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Frameworks
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Frameworks are used in many engineering applications like bridges,
electrical towers, roof constructions, . . . .

We are only interested in the geometry of the frameworks neglecting
the technical construction of bars (material, profile, . . . ) and knots.

Geometric abstraction
Knots are reduced to points and
bars to straight line-segments.
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Fundamentals
Graph G of a framework
consists of a knot-set K = {K1, . . . ,Ks},
where knots Ki and Kj are connected by
edges eij (⇒ combinatorial structure). e12e12e12e12e12e12e12e12e12e12e12e12e12e12e12e12e12
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Inner geometry
is determined by assigning to each edge
eij a length Lij > 0 (⇔ fixing intrinsic
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Realization G(K)

with K = (k1, . . . , ks) ∈ Rsd corre-
sponds to the embedding of the frame-
work with fixed inner geometry into the
Euclidean d-space. K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2K2
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Algebraic approach to rigidity theory

The relation that two knots Ki and Kj are edge-connected can also
be expressed algebraically as ‖ki − kj‖2 = L2

ij .

In addition we can add 6 (for d = 3) or 3 (for d = 2) linear conditions
to eliminate isometries. We end up with n algebraic conditions in
m = sd unknowns constituting an algebraic variety A(c1, . . . , cn).

Def.: A realization is flexible
if it belongs to a real positive-dimensional component of
A(c1, . . . , cn). For n ≥ m the motion is called paradox.

Def.: A realization is rigid
if it corresponds to an real isolated solution of A(c1, . . . , cn). If it is
unique then we have a global rigidity; otherwise a local one.
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Algebraic approach to rigidity theory

Example: planar parallel mechanism

∃ paradox mobile realization

Rigid realization

The realization is called isostatic (minimally rigid) if the removal of
any edge constraint will make the realization flexible (⇔ m = n).
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Algebraic approach to rigidity theory

We can compute in a realization the tangent-hyperplane to each of
the hypersurfaces ci = 0 in Rm for i = 1, . . . , n. The normal vectors
of these tangent-hyperplanes constitute the columns of the m × n
rigidity matrix RG(K) of the realization G(K).

For rk(RG(K)) = m the realization G(K) is infinitesimal rigid.

For rk(RG(K)) < m the realization G(K) is infinitesimal flexible;
i.e. the hyperplanes have a positive-dimensional affine subspace in
common. Therefore the intersection multiplicity of the n hypersur-
faces is at least two in a shaky realization.

Remark: For isostatic frameworks the infinitesimal flexibility is cha-
racterized by det(RG(K)) = 0, which is also known as pure condition.
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Algebraic approach to rigidity theory

Rigid realizations can be subclassified as follows:

Def.: A rigid realization is shaky
if it belongs to an isolated solution of A(c1, . . . , cn) with a higher-
multiplicity. The physical model can flex in a certain range∗.

Def.: A rigid realization is snapping
if it is close enough to another isolated solution of A(c1, . . . , cn)
such that the physical model can snap between these realizations∗.

Remark: Shakiness can also be seen as the limit of snapping.

Open problem: The meaning of closeness!
∗due to non-destructive elastic deformation of material.
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2. Theory

In the presentation we restrict to pin-jointed frameworks composed
of bars and triangular panels but the theory can be generalized to
polygonal panels and polyhedra as well; cf.

GN: Snappability and singularity-distance of pin-jointed body-bar
frameworks. Mechanism and Machine Theory 167:104520 (2022)
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Physical Model of Deformation

Due to the fact that the elastic deformation during the process of
snapping are expected to be small, we can apply Hooke’s law; i.e. εx

εy
γxy


︸ ︷︷ ︸

e

= 1
E

 1 −ν 0
−ν 1 0
0 0 2(1 + ν)


︸ ︷︷ ︸

=:D(ν)

 δx
δy
τxy

 . (1)

• normal stress δx/y and normal strain εx/y in x/y -direction
• shear stress τxy and shear strain γxy in the xy -plane
• Poisson ration ν and Young modulus E

For a bar (in x -direction) the relation reduces to εx = δx
E .
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Assumptions

Reduction of the physical model to its geometric core by eliminating
the influence of material properties. To do so, we make the following

Assumptions

(I) all bars and triangular plates are uniform made of the same
homogeneous isotropic material
(a) deforming at constant volume ν = 1/2
(b) having a positive Young modulus E > 0.

(II) all bars have the same cross-sectional area A,
(III) triangular bar structure and triangular panel are made of the

same amount of material.
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Strain energy according to Green-Lagrange

The deformation of the triangular panel Ki ,Kj ,Kk into K ′i ,K ′j ,K ′k
can be represented by a 2× 2 matrix F in terms of edge lengths.

Based on F the Green-Lagrange (GL) strains can be computed as(
εx γxy
γxy εy

)
= 1

2

(
FT F− I

)
.

The elastic GL strain energy of the deformation is calculated as

Uijk = Vijk
1
2eT D−1e where Vijk denotes the panel volume.

Analogue: GL strain energy of a deformed bar can be computed as

Uij = EA
8L3

ij
(L′ij 2 − L2

ij)2 where L′ij denotes the deformed length.
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Total elastic strain energy density

u(L′) =
∑

Uij +
∑

Uijk∑
ALij +

∑
A(Lij + Lik + Ljk) with L′ = (. . . , L′ij , . . .)

Lemma 1.
u(L′) is a fourth order polynomial with respect to the variables L′ij
which only appear with even powers, but it does not depend on A.
Moreover, u(L′) is positive semi-definite.

Remark. Therefore u(L′) can be written in matrix formulation as
u(Q′) = Q′T MQ′ where M is a symmetric (b + 1)-matrix and
Q′ := (1, . . . ,Q′ij , . . .)T is composed of the b squared edge lengths
Q′ij := L′2ij and the number 1.
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Pseudometric on the space Rb

Lemma 2.
The following function

d : Rb×Rb → R≥0 with (L′,L′′) 7→ d(L′,L′′) := |u(L′)− u(L′′)|
E

is a pseudometric on the b-dimensional space of intrinsic framework
metrics given by L′ and L′′, respectively. Moreover, the pseudometric
does not depend on the choice of E .

Proof: One can easily check the axioms for a pseudometric:

(1) d(L′,L′′) ≥ 0 (2) d(L′,L′) = 0
(3) d(L′,L′′) = d(L′′,L′) (4) d(L′,L′′′) ≤ d(L′,L′′) + d(L′′,L′′′)

Due to Assumption I, Young’s modulus E factors out of u(L′). �
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u(L′) =⇒ u(K′) and its critical points

Theorem 1.
The critical points of the total elastic stain energy density u(K′)
of an isostatic framework correspond to realizations G(K′) that are
either undeformed or deformed and shaky.

Proof: It is based on the characterization of shakiness in terms of
self-stress. For details please see the presented paper. �

The formulation of the next theorem requires the notion of stability:

Def.: A realization is stable
if it corresponds to a local minimum of the total elastic strain energy
(density) of the framework.
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Connection between shakiness and snapping

Theorem 2.
If an isostatic framework snaps out of a stable realization G(K)
by applying the minimum GL strain energy needed to it, then the
corresponding deformation has to pass a shaky realization G(K′) at
the maximum state of deformation.

Proof: We think of u
as a graph function over
Rsd . To get out of the
valley of the local mi-
nimum (K, u(K)) with
a minimum of ener-
gy needed, one has to
pass a saddle point
(K′, u(K′)). �

Rsd

(K, u(K))

(K′, u(K′))
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Snappability

Def.: Snappability of a realization G(K)

is given by s(K) := d(L,L′) with G(K′) of Theorem 2.

Algorithm:

(1) We compute the set S of saddle points. Let us assume that
G(K′) ∈ S yields the minimal value for d(L,L′).

(2) Qt := Q + t(Q′ −Q) with t ∈ [0, 1] implies a path Lt in Rb.
Along this path the deformation energy of each bar and triangular
plate is monotonic increasing ensuring that the minimum mechani-
cal work needed is applied to reach G(K′).
This results from Lemma 1, as Uijk(Lt) as well as Uij(Lt) are qua-
dratic functions in t, which are at their minima for t = 0.
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Snappability

(3) The path Lt corresponds to different 1-parametric deformations
of realizations in Rd . If among these a deformation G(Kt) with

G(Kt)
∣∣
t=0 = G(K), G(Kt)

∣∣
t=1 = G(K′)

exists, then G(K) is deformed into G(K′) under Lt =⇒ s(K)

Remark: Computationally the property of step (3) can be checked
by a user defined homotopy approach (e.g. software Bertini).

(4) Otherwise we redefine S as S \ {G(K′)} and run again the
procedure. If we end up with S = ∅ then we set s(K) =∞.
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Singularity-distance

Theorem 3.
For a non-shaky realization G(K) of an isostatic framework the
singularity-distance ς(K) equals the snappability s(K).

Proof: ς(K) ≤ s(K) has to hold, as G(K′) of Theorem 2 is shaky.
We show that the assumption ς(K) < s(K) implies a contradiction.

We denote by G(K′′) shaky configuration implying ς(K) = d(L,L′′).

Then Qt := Q + t(Q′′ −Q) with t ∈ [0, 1] corresponds to a set of
1-parametric deformations

{
G(K1

t ),G(K2
t ), . . .

}
.

A subset D of this set has the property G(Ki
t)|t=1 = G(K′′) where

#D > 1 holds as G(K′′) is shaky. Hence the framework can snap
out of G(K) over G(K′′) which contradicts ς(K) < s(K). �
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3. Examples
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Planar parallel manipulator with pinned base

The snap between the
green and red unde-
formed realization pas-
ses the shaky deformed
configuration G(K′).

K1 K2

K3

structure strain tracked paths #solutions ∈ C #S ς(K) = s(K)
G(K′) 3 bars + 1 plate Green-Lagrange 729 285 62 3.2531/106

G(K′) 6 bars Green-Lagrange 729 219 58 1.8271/106

G(K′) 6 bars Cauchy/Engineering 59 163 758 142 1.8285/106
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One-parametric motion of the platform in blue and the
closest singular configuration in red (6 bars, GL strain)

A. Kapilavai, GN: Comparison of extrinsic and intrinsic singularity
distance measures for planar 3-RPR manipulators (in preparation)
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Hexapod with undeformable base and platform

The snap between the green and yellow undeformed realization passes the
shaky deformed configuration in red implying ς(K) = s(K) = 3.3241/105.

GN: Snappability and singularity-distance of pin-jointed body-bar
frameworks. Mechanism and Machine Theory 167:104520 (2022)
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