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1. Introduction

For the detailed references of the cited literature please see

GN: Snappability and singularity-distance of pin-jointed body-bar
frameworks. arXiv:2101.02490 (2021)
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Frameworks
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Frameworks are used in many engineering applications like bridges,
electrical towers, roof constructions, . . . .

We are only interested in the geometry of the frameworks neglecting
the technical construction of bars (material, profile, . . . ) and knots.

Geometric abstraction
Knots are reduced to points and
bars to straight line-segments.
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Fundamentals
Graph G of a framework
consists of a knot-set K = {K1, . . . ,Ks},
where knots Ki and Kj are connected by
edges eij (⇒ combinatorial structure). e12e12e12e12e12e12e12e12e12e12e12e12e12e12e12e12e12
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Inner geometry
is determined by assigning to each edge
eij a length Lij > 0 (⇔ fixing intrinsic
metric). 33333333333333333
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Realization G(K)

with K = (k1, . . . , ks) ∈ Rsd corre-
sponds to the embedding of the frame-
work with fixed inner geometry into the
Euclidean d-space. K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2
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Algebraic approach to rigidity theory

The relation that two knots Ki and Kj are edge-connected can also
be expressed algebraically as ‖ki − kj‖2 = L2

ij .

In addition we can add 6 (for d = 3) or 3 (for d = 2) linear conditions
to eliminate isometries. We end up with n algebraic conditions in
m = sd unknowns constituting an algebraic variety A(c1, . . . , cn).

Def.: A realization is flexible
if it belongs to a real positive-dimensional component of
A(c1, . . . , cn). For n ≥ m the motion is called paradox.

Def.: A realization is rigid
if it corresponds to an real isolated solution of A(c1, . . . , cn). If it is
unique then we have a global rigidity; otherwise a local one.
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Algebraic approach to rigidity theory

Example: planar parallel mechanism

∃ paradox mobile realization

Rigid realization

The realization is called isostatic (minimally rigid) if the removal of
any edge constraint will make the realization flexible (⇔ m = n).

Remark: There is also a combinatorial characterization of isostati-
city for generic frameworks in R2 according to Laman (1970).
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Algebraic approach to rigidity theory

We can compute in a realization the tangent-hyperplane to each of
the hypersurfaces ci = 0 in Rm for i = 1, . . . , n. The normal vectors
of these tangent-hyperplanes constitute the columns of the m × n
rigidity matrix RG(K) of the realization G(K).

For rk(RG(K)) = m the realization G(K) is infinitesimal rigid.

For rk(RG(K)) < m the realization G(K) is infinitesimal flexible;
i.e. the hyperplanes have a positive-dimensional affine subspace in
common. Therefore the intersection multiplicity of the n hypersur-
faces is at least two in a shaky realization.

Remark: For isostatic frameworks the infinitesimal flexibility is cha-
racterized by det(RG(K)) = 0.
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Algebraic approach to rigidity theory

Rigid realizations can be subclassified as follows:

Def.: A rigid realization is shaky
if it belongs to an isolated solution of A(c1, . . . , cn) with a higher-
multiplicity. The physical model can flex in a certain range∗.

Def.: A rigid realization is snapping
if it is close enough to another isolated solution of A(c1, . . . , cn)
such that the physical model can snap between these realizations∗.

Remark: Shakiness can also be seen as the limit of snapping.

Open problem: The meaning of closeness!
∗due to non-destructive elastic deformation of material.
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Connection between shakiness and snapping

“Averaging”
From two realizations with the
same inner geometry we get a
shaky realization with a diffe-
rent intrinsic metric.

“Deaveraging”
Two realizations with the sa-
me inner geometry are obtai-
ned from a shaky realization
with a different intrinsic metric.
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Review

The snapping phenomena has received much attention in the last
few years within a wide field of applications.

Wunderlich (1965–1982): series of papers on snapping structures
(octahedra, antiprisms, 4R loops, dodecahedra, icosahedra)

Goldberg (1978): buckling polyhedron, Siamese Dipyramid (SD)

Snapping structures are also related to Milka’s model flexors. In
some cases the model flexibility can be reasoned by the snapping
through different realizations (Schwabe’s Four-Horn, SD).

Gorkavyy & Fesenko (2019) studied how slight variations on the
SD’s edge lengths produce significant shape variations. They sugge-
sted estimates to quantify these intrinsic and extrinsic variations.

Holmes-Cerfon, Theran & Gortler (2021) computed bounds for
these quantities for arbitrary bar-joint frameworks.
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2. Theory

In the presentation we restrict to pin-jointed frameworks composed
of bars and triangular panels but the theory can be generalized to
polygonal panels and polyhedra as well; cf.

GN: Snappability and singularity-distance of pin-jointed body-bar
frameworks. arXiv:2101.02490 (2021)
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Physical Model of Deformation

Due to the fact that the elastic deformation during the process of
snapping are expected to be small, we can apply Hooke’s law; i.e. εx

εy
γxy


︸ ︷︷ ︸

e

= 1
E

 1 −ν 0
−ν 1 0
0 0 2(1 + ν)


︸ ︷︷ ︸

=:D(ν)

 δx
δy
τxy

 . (1)

• normal stress δx/y and normal strain εx/y in x/y -direction
• shear stress τxy and shear strain γxy in the xy -plane
• Poisson ration ν and Young modulus E

For a bar (in x -direction) the relation reduces to εx = δx
E .
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Assumptions

Reduction of the physical model to its geometric core by eliminating
the influence of material properties. To do so, we make the following

Assumptions

(I) all bars and triangular plates are uniform made of the same
homogeneous isotropic material
(a) deforming at constant volume ν = 1/2
(b) having a positive Young modulus E > 0.

(II) all bars have the same cross-sectional area A,
(III) triangular bar structure and triangular panel are made of the

same amount of material.
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Strain energy according to Green-Lagrange

The deformation of the triangular panel Ki ,Kj ,Kk into K ′i ,K ′j ,K ′k
can be represented by a 2× 2 matrix F in terms of edge lengths.

Based on F the Green-Lagrange (GL) strains can be computed as(
εx γxy
γxy εy

)
= 1

2

(
FT F− I

)
.

The elastic GL strain energy of the deformation is calculated as

Uijk = Vijk
1
2eT D−1e where Vijk denotes the panel volume.

Analogue: GL strain energy of a deformed bar can be computed as

Uij = EA
8L3

ij
(L′ij 2 − L2

ij)2 where L′ij denotes the deformed length.
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Total elastic strain energy density

u(L′) =
∑

Uij +
∑

Uijk∑
ALij +

∑
A(Lij + Lik + Ljk) with L′ = (. . . , L′ij , . . .)

Lemma 1.
u(L′) is a fourth order polynomial with respect to the variables L′ij
which only appear with even powers, but it does not depend on A.
Moreover, u(L′) is positive semi-definite.

Remark. Therefore u(L′) can be written in matrix formulation as
u(Q′) = Q′T MQ′ where M is a symmetric (b + 1)-matrix and
Q′ := (1, . . . ,Q′ij , . . .)T is composed of the b squared edge lengths
Q′ij := L′2ij and the number 1.
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Pseudometric on the space Rb

Lemma 2.
The following function

d : Rb×Rb → R≥0 with (L′,L′′) 7→ d(L′,L′′) := |u(L′)− u(L′′)|
E

is a pseudometric on the b-dimensional space of intrinsic framework
metrics given by L′ and L′′, respectively. Moreover, the pseudometric
does not depend on the choice of E .

Proof: One can easily check the axioms for a pseudometric:

(1) d(L′,L′′) ≥ 0 (2) d(L′,L′) = 0
(3) d(L′,L′′) = d(L′′,L′) (4) d(L′,L′′′) ≤ d(L′,L′′) + d(L′′,L′′′)

Due to Assumption I, Young’s modulus E factors out of u(L′). �
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u(L′) =⇒ u(K′) and its critical points

Theorem 1.
The critical points of the total elastic stain energy density u(K′)
of an isostatic framework correspond to realizations G(K′) that are
either undeformed or deformed and shaky.

Proof: Based on characterization of shakiness in terms of self-stress:
If one can assign to each edge eij of G(k′) a stress ωij ∈ R in a way
that for each knot the so-called equilibrium condition∑

i<j
ωij(k′i − k′j) +

∑
i>j

ωji (k′i − k′j) = o

is fulfilled, then ω = (. . . , ωij , . . .) ∈ Rb is referred as self-stress. If
ω 6= o, then the realization G(k′) of an isostatic framework is shaky.
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u(L′) =⇒ u(K′) and its critical points

The system of equations characterizing critical points of u(K′):

∇i u(K′) = o with ∇i u(K′) =
(

∂u
∂k′i,1

, . . . , ∂u
∂k′i,d

)
i = 1, . . . , s

where (k ′i ,1, . . . , k ′i ,d ) is the coordinate vectorof k′i ∈ Rd .

Due to the sum rule for derivatives we only have to investigate ∇i
of Uijk(K′) and Uij(K′), which can be written as

∇i Uij = ωij(k′i − k′j) with ωij = A(L′2ij −L2
ij )

2L3
ij

∇i Uijk = ωij(k′i − k′j) + ωik(k′i − k′k) with ωij = . . . , ωik = . . .

Therefore ∇i u(K′) has the shape of the equilibrium condition. �
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Further connection between shakiness and snapping

Def.: A realization is stable
if it corresponds to a local minimum of the total elastic strain energy
(density) of the framework.

Theorem 2.
If an isostatic framework snaps out of a stable realization G(K)
by applying the minimum GL strain energy needed to it, then the
corresponding deformation has to pass a shaky realization G(K′) at
the maximum state of deformation.

Proof: We think of u as a graph function over the space Rsd of
knot configurations. In order to get out of the valley of the local
minimum (K, u(K)) with a minimum of energy needed, one has to
pass a saddle point (K′, u(K′)). �
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Snappability

Def.: Snappability of a realization G(K)

is given by s(K) := d(L,L′) with G(K′) of Theorem 2.

Algorithm:

(1) We compute the set S of saddle points. Let us assume that
G(K′) ∈ S yields the minimal value for d(L,L′).

(2) Qt := Q + t(Q′ −Q) with t ∈ [0, 1] implies a path Lt in Rb.
Along this path the deformation energy of each bar and triangular
plate is monotonic increasing ensuring that the minimum mechani-
cal work needed is applied to reach G(K′).
This results from Lemma 1, as Uijk(Lt) as well as Uij(Lt) are qua-
dratic functions in t, which are at their minima for t = 0.
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Snappability

(3) The path Lt corresponds to different 1-parametric deformations
of realizations in Rd . If among these a deformation G(Kt) with

G(Kt)
∣∣
t=0 = G(K), G(Kt)

∣∣
t=1 = G(K′)

exists, then G(K) is deformed into G(K′) under Lt =⇒ s(K)

Remark: Computationally the property of step (3) can be checked
by a user defined homotopy approach (e.g. software Bertini).

(4) Otherwise we redefine S as S \ {G(K′)} and run again the
procedure. If we end up with S = ∅ then we set s(K) =∞.
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Singularity-distance

Theorem 3.
For a non-shaky realization G(K) of an isostatic framework the
singularity-distance ς(K) equals the snappability s(K).

Proof: ς(K) ≤ s(K) has to hold, as G(K′) of Theorem 2 is shaky.
We show that the assumption ς(K) < s(K) implies a contradiction.

We denote by G(K′′) shaky configuration implying ς(K) = d(L,L′′).

Then Qt := Q + t(Q′′ −Q) with t ∈ [0, 1] corresponds to a set of
1-parametric deformations

{
G(K1

t ),G(K2
t ), . . .

}
.

A subset D of this set has the property G(Ki
t)|t=1 = G(K′′) where

#D > 1 holds as G(K′′) is shaky. Hence the framework can snap
out of G(K) over G(K′′) which contradicts ς(K) < s(K). �
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3. Examples

For a detailed comparison of the following presented results with
those given in the literature please see

GN: Snappability and singularity-distance of pin-jointed body-bar
frameworks. arXiv:2101.02490 (2021)
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Siamese Dipyramid

Michael Goldberg (1978):
The polyhedron consists of 20 equilate-
ral triangles and has 12 vertices and 30
edges.

The SD has a reflexion-symmetry with
respect to two orthogonal planes.

The deformation of the SD keeping this
symmetry property is 11-dimensional.
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Siamese Dipyramid

G(K2) G(K1) G(K3)

The SD can snap out of the symmetric realization G(K1) into one
of the two asymmetric realizations G(K2) and G(K3), respectively.

Isostaticity. Every closed polyhedral surface of genus 0 with tri-
angular faces is isostatic. This isostaticity remains intact under the
assumption of the 2-fold reflexion-symmetry.
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Siamese Dipyramid

Results for joint-bar/panel-hinge framework

The obtained system of 11 equations ∇u results in 177 147 paths
within a total degree homotopy. The path tracking done by the
software Bertini ends up in 22 153/20 305 finite real solutions. After
reduction to the set S we remain with 21 904/20 056 solutions.

G(K2) G(K′) G(K1) G(K′′) G(K3)

We get s(K1,2,3) = ς(K1,2,3) = 1.661376 · 10−6/4.466362 · 10−6.
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Siamese Dipyramid

Model flexibility
The model snaps bet-
ween three realizations.

The maximal change of
an edge-length is ap-
proximately 3mm if the
triangles have a side
length of 1m.
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Four-Horn

Casper Schwabe (1984):
The polyhedron has 10 vertices, 24 edges
and consists of 16 congruent isosceles tri-
angles with α := ](leg,base) = 22.5◦.

From the combinatorial point of view
FHα equals a SD with pentagonal equa-
torial polygons.

FHα has again a reflexion-symmetry with
respect to two orthogonal planes.

The deformation of FHα keeping this
symmetry property is 9-dimensional.
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Four-Horn

G(K2)
G(K1)

G(K3)

FHα can snap out of the symmetric realization G(K1) into one of
the two flat realizations G(K2) and G(K3), which are shaky.

We consider FHα where α equals 15◦, 22.5◦ and 30◦, respectively.
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Four-Horn

Results for joint-bar/panel-hinge framework

The obtained system of 9 equations∇u results in 19 683 paths within
a total degree homotopy. Note that ς(K2,3) = 0 holds.

α # real solutions # S s(K1,2,3) = ς(K1)
15◦ 923/1 324 897/1 238 9.864008 · 10−11/6.288380 · 10−8

22.5◦ 924/1 259 863/1 242 1.753810 · 10−8/1.748173 · 10−6

30◦ 917/1 457 819/1 360 2.035395 · 10−7/2.340885 · 10−5

G(K2) G(K′) G(K1) G(K′′) G(K3)
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Four-Horn

Model flexibility
The model snaps bet-
ween three realizations.

The maximal change of
an edge-length is appro-
ximately
0.02mm. . .α = 15◦
0.29mm. . .α = 22.5◦
2.06mm. . .α = 30◦
if the average edge
length equals 1m.
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Walter Wunderlich (1971):
Closed serial chain composed of four di-
rectly congruent tetrahedral chain ele-
ments, which are jointed by four hinges.

It consists of two sets of 8 congruent tri-
angles and has 8 vertices and 20 edges.

The 4R loop has a threefold reflexion
symmetry with respect to three copunc-
tal lines, which are pairwise orthogonal.

The deformation of the 4R loops keeping
this symmetry property is 6-dimensional.
Under this symmetry assumption the fra-
mework is also isostatic.
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4R Loop

The 4R loop snaps out of the realization G(K1) over the shaky con-
figuration G(K′) into the realization G(K2).

G(K1) G(K′) G(K2)

Results for joint-bar/panel-hinge framework

The obtained system of 6 equations ∇u results in 729 paths within
a total degree homotopy.

# real solutions # S s(K1,2) = ς(K1,2)
113/161 96/144 6.762914 · 10−7/9.363722 · 10−6
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The 4R loop snaps out of the realization G(K1) over the shaky con-
figuration G(K′) into the realization G(K2).
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Results for joint-bar/panel-hinge framework

The obtained system of 6 equations ∇u results in 729 paths within
a total degree homotopy.

# real solutions # S s(K1,2) = ς(K1,2)
113/161 96/144 6.762914 · 10−7/9.363722 · 10−6
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Model flexibility
The model snaps bet-
ween two realizations.

The maximal change of
an edge-length is ap-
proximately 2.36mm if
the average edge length
equals 1m.
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