flat-foldable (flat self-overlapping position)
in two different ways

anti-V-hedra: developable and flat-foldable

Remark: Every PQ-surface that is developable (α +
β + γ + δ = 2π) and flat-foldable (α − β + γ + −δ =
0; Kawasaki’s theorem) has to be an anti-V-hedron.
Beside the degenerated case of developable V-hedra.
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Examples

Eggbox pattern (V-hedron)

V-hedra have many applications in
structural and mechanical engineering.

Miura-ori (anti-V-hedron)

Anti-V-hedra are of practical interest as
they are developable and flat-foldable at
the same time.
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Review

PQ-surfaces are rigid-foldable if and only if every 3 × 3 block has this property, cf.
Schief, W.K., Bobenko, A.I., Hoffmann, T.: On the integrability of infinitesimal and finite deformations of poly-
hedral surfaces, in: Discrete Differential Geometry, Springer, pp. 67–93 (2008)

First results on rigid-foldable 3 × 3 blocks were given by
Kokotsakis, A.: Über bewegliche Polyeder, Mathematische Annalen 107:627–
647 (1933)
containing the already known V-hedral case, but he also men-
tioned for the first time anti-V-hedral and hybrid 3×3 patches.

Remark: First examples of larger hybrid patches showing the
transition from generalized Miura-ori to eggbox were given by
Tachi, T.: Freeform rigid-foldable structure using bidirectionally flat-foldable
planar quadrilateral mesh, Advances in Architectural Geometry, Springer, pp.
87–102 (2010)
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Relation between V-vertex and anti-V-vertex

By extension of two adjacent faces to the
other side a V-vertex can be transformed in-
to an anti-V-vertex (and vice versa).
Spherical image: one of the four points of
the spherical isogram (opposite sides have
the same length) is replaced by its antipode.
=⇒ both cases can be unified using spherical
kinematics, where it is known as the isogonal
case (cf. Part II) according to
Stachel, H.: A kinematic approach to Kokotsakis meshes,
Computer Aided Geometric Design 27:428–437 (2010)



Structures – Polyhedra, Meshes, Platforms | RICAM, Linz, May 15, Research funded by

Relation between V-vertex and anti-V-vertex

Gauss map: In a V-vertex opposite dihedral
angles are equal due to reasons of symme-
try =⇒ Gauss map is a spherical Chebyshev
quad. In more detail it is a spherical paralle-
logram according to Eq. (5.12) of
Schief, W.K., Bobenko, A.I., Hoffmann, T.: On the inte-
grability of infinitesimal and finite deformations of poly-
hedral surfaces, in: Discrete Differential Geometry, Sprin-
ger, pp. 67–93 (2008)

By construction of an anti-V-vertex two ad-
jacent normals flip in orientation =⇒ Gauss
map is a spherical anti-parallelogram.
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Completing the Gauss map

Assume that three pairwise distinct points b, c, d on the unit-sphere S2 are given in a
way that the plane ε spanned by them does not contain the sphere center O. Compute
a fourth point a ∈ S2 with:

∥c − d∥ = ∥a − b∥ and ∥c − b∥ = ∥a − d∥.

Completing the spherical Chebyshev quad
by a+ to a spherical parallelogram
by a− to a spherical anti-parallelogram

a− is obtained by reflecting c on the bisec-
ting plane of b and d.
We obtain a+ by reflecting a− on the plane
O, b, d.

c
d

b

a−

c

d
b

a−
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Completing the Gauss map

Assume that three pairwise distinct points b, c, d on the unit-sphere S2 are given in a
way that the plane ε spanned by them does not contain the sphere center O. Compute
a fourth point a ∈ S2 with:

∥c − d∥ = ∥a − b∥ and ∥c − b∥ = ∥a − d∥.

Completing the spherical Chebyshev quad
by a+ to a spherical parallelogram
by a− to a spherical anti-parallelogram

Alternatively a+ can be computed by a
half-turn of c about the line spanned by O
and the midpoint of b and d.
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Review on existing design methods/tools

1) Sauer sketched two methods for determi-
ning a V-hedron via control polylines in
Sauer, R.: Differenzengeometrie, Springer (1970)

(a) by two boundary polylines plus the
direction of fold-lines

(b) by a zigzag diagonal

2) Anti-V-hedra were studied by
Feng, F., et al.: The designs and deformations of rigidly
and flat-foldable quadrilateral mesh origami, Journal of
the Mechanics and Physics of Solids 142:104018 (2020)
Their marching algorithm to obtain the cre-
ase pattern is identical to Sauer’s design me-
thod (a) applied to the anti-Voss condition.
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Review on existing design methods/tools

3) Two design methods for V-hedra are discussed in
Montagne, N., et al.: Discrete Voss surfaces: Designing geodesic gridshells with planar
cladding panels, Automation in Construction 140:104200 (2022)

(i) exactly method (a) of Sauer, although the correct
attribution is missing

(ii) Designing a discrete Chebyshev net on the sphere and then
exploring the space of parallel V-hedra having the chosen
Chebyshev net as Gauss map

4) A design algorithm for anti-V-hedra was presented by
Lang, R.J., Howell, L.: Rigidly Foldable Quadrilateral Meshes From Angle Arrays,
Journal of Mechanisms and Robotics 10:021004 (2018) Software: Flatform
Modified version of Sauer’s method (a) applied to anti-V-hedra in
the developed state, where to each edge a folding angle is assigned.
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Review on existing design methods/tools

5) A design tool for generating V-hedra, anti-V-hedra and hybrid surfaces is given by
Tachi, T.: Freeform rigid-foldable structure using bidirectionally flat-foldable planar quadrilateral mesh, Advances
in Architectural Geometry, Springer, pp. 87–102 (2010) Software: Freeform Origami
The interactive tool allows drag motions of vertices, which deforms the perturbed net to
its orthogonal projection on the set of bidirectionally flat-foldable planar quad-meshes.

6) Algorithm for the inverse design problem was presented in
Dang, X., et al.: Inverse design of deployable origami structures that approximate a general surface, International
Journal of Solids and Structures 234-235:111224 (2022)
Approximation of a target surface by an anti-V-hedron with the mountain-valley assi-
gnment of Miura-ori.



Structures – Polyhedra, Meshes, Platforms | RICAM, Linz, May 15, Research funded by

On the convexity of quads
According to the investigations of Kokotsakis given in
Kokotsakis, A.: Über bewegliche Polyeder, Mathematische Annalen 107:627–
647 (1933)
a necessary condition that a net with V-vertices and/or anti-
V-vertices consists only of convex quads is that each 3 × 3
block has one of the following vertex assignments:

• all 4 vertices are either of V-type or anti-V-type
• 2 vertices are of V-type, 2 of anti-V-type

Remark: If this condition is violated at least one concave quad has to exist.
Studies dealing with anti-V-hedra a restricted to convex quads. V-hedra are discussed in
Sauer, R., Graf, H.: Über Flächenverbiegung in Analogie zur Verknickung offener Facettenflache, Mathematische
Annalen 105:499–535 (1931)
under the assumption of not flipped quads, but concave non-flipped quads are allowed.
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On the convexity of quads
anti-V-vertices

V-vertex

Known examples of flexible discrete surfaces containing concave quads:
1. Flipped quads are contained in the Miura-Tachi tubes

Miura, K., Tachi, T.: Synthesis of rigid-foldable cylindrical polyhedra, Symmetry: Art and Science 2010,
pp. 204–213 (2010)

2. Flipped quads are contained in a wall design (Croydon Colonnade)
3. Concave faces can be seen in the crinkle construction done by Connelly

Connelly, R.: Flexing surfaces, The Mathematical Gardner, pp. 79–89 (1981)
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On the convexity of quads

anti-V-vertices

V-vertex

There is no need for this convexity restriction as it limits the design space artificially. For
the same reason we allow flipped quads, which additionally enables us to discretize some
surface singularities∗ without introducing vertices with a valence different than four.
Open problem: Which type of surface singularities can be modeled with this approach?
Remark: The flipped quads can also easily be built for practical application in an archi-
tectural scale; e.g. by welding two crossing beams.

∗Conjugate lines of same family intersect.
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Flexibility of 3x3 blocks (without any restriction on quads)

A 3 × 3 block is continuous flexible if and only if the
spherical image has this property; cf.
Stachel, H.: A kinematic approach to Kokotsakis meshes, Computer Aided
Geometric Design 27:428–437 (2010)
One can always find a proper orientation of the edges
(pode, antipode) such that the spherical mechanism is
only composed of spherical isograms; cf.
N. G.: On continuous flexible Kokotsakis belts of the isogonal type & V-
hedra with skew faces, Journal for Geometry and Graphics 26:237–251
(2022)
From the formulas given in these two publications one
can see that any such linkage is continuous flexible if a
non-flat initial position is given (cf. Part II).
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Constructive algorithm (generalization of Sauer’s methods)

We allow both types of vertices and ge-
nerate the quad mesh in a non-flat state,
therefore rigid-foldability is for free.

We developed a corresponding toolkit as
part of the Scutes add-on for Grasshop-
per/Rhino, which is an interactive plugin for
the creation, manipulation and visualization
of rigid-foldable quad surfaces.
Sharifmoghaddam, K., N. G., Rasoulzadeh, A., Ter-
vooren, J.: Using flexible trapezoidal quad-surfaces
for transformable design, Proc. of the IASS Annual
Symposium 2020/21, pp. 3236–3248 (2021) Present only diagonal zigzag method!
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Diagonal ZigZag: Workflow
The normals around a vertex x are
denoted by a, b, c, d. The signed di-
stance of the corresponding faces to
the origin is given by

a : = ⟨x, a⟩ b : = ⟨x, b⟩
c : = ⟨x, c⟩ d : = ⟨x, d⟩

Then x is a V-vertex or anti-V-
vertex if and only if the following
discrete Moutard equation holds:

det
(

a b c d
a b c d

)
= 0

Izmestiev, I., Raffaelli, M., Rasoulzadeh, A.:
Voss surfaces (in preparation)
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Diagonal ZigZag: Final step

Once the data on the Gauss map and support function is
available on the entire grid, one can compute the vertices
via the following closed-form expression:

x = 1
det (c − d, c − b, c)

(
c × b d × c (c − d) × (c − b)

)(
c − d
c − b

c

)

Izmestiev, I., Raffaelli, M., Rasoulzadeh, A.: Voss surfaces (in preparation)

At this step the geometry of the involved quads is revealed,
and flipped quads could happen naturally.
But the flipping of quads also affects the Voss and anti-
Voss assignment of the vertices =⇒ post-processing
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Post-processing

Update the local face normals in each vertex to get a con-
sistent data set of the mesh enabling the orientability of
the surface, which is needed for generating mesh textures,
signed distance fields for (self-)collision detection, . . .
Examples revealed the existence of further vertex types
beside Voss and anti-Voss in the generated meshes.
The systematic classification of vertices is based on a

Generalized Definition of a vertex to be V-hedral and anti-V-hedral:
A vertex x is called V-hedral if α∗ equals α or 2π − α and β∗ equals β or 2π − β for
α, β ∈ (0; π) ∩ (π; 2π).
A vertex x is called anti-V-hedral if α∗ equals |π − α| and β∗ equals |π − β| for α, β ∈
(0; π) ∩ (π; 2π).
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Post-processing: Motivation for Redefinition

Definition covers following cases:
(i) The construction principle of
reversing one edge can also be
applied to the case α > π.
(ii) One faces of an ordinary V-
vertex is replaced by its comple-
ment to the full circle.

Chebyshev quad

anti-Chebyshev quad
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Post-processing: Systematic classification of V-vertices

CaP CP aCaP aCP

VCaP

Impossible to
realize without
self-intersection

VCP VaCaP VaCP



Structures – Polyhedra, Meshes, Platforms | RICAM, Linz, May 15, Research funded by

Post-processing: Systematic classification of anti-V-vertices

CaP CP aCaP aCP

aVCaP

Impossible to
realize without
self-intersection

aVCP aVaCaP aVaCP
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Diagonal ZigZag: Rigid-folding

We decrease computational complexity by deforming the input
(diagonal zigzag) and regenerating the mesh, instead of applying
transformations to the generated mesh as e.g. done in
Feng, F., et al.: The designs and deformations of rigidly and flat-foldable quadrilate-
ral mesh origami, Journal of the Mechanics and Physics of Solids 142:104018 (2020)

A) Check the vertex types along the diagonal of the generated mesh (post-processing).
B) Deform the diagonal according to the transformation formulas for the dihedral angles:

V-vertex: tan
(
±µ

2
)

→ t tan
(
±µ

2
)

tan
(
±ν

2
)

→ 1
t tan

(
±ν

2
)

anti-V-vertex: tan
(
±µ

2
)

→ t tan
(
±µ

2
)

tan
(
±ν

2
)

→ t tan
(
±ν

2
)

Remark: Forward kinematics of a serial robot with rotational joints, where consecutive
rotation axes intersect. Moreover, the rotation angles are known functions in t.
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Diagonal ZigZag: Examples

Open problem: How to assign the two possible normals to the faces in such a way that
the resulting surface has no self-intersections and is close to some desired geometry?
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Approximation Algorithm

Given an input quad mesh and we optimize for face planarity, fairness, and (anti-)Voss
property; while the corners are fixed. The implemented iterative algorithm is based on
Tang, C., et al.: Form-finding with polyhedral meshes made simple, ACM Trans. Graphics 33(4):70 (2014)

(anti-)Voss conditions: ⟨a, b⟩ − ⟨c, d⟩ = 0 ⟨a, d⟩ − ⟨c, b⟩ = 0
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Approximation Algorithm

The algorithm can be adjusted to allow the user to constrain the position of any vertex.

A crucial assumption is the smoothness of the output mesh. The formulation of our
fairness term does not support the generation of anti-V-hedra or hybrid versions.
Open problem: How to adapt the fairness term?
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Approximation Algorithm: Folding Simulation

The algorithm does not result in an exact Voss net =⇒ Simulation of the folding motion

1. Fix one face and prescribe the angle between normals of fixed and adjacent face.
2. Break the complete mesh up to a quad soup.
3. Minimize the distance between corresponding vertices in the quad soup.

Remark: Alternative minimization functions can be used; e.g. distance between corre-
sponding line-segments or the closely related elastic joint energy.
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Comparing Example

Smooth Voss surface patch Υ
and its isometric deformation.

Discretization plus
random noise. In-
put of the Approxi-
mation Algorithm.

Output V1 of
the Approxima-
tion Algorithm.

V-hedron V2
by extracting
one of V1’s
diagonals.
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Comparing Example

For the computation we folded the first dihedral angle for both approaches in 44 steps
of 1 degree change, but only every fourth step is illustrated above with Υ (blue), V1
(green) and V2 (gray).
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Part II
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Kokotsakis∗ studied the following problem in 1932

Given is a rigid closed polygonal line p
(planar or non-planar), which is surroun-
ded by a polyhedral strip, where at each
polygon vertex three faces meet. De-
termine the geometries of these closed
strips with a continuous mobility.

In general these loop structures are rigid,
thus continuous flexible ones possess a so-
called overconstrained mobility.
Kokotsakis himself only studied flexible belts
with planar polygons p.

Vi

λ∗
i

γ∗
i

µ∗
i

δ∗
i

V0

V1

Vn−1

∗ Kokotsakis, A.: Über bewegliche Polyeder,
Mathematische Annalen 107:627–647 (1932)
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Review

Kokotsakis only obtained general results (ar-
bitrary n) for the isogonal type; i.e. in every
vertex both pairs of opposite angles are (1)
equal or (2) supplementary;

(1) λ∗
i = µ∗

i , δ∗
i = γ∗

i ,

(2) λ∗
i + µ∗

i = π, δ∗
i + γ∗

i = π.

Special cases
n=3: Bricard octahedra of the 3rd type.
n=4: 3 × 3 building blocks of V-hedra,

anti-V-hedra and the hybrid case.

Vi

λ∗
i

γ∗
i

µ∗
i

δ∗
i

V0

V1

Vn−1
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Goal

We generalize Kokotsakis’ problem by
allowing the faces, which are adjacent
to polygon line-segments, to be skew.
We do not restrict to planar polygons p
but to the isogonal type.

Vi

λ∗
i

γ∗
i

µ∗
i

δ∗
i

V0

V1

Vn−1
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Spherical image of the original Kokotsakis belts

Vi

λ∗
i

γ∗
i

µ∗
i

δ∗
i

V0

V1

Vn−1

Ai

Bi

Ai+1
Bi+1

Ci
Ci+1

Ci+2
γi

λi

γi+1δi

δi+1

µi µi+1

τi+1

αi
βi

αi+1
λi+1

A Kokotsakis belt is continuous flexible if and
only if its spherical image has this property; cf.
Stachel, H.: A kinematic approach to Kokotsakis meshes, Com-
puter Aided Geometric Design 27:428–437 (2010)

Taking the orientation of the line-segments in-
to account, the spherical 4-bar mechanism,
which corresponds with the arrangement of faces
around the vertex Vi , has spherical bar lengths:

δi = π − δ∗
i , γi = π − γ∗

i ,

λi = π − λ∗
i , µi = π − µ∗

i .
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Spherical image of the original Kokotsakis belts

Vi

λ∗
i

γ∗
i

µ∗
i

δ∗
i

V0

V1

Vn−1

Ai

Bi

Ai+1
Bi+1

Ci
Ci+1

Ci+2
γi

λi

γi+1δi

δi+1

µi µi+1

τi+1

αi
βi

αi+1
λi+1

The spherical image of faces around two adjacent
vertices Vi and Vi+1 corresponds to two coupled
spherical 4-bar mechanisms.
The dihedral angles βi and αi+1 are related by
the torsion angle τi+1 of the polygon p.
Remark: Note that p is a planar curve if all τi+1
are either zero or π.
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Spherical image of the generalized Kokotsakis belts

Vi

λ∗
i

γ∗
i

µ∗
i

δ∗
i

V0

V1

Vn−1

Ai

Bi

Ai+1
Bi+1

Ci
Ci+1

Ci+2
γi

λi

γi+1δi

δi+1

µi µi+1

τi+1

αi
βi

αi+1
λi+1

Vi

λ∗
i

γ∗
i

µ∗
i

δ∗
i

V0

V1

Vn−1

Ai

Bi
Ai+1

Bi+1

Ci
Ci+1

Ci+2
γi

λi

γi+1
δi

δi+1

µi

µi+1

τi+1

αi
βi

αi+1
λi+1

ζi+1

The non-planarity of
the faces imply that
Bi , Ci+1, Ai+1 are not
longer on a great circle.
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Spherical isogram

In the isogonal case these 4-bar mechanisms are

(1) λi = µi , δi = γi ,

(2) λi + µi = π, δi + γi = π.

Type (2) is obtained from the spherical isogram
(1) by the replacement of one of the vertices by
its antipodal point. Without loss of generality we
can restrict to type (1) by assuming an appropriate
choice of orientations.

Ai

Bi
Ai+1

Bi+1

Ci
Ci+1

Ci+2
γi

λi

γi+1
δi

δi+1

µi

µi+1

τi+1

αi
βi

αi+1
λi+1

ζi+1
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Spherical kinematics
The input angle αi and the output angle βi of the
i-th spherical isogram are related by

bi = fiai with fi = sin δi ±sin λi
sin (δi −λi ) ̸= 0 (⋆)

where ai = tan αi
2 and bi = tan βi

2 ; cf.
Stachel, H.: A kinematic approach to Kokotsakis meshes, Computer
Aided Geometric Design 27:428–437 (2010)

The shift between the output angle βi of the i-th
isogram to the input angle αi+1 of the (i + 1)-th
isogram is given by the offset angle εi+1 consisting
of the twist angle ζi+1 and the torsion angle τi+1; i.e.

ai+1 = bi +ei+1
1−bi ei+1

with ei+1 = tan εi+1
2 . (•)

Ai

Bi
Ai+1

Bi+1

Ci
Ci+1

Ci+2
γi

λi

γi+1
δi

δi+1

µi

µi+1

τi+1

αi
βi

αi+1
λi+1

ζi+1
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Solving the stated problem

Firstly, we formulate the so-called closure condition

a0 − an = 0.

Within this condition we substitute an by

an = an−1fn−1+en
1−an−1fn−1en

which results from (•) under consideration of (⋆).
By iterating this kind of substitution we end up with

q2a2
0 + q1a0 + q0 = 0,

where qis are functions in f0, . . . , fn−1, e0, . . . , en−1.

Ai

Bi
Ai+1

Bi+1

Ci
Ci+1

Ci+2
γi

λi

γi+1
δi

δi+1

µi

µi+1

τi+1

αi
βi

αi+1
λi+1

ζi+1
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Solving the stated problem

Thus the necessary and sufficient conditions for continuous mobility are:

q0 = 0, q1 = 0, q2 = 0.

Theorem 1.
For a given closed polygon p with n vertices,
there exists at least a (2n − 3)-dimensional
set of continuous flexible Kokotsakis belts of
the isogonal type over C.

Vi

λ∗
i

γ∗
i

µ∗
i

δ∗
i

V0

V1

Vn−1
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Solving the stated problem
Thus the necessary and sufficient conditions for continuous mobility are:

q0 = 0, q1 = 0, q2 = 0.

Theorem 2.
For a given closed polygon p with n > 3
vertices, there exists at least a (n − 3)-
dimensional set of continuous flexible Ko-
kotsakis belts with planar faces of the iso-
gonal type over C. For planar polygons p
this dimension raises to (n − 1); as only the
condition f0f1 . . . fn−1 = 1 remains∗.

∗ This implies continuous flexibility for a
non-flat initial configuration (cf. Part I).

Vi

λ∗
i

γ∗
i

µ∗
i

δ∗
i

V0

V1

Vn−1
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Property regarding the rotation angles

Dihedral angles along opposite edges mee-
ting in a vertex Vi have at each time instant
the same absolute value of their angular ve-
locities.
Thus the absolute values of the rotation
angles around these two edges are the same
(measured from an initial configuration).
The same absolute values of the rotation an-
gle can always be assigned to three edges.

Vi

V0

V1

Vn−1
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Example: n=3

For any choice of δi and λi with λ1 + λ2 +
λ3 = 2π there exist e0, e1, e2 ∈ C such that
we get a continuous flexible Kokotsakis belt
of the isogonal type.
The resulting structure can be seen as an
overconstrained 6R loop, which belongs to
the third class of so-called angle-symmetric
6R linkages given in
Li, Z., Schicho, J.: Classification of angle-symmetric 6R
linkages, Mech. Mach. Theory 70:372–379 (2013)

Remark: Note that for e0 = e1 = e2 = 0 we
get a Bricard octahedron of the 3rd type.
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Continuous flexible skew-quad (SQ) surfaces

The following open problem:

Do there exist rigid-foldable SQ surfaces?

is mentioned on page 168 of Sauer’s book
Sauer, R.: Differenzengeometrie, Springer (1970)

A key result for answering this question is the following generalization of a theorem by
Schief, W.K., Bobenko, A.I., Hoffmann, T.: On the integrability of infinitesimal and finite deformations of poly-
hedral surfaces, in: Discrete Differential Geometry, Springer, pp. 67–93 (2008)

Theorem 3.
A non-degenerate SQ surface is continuous flexible, if and only if this holds true for
every 3 × 3 building block.
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Building block of a V-hedron with skew quads

A 3 × 3 building block of a V-hedron with skew
quads (left) and its spherical image (right).
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Lower bound on the dimension of the design space

This bound q can be obtained by comparing the number qpar of free parameters for
constructing a ([3 + t] × [3 + s]) skew quad mesh with the number qcon of algebraic
conditions needed to make the mesh isogonal and continuous flexible.

V1,1 V1,2

V2,1 V2,2

V1,1 V1,2 V1,3

V2,1 V2,2 V2,3

V1,1 V1,2 V1,3 V1,2+s

V2,1 V2,2 V2,3 V2,2+s

V3,1 V3,2 V3,3 V3,2+s

qpar = 21 + 10s + 10t + 3st,
qcon = 11 + 7s + 7t + 5st.
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Lower bound on the dimension of the design space

Thus finally we get the lower bound q by:

q := qpar − qcon − 1 = 9 + 3s + 3t − 2st.

The subtraction of 1 comes from the fact that the structure has a 1-dimensional mobility.
t\s 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 i > 15
0 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 9+3i
1 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 12+i
2 13 12 11 10 9 8 7 6 5 4 3 2 1 0 < 0
3 9 6 3 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0
4 1 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0
5 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

It remains open if a continuous flexible SQ surface of infinite dimension in rows and
columns exists. Maybe the answer is already hidden in . . .
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Related recent Work & Open problems

Motivated by V-hedra with skew quads a research group at KAUST also studied flexible
3 × 3 arrangements of skew quads and obtained a classification for these meshes in
Liu, Y., Ouyang, Y., Michels, D.L.: On the Algebraic Classification of Non-singular Flexible Kokotsakis Polyhedra,
arXiv:2401.14291 (2024)
An interesting subclass is discussed in more detail in
Aikyn, A., et al.: Flexible Kokotsakis Meshes with Skew Faces: Generalization of the Orthodiagonal Involutive
Type, Computer-Aided Design 168 (2024)
which corresponds to skew analogs of so-called T-hedra, which are the topic of tomor-
row’s talk given by
Kiumars Sharifmoggadam: “Exploring T-hedral Origami across varied Topologies”

Open problem: What are the smooth analogs of continuous flexible Kokotsakis belts
of the isogonal type and of V-hedra with skew quads?



Structures – Polyhedra, Meshes, Platforms | RICAM, Linz, May 15, Research funded by

Associated overconstrained mechanism

Definition: Reciprocal-parallel quad meshes Q and V

⋆ Q and V are combinatorial dual; i.e. vertices correspond to faces and vice versa.
⋆ The edges of adjacent faces are mapped to edges between corresponding adjacent

vertices and vice versa. Moreover, corresponding edges are parallel.
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Associated overconstrained mechanism

Every infinitesimal flexible quad surface Q possesses in general a unique (up to scaling)
reciprocal-parallel quad mesh V; cf.
Sauer, R.: Differenzengeometrie, Springer (1970)

The corresponding deformation of V during the continuous flexion of Q has to be a
conformal transformation, as the vertex stars are rigid.
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Associated overconstrained mechanism

Sauer also showed that the vertex star fulfilling the isogonality condition is reciprocal-
parallel to a skew isogram, which has the following additional property: If the four bars
of the isogram are hinged in the vertices by rotational joints, which are orthogonal to
the plane spanned by the linked bars, then one obtains a so-called Bennett mechanism.
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Associated overconstrained mechanism
The corresponding
overconstrained mechanism
consists of rigid vertex stars
linked by cylindrical joints
and one rotational joint.
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