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Introduction
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Fundamentals
Graph G of a framework
consists of a knot-set K = {X1, . . . , Xw },
where knots Xi and Xj are connected by
edges eij (⇒ combinatorial structure). e12e12e12e12e12e12e12e12e12e12e12e12e12e12e12e12e12
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Inner geometry
is determined by assigning to each edge
eij a length Lij > 0 (⇔ fixing intrinsic
metric). 33333333333333333
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Realization G(X)
with X = (x1, . . . , xw ) ∈ Rwd corre-
sponds to the embedding of the frame-
work with fixed inner geometry into the
Euclidean d-space. Let’s assume d = 2. X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2X2
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Algebraic approach to rigidity theory

The relation that two knots Xi and Xj are edge-connected can also
be expressed algebraically as ∥xi − xj∥2 − L2

ij = 0.
In addition we can add 3 linear conditions to eliminate isometries. We
end up with l algebraic conditions in m = 2w unknowns z1, . . . , zm
constituting an algebraic variety V (c1, . . . , cl).

Def.: A realization is flexible
if it belongs to a real positive-dimensional component of
V (c1, . . . , cl). For l ≥ m the motion is called paradox.

Def.: A realization is rigid
if it corresponds to a real isolated solution of V (c1, . . . , cl).
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Algebraic approach to rigidity theory

Example: planar parallel mechanism

∃ paradox mobile realization

Rigid realization
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Algebraic approach to rigidity theory

We can compute in a realization the tangent-hyperplane to each of
the hypersurfaces ci = 0 in Rm for i = 1, . . . , l . The normal vectors
∇ci of these tangent-hyperplanes constitute the columns of the m×l
rigidity matrix RG(X) of the realization G(X); i.e.

RG(X) = (∇c1, ∇c2, . . . , ∇cl)

For rk(RG(K)) = m the realization G(K) is infinitesimal rigid.
For rk(RG(K)) < m the realization G(K) is infinitesimal flexible;
i.e. the hyperplanes have a positive-dimensional affine subspace in
common. Therefore the intersection multiplicity of the l hypersurfa-
ces is at least two in an infinitesimal flexible realization.
The zero-set of the ideal generated by all m × m minors of RG(X) is
called shakiness variety.
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Review
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Review on higher-order flexibility and rigidity

1980 Connelly gave a definition of second-order flexibility and
rigidity for frameworks.
Connelly, R.: The rigidity of certain cabled frameworks and the second-order
rigidity of arbitrarily triangulated convex surfaces. Advances in Mathematics
37:272–299 (1980)

1989 An exhaustive treatment of higher-order flexion and rigidity
of surfaces was done by Sabitov, in which also a section is
devoted to discrete structures.
Sabitov, I.Kh.: Local Theory of Bendings of Surfaces. Geometry III, 179–250,
Springer (1992)

1989 Tarnai gave a definition of higher-order infinitesimal
mechanisms relying on the power-series expansion of the
elongation of the bar in terms of the displacement.
Tarnai, T.: Higher-order infinitesimal mechanisms. Acta technica Academiae
Scientiarum Hungaricae 102:363–378 (1989)
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Review on higher-order flexibility and rigidity

According to Stachel∗ all these approaches to higher-order flexible
frameworks can be unified to the so-called classical definition:
Classical Definition: A framework has a flex of order n
if for each vertex xi (i = 1, . . . , w) there is a polynomial function

x′
i := xi + xi ,1t + . . . + xi ,ntn with n > 0

such that
1. the replacement of xi by x′

i in the equation of the edge lengths
gives stationary values of multiplicity ≥ n + 1 at t = 0; i.e.

∥xi − xj∥2 − L2
ij = 0 =⇒ ∥x′

i − x′
j∥2 − L2

ij = o(tn)
2. the velocity vectors x1,1, . . . , xw ,1 do not originate from a rigid

body motion (incl. standstill) of the complete framework.

∗ Stachel, H.: A proposal for a proper definition of higher-order rigidity. Tensegrity
Workshop, La Vacquerie, France (2007)
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Review on higher-order flexibility and rigidity

Koiter’s idea of replacing the bar elongation in Tarnai’s approach by
their strain energies, also results in an equivalent definition; cf.
Salerno, G.: How to recognize the order of infinitesimal mechanisms: a numerical ap-
proach. International Journal for Numerical Methods in Engineering 35:1351–1395 (1992)

Another definition of higher-flexibility was given by Kuznetsov
Kuznetsov, E.N.: Underconstrained structural systems. Springer (1991)
which relies on the Taylor expansion of the constraint equations of
the framework. Exactly the same approach was used by Chen
Chen, C.: The order of local mobility of mechanisms. Mechanism and Machine Theory
46:1251–1264 (2011)
to define the local mobility of a mechanism. A closer look at
Rameau, J-F., Serre, P.: Computing mobility condition using Groebner basis. Mecha-
nism and Machine Theory 91:21–38 (2015)
shows that these (identical) definitions of Kuznetsov and Chen are
again equivalent to the classical one.
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Review on higher-order flexibility and rigidity

Based on the classical definition of nth-order flex one can define nth-
order rigidity as follows according to Connelly & Servatius∗:

Classical Definition: A framework is rigid of order n
if every nth-order flex has x1,1, . . . , xw ,1 trivial as a first-order flex;
i.e. it originates from a rigid body motion (incl. standstill) of the
complete framework.

The double-Watt mechanism of Connelly & Servatius∗ raises so-
me problems concerning these classical definitions, as they attest
the mechanism in a certain configuration a 3rd-order rigidity which
conflicts with its continuous flexibility; i.e. a proper definition should
imply rigidity from nth-order rigidity.

∗ Connelly, R., Servatius, H.: Higher-order rigidity – What is the proper definition?
Discrete & Comp. Geometry 11:193–200 (1994)
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Double-Watt mechanism of Connelly & Servatius

x1 x2

The dimensions of each Watt mechanism:
The arms have length 1 and the couplers length

√
2. The midpoints

x1 and x2 of both couplers are connected by a bar of length 3.

The problematic configuration corresponds to a cusp in the confi-
guration space; i.e. the mechanism has an instantaneous standstill.
Further cusp mechanisms were given by Lopez-Custodio et al. in
Lopez-Custodio, P.C., Müller, A., Rico, J.M., Dai, J.S.: A synthesis method for 1-dof
mechanisms with a cusp in the configuration space. Mechanism and Machine Theory
132:154–175 (2019)
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Analysis of cusp configuration according to Stachel∗

x

y
x1 x2

The coupler-curve of the point x1 is given by the algebraic equation
x6 +3x4y2 +3x2y4 +y6 +3x4 +6x3y −2x2y2 +6xy3 −5y4 −6xy +8y2 = 0.

The branch where the x -axis is the tangent to the inflection point
can be parametrized locally by means of Puiseux series as:

x1 =
(

τ1
1
2 τ 3

1 + τ 5
1 + 9

4 τ 7
1 + 13

2 τ 9
1 + . . .

)
The path of x2 can be parametrized in the same way yielding:

x2 =
(

τ2
3 − 1

2 τ 3
2 − τ 5

2 − 9
4 τ 7

2 − 13
2 τ 9

2 − . . .

)
∗ Stachel, H.: A (3,8)-flexible bar-and-joint framework? AIM Workshop rigidity &

polyhedral combinatorics, Palo Alto, USA (2007)
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Analysis of cusp configuration according to Stachel

x

y
x1 x2

Two-point guidance problem, where the time dependence of τi is set
up by

τi = vi ,1t + vi ,2t2 + vi ,3t3 + . . . .

For an n-th order flex at t = 0 the vi ,j have to be adjusted in order
to fulfill

F := ∥x2 − x1∥2 − 32 = o(tn)
We consider the coefficients fi of t i in F :

f1 = 0
f2 = (v1,1 − v2,1)2 =⇒ v2,1 = v1,1

f3 = −6v3
1,1

v1,1 ̸= 0=====⇒ 2nd order flexible and 3rd-order rigid
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Attempts to resolve the dilemma: Gaspar & Tarnai

Gaspar and Tarnai suggested to use fractional exponents in
Gaspar, Z., Tarnai, T.: Finite mechanisms have no higher-order rigidity. Acta technica
Academiae Scientiarum Hungaricae 106:119–125 (1994)

x′
i := xi + xi ,1t + . . . + xi ,ntn =⇒

x′
i := xi + xi ,1t + x

i , 3
2
t

3
2 + xi ,2t2 + x

i , 5
2
t

5
2 . . . + xi ,ntn

where x1,1, . . . , xw ,1 is non-trivial. This solves the particular problem
of the double-Watt mechanism, but not the parametrization problem
according to
Tarnai, T., Lengyel, A.: A remarkable structure of Leonardo and a higher-order infinite-
simal mechanism. Journal of Mechanics of Materials and Structures 6:591–604 (2011)
where it is also written that “a very promising approach was presen-
ted recently by [Stachel 2007] ”.
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Attempts to resolve the dilemma: Stachel

Stachel’s approach follows the more general notation of (k, n)-flexibility
suggested by Sabitov and was presented in
Stachel, H.: A proposal for a proper definition of higher-order rigidity. Tensegrity Work-
shop, La Vacquerie, France (2007)

x′
i := xi + xi ,1t + . . . + xi ,ntn =⇒

x′
i := xi + xi ,ktk + . . . + xi ,ntn with n ≥ k > 0

where x1,k , . . . , xw ,k is non-trivial. In addition the (k, n)-flex has
to be irreducible; this means that the flex does not result from a
polynomial parameter substitution

t = tp(a0 + a1t + a2t2 + . . .) with a0 ̸= 0 and p > 1

of a lower-order flex.
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Continuing Stachel’s analysis of the cusp mechanism

f1 = 0
f2 = (v1,1 − v2,1)2 =⇒ v2,1 = v1,1

f3 = −6v3
1,1

v1,1 ̸= 0=====⇒ (1, 2)-flexible

But we can also set v1,1 = 0 and continue
f4 = (v1,2 − v2,2)2 =⇒ v2,2 = v1,2

f5 = 0

f6 = −6v3
1,2 + v2

1,3 − 2v1,3v2,3 + v2
2,3 =⇒ v2,3 = v1,3 ±

√
6v3

1,2

Remark: Sign ± corresponds to the two ways out of the cusp.
f7 = . . . =⇒ (2, ∞)-flexible

But is the obtained (2, ∞)-flex irreducible?
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Continuing Stachel’s analysis of the cusp mechanism

We only have to check that the (2, ∞)-flex was not obtained by the
(1, 2)-flex by a polynomial parameter substitution of the form

t = tp(a0 + a1t + a2t2 + . . .) with a0 ̸= 0 and p > 1

For p = 2 we get: f 1 = f 2 = f 3 = 0
f 4 = a2

0(v1,1 − v2,1)2 =⇒ v2,1 = v1,1

f 5 = 0

f 6 = −6a3
0v3

1,1
v1,1 ̸= 0=====⇒ (2, 5)-flexible

=⇒ Substitution converts the (1, 2)-flex into a reducible (2, 5)-flex.
=⇒ (2, ∞)-flex is irreducible.

Remark: Applying this parameter substitution to Gaspar & Tarnai’s
ansatz of fractional exponents yields the (2, ∞)-flexibility of Stachel.
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A new dilemma arises

Figure by courtesy
of Hellmuth Stachel

Stachel’s proposal was only presented at the Tensegrity Workshop
in 2007. It remained unpublished as another dilemma arose; namely
no unique flexion order can be identified for another double-Watt
mechanism extended by a Kempe-mechanism as demonstrated in
Stachel, H.: A (3,8)-flexible bar-and-joint framework? AIM Workshop rigidity & poly-
hedral combinatorics, Palo Alto, USA (2007)
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Stachel’s extended double-Watt mechanism

(
τ1

1
2 τ3

1 + τ5
1 + . . .

)
= x1 x2 =

(
τ2

3 + 1
2 τ3

2 + τ5
2 . . .

)x3 =
(

τ3
3
2

)

We do not use a Kempe-mechanism for the generation of the straight
line motion of the midpoint x3 of x1 and x2 but a point guidance∗.
For an n-th order flex at t = 0 the following conditions have to hold:

F := ∥x2 − x1∥2 − 32 = o(tn)(
G
H

)
:= x1 + x2 − 2x3 = o(tn)

by adjusting the vi ,j of τi = vi ,1t + vi ,2t2 + vi ,3t3 + . . . .

∗This can also be interpreted in the terms of a bar-joint framework, where
the corresponding pin-joint is an ideal point.
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Stachel’s extended double-Watt mechanism
We consider the coefficients fi , gi and hi of t i in F , G and H.

gi = v1,i + v2,i − 2v3,i =⇒ v3,i = v1,i +v2,i
2 for i = 1, 2, . . .

f1 = h1 = h2 = 0
f2 = (v1,1 − v2,1)2 =⇒ v2,1 = v1,1

f3 = 0, h3 = v3
1,1

v1,1 ̸= 0=====⇒ (1, 2)-flexible

But we can also set v1,1 = 0 and continue
f4 = (v1,2 − v2,2)2 =⇒ v2,2 = v1,2

h4 = f5 = h5 = 0
f6 = (v1,3 − v2,3)2 =⇒ v2,3 = v1,3

h6 = v3
1,2

v1,2 ̸= 0=====⇒ (2, 5)-flexible

But we can also set v1,2 = 0 and continue . . .



Kinematic Aspects of Robotics | RICAM, Linz, April 29th 2024

Stachel’s extended double-Watt mechanism

(
τ1

1
2 τ3

1 + τ5
1 + . . .

)
= x1 x2 =

(
τ2

3 + 1
2 τ3

2 + τ5
2 . . .

)x3 =
(

τ3
3
2

)

This procedure yields the flexion order sequence (k, 3k − 1), k = N.
It can be shown that all the obtained orders are irreducible.

According to Stachel the following question remained open:
Which is the correct order?

Therefore the problem is not yet settled!
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Redefinition
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Redefinition of a higher-order flexibility and rigidity

Cusp mechanisms demonstrate the basic shortcoming of any local
mobility analysis using higher-order constraints according to
Müller, A.: Higher-order analysis of kinematic singularities of lower pair linkages and
serial manipulators. Journal of Mechanisms and Robotics 10:011008 (2018)

Therefore we present a global approach, which is also inspired by an
idea of Sabitov like Stachel’s approach; namely by his finite algo-
rithm for testing the bendability of a polyhedron given in
Sabitov, I.Kh.: Local Theory of Bendings of Surfaces. Geometry III, 179–250, Springer
(1992)

Let us consider the configuration-set S of all frameworks having the
same connectivity which differ in the intrinsic metric. Note that S is
only a subset of Rm (as edges are not allowed to have zero length).
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Redefinition of a higher-order flexibility and rigidity

S1. . . surface
S2. . . curve
S3. . . isolated points

Let S1 ⊂ S be the set of
points of the already dis-
cussed shakiness variety.

Then the sets Sj with j > 1 are defined recursively as follows:
If in a point of Sj−1 a non-trivial first order flex exists, which is
tangential to Sj−1 then this point belongs to the set Sj .
=⇒ hierarchical structure of flexibility of higher-order.
A configuration is called nth-order flexible if it belongs to Sn \ Sn+1.
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Redefinition of a higher-order flexibility and rigidity

Remarks:
• This approach goes along with a recent result of

Alexandrov, V.: A note on the first-order flexes of smooth surfaces which are
tangent to the set of all nonrigid surfaces. Journal of Geometry 112:41 (2021)
for smooth surfaces, who was able to show that a first-order
flex tangential to S1 can be extended to a second-order flex.

• Sabitov assumed that all the appearing sets S, S1, S2, . . . are
manifolds and submanifolds, respectively.
A analogous assumption has to be done by Alexandrov in the
smooth setting, namely the restriction to regular points of S1.
In general Si contains singular points, which correspond to the
interesting configurations in the study of higher-order flexes.
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Redefinition of a higher-order flexibility and rigidity
This approach gives a proper definition of nth-order flexibility for
configurations that correspond to points of Rm which are regular
with respect to each of the corresponding varieties V1, V2, . . . , Vn.

Lemma
Every regular point of V1 has to have a single non-trivial flex.

Proof: V1 is the zero set of the ideal generated by p1, . . . , pγ , which
are all m×m minors of RG(X). Let us denote pj = det(r1, r2, . . . , rm),
thus its gradient

∇pj =
(

∂pj
∂z1

,
∂pj
∂z2

, . . . ,
∂pj
∂zm

)
,

can be computed due to the following product rule for determinants:
∂pj
∂zi

= det(∂r1
∂zi

, r2, . . . , rm) + . . . + det(r1, r2, . . . , ∂rm
∂zi

).

=⇒ point X of V1 with rk(RG(X)) < m − 1 implies ∇pj = o ∀j
=⇒ X singular point of V1. □
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Redefinition of a higher-order flexibility and rigidity

This Lemma explains Husty’s observation for 3-RPR robots given in
Husty, M.L.: On Singularities of Planar 3-RPR Parallel Manipulators. Proceedings of
14th IFToMM World Congress, pp. 2325–2330, IFToMM (2015)
namely “the surprising property that it (singularity surface) has a
singularity itself at the point which corresponds to the pose with
two dof local mobility.”

Note that it is well known that there exists for each geometric struc-
ture an upper bound n∗ such that the n∗-order flexibility results in
a continuous flexion; e.g. see
Sabitov, I.Kh.: Local Theory of Bendings of Surfaces. Geometry III, 179–250, Springer
(1992)
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Redefinition of a higher-order flexibility and rigidity

Theorem
The nth-order flexibility with n < n∗ of a configuration which cor-
responds to a regular point of each variety V1, . . . , Vn is equivalent
with the fact that it is a realization of multiplicity n + 1.

Proof: In a general point X of V1 the intersection multiplicity of
V1 ∩ c1 ∩ . . . ∩ cl is 1.
For increasing it a necessary and sufficient condition is that the
tangent spaces have a positive-dimensional subspace in common.
This is exactly the condition that in X a 1-dim flex (according to
the Lemma) exists, which is tangential to V1 =⇒ X ∈ V2
This line of argumentation can be iterated until we reach the set
Vn∗ , which consists of points having multiplicity ∞.
Thus points of Vn \ Vn+1 with n < n∗ have to correspond with
realizations of multiplicity n + 1. □
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Redefinition of a higher-order flexibility and rigidity

A redefinition can be based on this property as it can also be ex-
tended to singular points of the varieties V1, V2, . . . which are not
covered by Sabitov’s algorithm.

Redefinition of higher-order flexibility
If a configuration does not belong to a continuous flexion of the
framework then we define its order of flexibility by the number of
coinciding framework realizations minus 1.

Based on this definition we can also give a redefinition of higher-
order rigidity as follows:

Redefinition of higher-order rigidity
Is a configuration nth-order flexible according to the definition above
then it is (n + 1)-rigid.
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3-step algorithm for computing the flexion order

1. According to the Lasker–Noether theorem every algebraic set
is the union of a finite number of uniquely defined algebraic
sets known as irreducible components. They can be computed
with an irredundant primary decomposition algorithm.

2. Then one has to test if the given realization is contained in a
irreducible composition of dimension 1 or higher. If this is the
case the configuration X is assigned with the flexion order ∞.
If this is not the case then we identify all zero-dimensional
primary ideals I1, . . . , Is containing X.

3. We compute the intersection multiplicity qi of X with respect
to each primary ideal Ii for i = 1, . . . , s.
=⇒ flexion order equals q1 + . . . + qs − 1
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Computation of the intersection multiplicity qi

Let us assume that the zero-dimensional primary ideal Ii is generated
by polynomials g1, . . . , gk . We distinguish the following two cases:
a) If k = m; i.e. Ii is a complete intersection, then we can use

the U-resultant method, which works as follows: One adds the
so-called U-polynomial

g0 = u0 + u1z1 + . . . + umzm

to the set g1, . . . , gm and eliminates z1, . . . , zm by means of
Macaulay resultant. This results in a homogeneous polynomial∏

j
(ζj,0u0 + ζj,1u1 + . . . + ζj,mum)qj .

Then the jth common point of g1, . . . , gm has multiplicity qj
and his coordinates are given by zi = ζj,i/ζj,0 for i = 1, . . . , m.
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Computation of the intersection multiplicity qi

Let us assume that the zero-dimensional component Ii is generated
by polynomials g1, . . . , gk . We distinguish the following two cases:
a) If k = m; i.e. Ii is a complete intersection, then we can use

the U-resultant method; cf.
Macaulay, F.S.: The Algebraic Theory of Modular Systems. Cambridge
University Press (1916)

b) If k > m one can use a generalization of the U-resultant
method given by Lazard
Lazard, D.: Solving Systems of Algebraic Equations. ACM SIGSAM Bulletin
35:11–37 (2001)
to end up with an expression of the form∏

j
(ζj,0u0 + ζj,1u1 + . . . + ζj,mum)qj .
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Tarnai’s∗ Leonardo structure of (2µ − 1)-order flex

µ = 1 µ = 2 µ = 3

( −1
0

) ( a
b

) ( 1
0
) ( −1

0
) ( a

b

)
( c

d

)
( 0

−2
)
( 1

0
) ( −1

0
) ( a

b

) ( 1
0
)

( c
d

) ( e
f

) ( 2
−1

)( 0
−2

)
X = (1 : 0 : 0)

(h : a : b)
X = (1 : 0 : 0 : 0 : −1)

(h : a : b : c : d)
X = (1 : 0 : 0 : 0 : −1 : 1 : −1)

(h : a : b : c : d : e : f )

The primary decomposition of the ideal of constraint equations only
contains one 0-dim component containing the configuration X:
µ I(Maple 2022) U-resultant (Macaulay2)
1 ⟨a, b2⟩ u2

0

2 ⟨a, b2, b − 2d − 2h, bh + c2⟩ (u0 − u4)4

3 ⟨a, b, c2, c − 2e + 2h, 2e − c + 2d , (u0 − u4 + u5 − u6)4

e2 + 2ef + f 2 − 2ce − cf ⟩ wrong!
∗ Tarnai, T.: Higher-order infinitesimal mechanisms. Acta technica Academiae

Scientiarum Hungaricae 102:363–378 (1989)
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Tarnai’s Leonardo structure of (2µ − 1)-order flex

µ = 1 µ = 2 µ = 3

( −1
0

) ( a
b

) ( 1
0
) ( −1

0
) ( a

b

)
( c

d

)
( 0

−2
)
( 1

0
) ( −1

0
) ( a

b

) ( 1
0
)

( c
d

) ( e
f

) ( 2
−1

)( 0
−2

)
X = (1 : 0 : 0)

(h : a : b)
X = (1 : 0 : 0 : 0 : −1)

(h : a : b : c : d)
X = (1 : 0 : 0 : 0 : −1 : 1 : −1)

(h : a : b : c : d : e : f )

The primary decomposition of the ideal of constraint equations only
contains one 0-dim component containing the configuration X:
µ I(Maple 2022) U-resultant (Macaulay2)
1 ⟨a, b2⟩ u2

0

2 ⟨a, b2, b − 2d − 2h, bh + c2⟩ (u0 − u4)4

3 ⟨a, b2, c2, c − 2e + 2h, 2e − c + 2d , (u0 − u4 + u5 − u6)8

e2 + 2ef + f 2 − 2ce − cf ⟩ corrected
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Stachel’s extended double-Watt mechanism

x

y
F0 =

( 0
0
)

M0 =
( a0

b0

)
F2 =

( 3
0
)

M2 =
( a2

b2

)

F1 =
( −3

−1
)

M1 =
( a1

b1

) F3 =
( 0

−1
)

M3 =
( a3

b3

)
N0,1 N2,3

Using the above coordinatization the 8 constraining equations are:
∥Fi − Mi∥2 = 1 i = 0, . . . , 3
∥Mj − Mj+1∥2 = 2 j = 0, 2
∥N0,1 − N2,3∥2 = 9
a0 + a1 + a2 + a3 = 0

The last equation corresponds with the straight line motion of the
midpoint of N0,1 := M0+M1

2 and N2,3 := M2+M3
2 .
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Stachel’s extended double-Watt mechanism

The primary decomposition (operated by Maple 2022) yields only
one zero-dimensional component I containing the configuration

X : (a0, b0, a1, b1, a2, b2, a3, b3) = (−1, 0, −2, −1, 2, 0, 1, −1)

I = ⟨(1 + a0)2, (a2 − 2)2, (3 − a2)2 + b2
2 − 1, (a0 + 3)a1 + 5 + (b0 + 1)b1,

(a3 − 3)a2 + 5 + (b2 + 1)b3, a1 + a0 + a3 + a2, a2
0 + b2

0 − 1,

(6 − 2a3)a2 + a2
3 − 2b2b3 + b2

3 − 10, a2
1 − 2a0a1 − 2b0b1 + b2

1 − 1,

(a0 − a2 − a3 − 3)a1 + (3 − a0 + a3)a2 + (b0 − b2 − b3 − 1)b1+
(b2 − b0 − 1)b3 − a0a3 − b0b2 − 26⟩

U-resultant method is not possible as I has more than 8 generators.
=⇒ generalized U-resultant method of Lazard

But we are not aware of any implementation.
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Stachel’s extended double-Watt mechanism

Therefore we proceed as follows:
The ideal I only has the solution X and we determined its multiplicity
by the Maple command NumberOfSolutions yielding 6.

As one cannot trust for sure the PrimaryDecomposition command
in Maple 2022 as demonstrated in the example of Tarnai’s Leo-
nardo structure, we also did the following recheck according to
Weil, A.: Foundation of algebraic geometry, American Mathematical Society (1946)
By a slight perturbation of the system of equations one also obtains
6 solutions in the neighborhood of X.
According to the given redefinition this implies flexion order 5.
=⇒ k = 2 in Stachel’s flexion order sequence (k, 3k − 1)
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Extension of the original double-Watt mechanism

Stachel’s approach yields the sequence of flexion orders:
(k, 3k − 1) for odd k
(k, 3k + k

2 − 1) for even k

Perturbation approach∗ shows 7 coinciding realizations.
According to the given redefinition this implies flexion order 6.
=⇒ k = 2 in Stachel’s flexion order sequence

∗PrimaryDecomposition command in Maple 2022 gives again a wrong
result (6-fold solution). The IntersectionMultiplicity command of Maple
fails for all possible 8! = 40320 permutations.
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Application
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Computing configurations with a higher-order flexion
bar-plate framework bar-joint framework

We do this exemplarily for a planar 3-RPR manipulators, motivated
by the following statement of Husty in
Husty, M.: Multiple Solutions of Direct Kinematics of 3-RPR Parallel Manipulators.
Proceedings of 16th IFToMM World Congress, pp. 599–608, Springer (2023)
that 3rd-order flexibility “can be reached by any design because the
three necessary conditions could be imposed on the input parame-
ters only. Unfortunately neither the conditions nor the number of
corresponding poses are known”.
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Review: 3-RPRs with a higher-order flexion

Wohlhart followed a kinematic version of Kuznetsov’s approach in
Wohlhart, K.: Degrees of shakiness. Mechanism Machine Theory 34:1103–1126 (1999)
for the study of higher-order flexible 3-RPRs (interpreted as bar-plate
frameworks). Stachel studied the geometry of higher-order flexible
3-RPRs (interpreted as bar-joint frameworks) in
Stachel, H.: Infinitesimal flexibility of higher order for a planar parallel manipulator.
Topics in Algebra, Analysis and Geometry, 343–353, BPR Kiadó (1999)
where the following result for a (1, n)-flexible configuration is shown:
If one disconnects the leg Mimi from the platform, then the trajecto-
ry of the point mi under the resulting four bar motion has nth-order
contact with the circle centered in Mi having radius ri .
This implies that (n + 1) realizations coincide. Based on this cha-
racterization the computation of 3-RPR configurations (interpreted
as bar-plate frameworks) with 5th order flex was given by Husty
Husty, M.: Multiple Solutions of Direct Kinematics of 3-RPR Parallel Manipulators.
Proceedings of 16th IFToMM World Congress, pp. 599–608, Springer (2023)
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3-RPR manipulator as bar-plate framework

We compute V1 using the approach given by Husty and Gosselin in
Husty, M., Gosselin, C.: On the Singularity Surface of Planar 3-RPR Parallel Mecha-
nisms. Mechanics Based Design of Structures and Machines 36:411–425 (2008)

Using Blaschke-Grünwald parameters (q0 : q1 : q2 : q3) the conditi-
on that a point mi with coordinates (ai , bi) w.r.t. the moving frame
is located on a circle with radius ri around the fixed point Mi with
coordinates (Ai , Bi) w.r.t. the fixed frame, can be written as:

ci :=2Aiaiq2
1 − 2Aiaiq2

0 + 4Aibiq0q1 − 4Biaiq0q1 − 2Bibiq2
0 + 2Bibiq2

1+
(a2

i + b2
i )(q2

0 + q2
1) − 4Aiq0q3 − 4Aiq1q2 + 4Biq0q2 − 4Biq1q3+

4aiq0q3 − 4aiq1q2 − 4biq0q2 − 4biq1q3 + A2
i + B2

i + 4q2
2 + 4q2

3 − r2
i

Then the framework realizations are obtained as the solutions of

c1 = c2 = c3 = c4 = 0 with c4 := q2
0 + q2

1 − 1.
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3-RPR manipulator as bar-plate framework
V1 is obtained as the zero-set of s := det

(
RG(X)

)
with

RG(X) = (∇c1, ∇c2, ∇c3, ∇c4)

Beside the parametrization singularities (double line q0 = q1 = 0)
V1 has only singularities for some special designs according to
Kapilavai, A., Nawratil, G.: Singularity Distance Computations for 3-RPR Manipulators
using Extrinsic Metrics. Mechanism and Machine Theory 195:105595 (2024)
In the generic case each point of V1 sliced along the line q0 = q1 = 0
is regular Lem.===⇒ tangent planes to c1, . . . , c4 have a line in common.
The orthogonality of this line to ∇s is equivalent to the condition

rk(∇c1, ∇c2, ∇c3, ∇c4, ∇s) = 3 =⇒

s1 := det(∇c2, ∇c3, ∇c4, ∇s) s2 := det(∇c1, ∇c3, ∇c4, ∇s)
s3 := det(∇c1, ∇c2, ∇c4, ∇s) s4 := det(∇c1, ∇c2, ∇c3, ∇s)
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3-RPR manipulator as bar-plate framework

Thus V2 is the zero set of the ideal

I2 = ⟨s, s1, s2, s3, s4⟩.

Iteration of the above procedure yields the conditions:

s1,i := det(∇c2, ∇c3, ∇c4, ∇si) s2,i := det(∇c1, ∇c3, ∇c4, ∇si)
s3,i := det(∇c1, ∇c2, ∇c4, ∇si) s4,i := det(∇c1, ∇c2, ∇c3, ∇si)

for i = 1, . . . , 4. Then V3 is the zero set of the ideal

I3 = ⟨s, s1, s2, s3, s4, s1,1, . . . , s4,4⟩.

In addition the singular points of V2 have to be considered separately.
As V2 is a curve in P3 a singularity corresponds to the case

rk(∇s, ∇s1, ∇s2, ∇s3, ∇s4) = 1.
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Example: 3-RPR manipulator as bar-plate framework

The geometry of the platform and base is given by:
A1 = 0, B1 = 0, A2 = 3, B2 = 0, A3 = 1, B3 = 3,

a1 = 0, b1 = 0, a2 = 1, b2 = 0, a3 = 2, b3 = 1.

For this values we obtain V1 by s = 0 with
s = 5q3

0q2 − 13q2
0q1q2 − 4q2

0q1q3 + 5q2
0q2

2 + 7q0q2
1q2+

11q0q2
1q3 − 6q0q1q2

2 − 6q0q1q2
3 + 10q3

1q3 − 5q2
1q2

3 .

In the next step we consider the ideal I2. It can be verified that V2
is a curve in P3 of degree 18, which splitu up into a curve g of
degree 14 and the line q0 = q1 = 0 of multiplicity 4. It can easily
be checked that g does not contain any singular points by applying
the criterion

rk(∇s, ∇s1, ∇s2, ∇s3, ∇s4) = 1.



Kinematic Aspects of Robotics | RICAM, Linz, April 29th 2024

Example: 3-RPR manipulator as bar-plate framework

q0 = 1

In the last step we consider
the ideal I3. V3 consists of
the line q0 = q1 = 0 with
multiplicity 3 and 32 isolated
solutions.

We can even eliminate q0 and
q3 from the generators of I3 to
end up with the corresponding
polynomial of degree 32:

516969488961264858296977044q32
1 − 9280309213987777419484380570q31

1 q2+

43526270232117271834556502073q30
1 q2

2 − 45280692730479399589412412168q29
1 q3

2−

. . . . . . − 874805860916262711853056q32
2 = 0

By setting q1 = 1 we can easily check that it has 10 real solutions.
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Example: 3-RPR manipulator as bar-plate framework

Remark: It remains unclear if examples with 32 real solutions exist.
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3-RPR manipulator as bar-joint framework

M1 =
( 0

0
)

M2 =
( 1

0
)

M3 =
( A3

B3

)

m1 =
( a1

b1

)
m2 =

( a2
b2

)
m3 =

( a3
b3

)

A bar-plate framework has 6 realizations but a bar-joint framework
has 24, as the platform triangle as well as the base triangle can flip.

Without loss of generality we can assume that the bar between M1
and M2 has length one. If the remaining 8 bar lengths are known
they imply 8 distance equations c1, . . . , c8 for the 8 unknowns.
The solutions of c1, . . . , c8 correspond to realizations.
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3-RPR manipulator as bar-joint framework

V1 is given by the determinant of the (8×8) rigidity matrix splitting
up into s1s2s3 with:

s1 =B3,

s2 =a1b2 − a1b3 − a2b1 + a2b3 + a3b1 − a3b2,

s3 =A3a1b2b3 − A3a2b1b3 − B3a1a3b2 + B3a2a3b1−
A3b1b2 + A3b1b3 + B3a1b2 − B3a3b1 − a1b2b3 + a3b1b2

Let us denote the varieties si = 0 by Si for i = 1, 2, 3. Now we can
easily identify the following regions of V1 with different n∗ values:

S1 \ (S2 ∪ S3) n∗ = 2 (S1 ∩ S3) \ S2 n∗ = 12
S2 \ (S1 ∪ S3) n∗ = 2 (S2 ∩ S3) \ S1 n∗ = 12
S3 \ (S1 ∪ S2) n∗ = 6 S1 ∩ S2 ∩ S3 n∗ = 24
(S1 ∩ S2) \ S3 n∗ = 4
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3-RPR bar-joint framework of flexion order 23

Let us assume that the platform and the base triangles degenerate
into lines l and L, respectively. A necessary condition for a configu-
ration of flexion order 23, is that l and L coincide.

Remark: Interestingly such a configuration is not only a singular
point of V1, as it is located in the intersection of S1, S2 and S3 but
already a singular point of S3 according to
Kapilavai, A., Nawratil, G.: Singularity Distance Computations for 3-RPR Manipulators
using Extrinsic Metrics. Mechanism and Machine Theory 195:105595 (2024)

Thus a 23-order flexible bar-joint framework follows from a fifth-
order flexible plate-bar framework, where all six anchor points are
located on a line. This problem can be solved with Husty’s approach
Husty, M.: Multiple Solutions of Direct Kinematics of 3-RPR Parallel Manipulators.
Proceedings of 16th IFToMM World Congress, pp. 599–608, Springer (2023)
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Final example

Coordinate of the base points
w.r.t. the fixed frame:

M1 = (0, 0)T ,

M2 = (1, 0)T ,

M3 = (5, 0)T .

m1 m2
M1 M2

m3
M3

Coordinates of the platform points w.r.t. the fixed frame:

m1 = (
√

120
√

10−255
10 − 3

2 − 2
√

10
5 , 0)T , m2 = (−1, 0)T , m3 = m1+(3, 0)T .

Remark: It should be possible to determine the complete set of the-
se frameworks with flexion order 23.
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Final example

Acknowledgment: Thanks to Daniel Huczala for the production of
the corresponding model.
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Open problems and future work
• It is planned to compute Stewart-Gough configurations

(interpreted as bar-body frameworks) with flexion order 6 by
the iterative procedure. What is the maximal flexion order?

• The presented approach does not only work for bar-joint
frameworks but it can be applied to any framework with
algebraic joints. But it remains open to extend it to
frameworks with non-algebraic joints?

• The given algorithm for determining the flexion order requires
global constructions (primary decomposition, U-resultant
method), but the multiplicity is a local property according to
Kirby, D.: Multiplicity in Algebra and Geometry. Arab Journal of Mathematical
Sciences 1:55–63 (1995)
Therefore again one can think about using local methods (e.g.
Serre’s Tor formula) to determine this number. It remains
open if these local methods can also detect a continuous
flexion and if they work in all cases (like our approach).
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Thanks


	anm0: 
	0.71: 
	0.70: 
	0.69: 
	0.68: 
	0.67: 
	0.66: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


