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Introduction

The number of applications of parallel robots
has increased enormously during the last decades
due to their advantages of high speed, stiffness,
accuracy, load/weight ratio, etc.

One of the drawbacks of these parallel robots
are their singular configurations, where the
manipulator has at least one uncontrollable
instantaneous degree of freedom. Furthermore,
the actuator forces can become very large, which
may result in a breakdown of the mechanism.

SIAM Conference on Applied Algebraic Geometry, July 9-13 2019, Bern/CH Austrian Science Fund 1



Introduction

We focus on the following three robot architectures, which are subsumed under the
term “parallel manipulators of Stewart Gough (SG) type”:

(A) Hexapod
The moving platform is connected via six
spherical-prismatic-spherical (SPS) legs with the
base.
A hexapod is in a singular (shaky or infinitesimal
movable) configuration if and only if the six lines
l1, . . . , l6 spanned by the centers of corresponding
spherical joints belong to a linear line complex.

Pi

Bi
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Introduction

(B) Linear Pentapod
In this case the platform degenerates to a line,
which is connected via five SPS-legs to the fixed
base.
The linear pentapod is shaky if and only if the five
lines l1, . . . , l5 belong to a congruence of lines.

(C) 3-RPR Manipulator
The platform is connected via three rotational-
prismatic-rotational (RPR) legs with the base.
This planar manipulator is shaky if and only if the
three lines l1, l2, l3 belong to a pencil of lines.

Pi

Bi

Pi
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Motivation & Overview

Due to the loss of control, singularities and their vicinity have to be avoided. As
a consequence the kinematic/robotic community is highly interested in evaluating
the singularity closeness, but a geometric meaningful distance measure between a
given manipulator configuration and the next singular configuration is still missing.
We introduce such measures for parallel manipulators of SG type:

1. Review on the Determination of the Closest Singularity

2. Distance Function

3. Singularity Distance

4. Results for 3-RPR Manipulators
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1. Review: 3-RPR Manipulator

Li, Gosselin & Richard [8] determined singularity-
free zones around non-singular configurations
by parametrizing the 3-dimensional configuration
space by x, y, ζ, where x, y are the two position
variables and ζ the orientation angle.

(x, y)

ζ

Then the point (x, y, ζ) of the singularity variety which minimizes the function

d := (x− x0)
2 + (y − y0)

2

where (x0, y0) corresponds with the position of the given non-singular configuration.
The orientation of the given pose is not taken into account thus

√
d is the radius

of the circular directrix centered in (x0, y0) of the “singularity-free cylinder”.
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1. Review: 3-RPR Manipulator

Zein, Wenger & Chablat [20] presented a
procedure for the determination of a maximal
singularity-free cube in the joint space centered
in (ρ1, ρ2, ρ3), where ρi is the length of the i-th leg
in the given non-singular configuration.

ρi

Pi

Bi

But the edge length e of this cube is not well suited as a closeness index due to
the fact that the mapping from the configuration space to the joint space is 6 to
1 (cf. Husty [4]). As in general not all six configurations, which correspond to a
point on the singularity variety in the joint space, are singular ones, it can be the
case that even in a non-singular configuration e equals zero.
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1. Review: Hexapod

Li, Gosselin & Richard [9] computed “maximally
singularity-free hyperspheres” around non-singular
configurations by parametrizing the 6-dimensional
configuration space by x, y, z, θ, ϕ, ψ, where x, y, z
are the three position variables and θ, ϕ, ψ the Euler
angles representing the orientation.
Then they looked for the point (x, y, z, θ, ϕ, ψ) of
the singularity variety which minimizes the function

D :=W
[

(x− x0)
2 + (y − y0)

2 + (z − z0)
2
]

+

(1−W )
[

(tan θ2 − tan θ02 )
2 + (tan ϕ2 − tan ϕ0

2 )
2 + (tan ψ2 − tan ψ0

2 )
2
]

where (x0, y0, z0, θ0, ϕ0, ψ0) corresponds with the given non-singular configuration.
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1. Review: Hexapod

W ∈ [0, 1] is a weighting coefficient, which can be used by the designer to “favour
either the position workspace or the orientation workspace”.

Li et al [9] were aware of the drawbacks of their objective function:

“. . . the above formulation poses the problem of defining a distance in
the 6-D workspace in order to find the ’closest’ point on the singularity
manifold. Clearly, an Euclidean distance cannot be defined in this space
since it is composed of mixed dimensions (position coordinates and orientation
coordinates). Therefore, the above index D cannot be called a distance in the
mathematical sense of the term and the singularity-free region obtained cannot
properly speaking be termed a hyper-sphere.”
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1. Review

Computing the distance to the next
singularity for fixed orientation (blue, e.g.
[5,9]) and position (yellow, e.g. [9,13]),
respectively, are further concepts known in
kinematics but from these two separated
informations no conclusion about the
closeness of a non-singular configuration
(green) to the next singular one within the
n-dimensional configuration space can be
drawn.

Thus the question of a suitable distance
function arises. Linear Pentapod
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2. Distance Function

It is well known (cf. Park [16] and Murray et al [12]), that there does not exist
a bi-invariant (positive-definite) metric on SE(3).

Remark: A metric is called bi-invariant if it is invariant with respect to changes of
the fixed frame (left invariant) and the moving frame (right invariant). ⋄

Therefore it is not possible to define a geometric meaningful distance between two
poses, which reasons the following statement of Merlet & Gosselin [11]:

“Measuring closeness between a pose and a singular configuration is a difficult
problem: there exists no mathematical metric defining the distance between a
prescribed pose and a given singular pose. Hence, a certain level of arbitrariness
must be accepted in the definition of the distance to a singularity . . . ”
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2. Distance Function

According to Park [16] there is the following alternative to distance metrics on
SE(3), which yields a geometric meaningful distance function: One can consider
the distance between two poses of the same rigid body, which yields so-called object
depended metrics firstly studied by Kazerounian & Rastegar [6].

As the moving platform has n exceptionally points (i.e. platform anchor points) it
suggests itself to measure the distance between two poses of the moving platform
(given pose Pi and transformed pose Pαi ) by the distance measure

dn :=

√

√

√

√

1
n

n
∑

i=1

〈Pαi − Pi,Pαi − Pi〉 where 〈 , 〉 denotes the standard scalar product.
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2. Distance Function

The considerations done so far do
not only hold for the configuration
space SE(3) of hexapods, but also
for the configuration space SE(2) of
3-RPR manipulators as well as the
set of oriented line elements of R3,
which is the configuration space of
linear pentapods (cf. [15]).

dn was used by Rasoulzadeh &
Nawratil [18] to compute the
distance of linear pentapods to the
next singularity (red).

SIAM Conference on Applied Algebraic Geometry, July 9-13 2019, Bern/CH Austrian Science Fund 12



2. Distance Function

The determination of singular configurations yielding local extrema of dn is an
algebraic problem of degree 80 (cf. [18]). The computation of the sought global
minimium can be relaxed by allowing α to belong to the equiform motion group.

The closest singularity (yellow)
under equiform motions results from
an algebraic problem of degree 28.

As the obtained distance of the
relaxed problem is less or equal the
distance of the original problem, it
can be used as the radius of a
hypersphere, which is guaranteed
singularity-free.
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3. Singularity Distance

These results motivate the following systematic procedure for defining distance
measures for parallel manipulators of SG type.

For hexapods the set of transformations (α belongs
to) can be extended step by step from the Euclidean
group to

⋆ equiform transformations

⋆ affine transformations

⋆ projective transformations

Pi

⋆ general transformations which denote the mapping Pi 7→ Pαi for i = 1, . . . , n.
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3. Singularity Distance

The distance measure dn has the following drawback: Assume we compute
the distance p of a given configuration to the closest singularity in the sense of dn.

Then we change our point of view by considering
the platform as fixed and the base as moving
part and compute again the distance to the next
singularity according to dn.

We get a second distance b which differs from
p in the general case. This circumstance is less
satisfactory from the geometric point of view.

Pi

Bi

Remark: An ad hoc solution of this point of criticism would be (b+ p)/2. ⋄
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3. Singularity Distance

Hence we transform base and platform simultaneously and use the distance function

Dn :=

√

√

√

√

1
2n

n
∑

i=1

[

〈Pαi − Pi,Pαi − Pi〉+ 〈Bβi − Bi,B
β
i − Bi〉

]

where Bβi denote the transformed base points by the base transformation β.

Then the singularity distance equals the global minimum of Dn under the side
condition that the configuration of n lines [Pαi ,B

β
i ] is singular.

The obtained singularity distance depends on the set (Euclidean, equiform, affine,
projective or general transformation) both transformations α and β belong to.

These singularity distances decrease (or remain unchanged) with respect to every
extension step of the transformation set. Therefore all of them can be used as
radius of a hypersphere, which is guaranteed singularity-free.
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3. Singularity Distance

Let Gn denote the singularity distance (based on Dn), where the platform and the
base transformations are both general ones. We favor Gn over all others possible
singularity distances due to the following physical interpretation:

Theorem 1. If the radial clearance of the 2n passive joints is smaller than Gn
then the parallel manipulator is guaranteed to be not in a singular configuration.

Analogous considerations/results as for hexapods (n = 6) also hold for linear
pentapods (n = 5) and 3-RPR manipulators (n = 3), respectively.

Remark: For linear pentapods the general transformation of the base is a
projectivity if the base is non-planar.
For 3-RPR manipulators the general transformation of the base/platform is an
affinity if the base/platform points are not collinear. ⋄
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4. Results for 3-RPR Manipulators

The coordinates of the 3-RPR manipulator’s base/platform points with respect to
the fixed/moving frame are:

B1 = P1 = (0, 0)T , B2 = (11, 0)T , B3 = (5, 7)T , P2 = (3, 0)T , P3 = (1, 2)T .

We consider the following one-parametric motion with parameter ϕ ∈ [0, 2π[:

Pi 7→
(

cosϕ − sinϕ
sinϕ cosϕ

)

Pi +
1

2

(

11− 6 sinϕ
3− 3 cosϕ

)

.

We can extend the planar Euclidean motion group SE(2) to the planar equiform
motion group and further to the group of planar affine transformations.
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4. Results for 3-RPR Manipulators

Euclidean group Equiform group Affine group

d3 s3 e3 g3

D3 S3 E3 G3

The constrained optimization problem is solved by the Lagrange approach. If α
and β are affine transformations then we set

Pαi = (xi, yi)
T Bβi = (Xi, Yi)

T

for i = 1, 2, 3. For an equiform transformation we have i = 1, 2 and set

Pα3 = Pα1 +
(−−−→
Pα1P

α
2

−−−→
Pα1P

α
2
⊥

)

−−−→
P1P3

P1P2

Bβ3 = Bβ1 +

(−−−→
Bβ1B

β
2

−−−→
Bβ1B

β
2
⊥

)−−−→
B1B3

B1B2

(⋆)

where the ⊥ sign indicates the rotation of the vector by 90◦.
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4. Results for 3-RPR Manipulators

The Lagrange function L for the computation of e3, g3 and E3, G3, respectively,
reads as:

L : d23 − λV3 = 0 L : D2
3 − λV3 = 0

where V3 denotes the algebraic condition that the three legs of the transformed
3-RPR manipulator belong to a pencil of lines. If we add the conditions

M : Pα1P
α
2

2 − P1P2
2
= 0 N : Bβ1B

β
2

2

− B1B2
2
= 0

to the ansatz (⋆) we end up with Euclidean displacements. Thus the Lagrange
function L for computing s3 and S3, respectively, can be formulated as follows:

L : d23 − λV3 − µM = 0 L : D2
3 − λV3 − µM − νN = 0
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4. Results for 3-RPR Manipulators

The system of u partial derivatives Li (i = 1, . . . , u) of L is solved using the
Gröbner base method. For the case of G3 the pseudo Maple code reads e.g. as:

[> B := Basis([L1, . . . , L13], tdeg(λ, x1, y1, X1, Y1, . . . x3, y3, X3, Y3)) :

[> E := Basis([op(B)], plex(λ, x1, y1, X1, Y1, . . . x3, y3, X3, Y3)) :

The degree of the univariate polynomial (given by E[1] in the Maple code) equals
the number of local extrema over C listed in the following table:

singularity distance s3 e3 g3 S3 E3 G3

u (# variables in L) 6 5 7 11 9 13

# local extrema 32 19 22 88 34 50
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4. Results for 3-RPR Manipulators

0 1 2 3 4 5 6

ϕ(rad)0

1
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G3

Remark: In the next slide the discontinuity of the closest singular configuration
is caused by passing through the cut locus of the singularity variety (with respect
to the used distance function). ⋄
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Singularity distance s3
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Singularity distance g3
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Singularity distance G3
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Conclusion & References

We presented measures for evaluating the distance of a parallel manipulator of SG
type to the next singularity and computed them for a 3-RPR manipulator (based
on the Gröbner base method).

Due to the degree and number of unknowns the computation of the singularity
distance for hexapods and linear pentapods has to be based on the homotopy
continuation method (e.g. Bertini [2]), which is ongoing research.

All references refer to the list of publications given in the following paper:

Nawratil, G.: Singularity distance for parallel manipulators of Stewart Gough
type. Advances in Mechanism and Machine Science – IFToMM
WC 2019 (T. Uhl, Ed.), pages 259–268, Springer Nature, 2019
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