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Introduction
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Circular arrangement of the Kresling pattern

The strip has finite length and is folded such that A0 = An and
B0 = Bn holds (n ≥ 3) and that A1, . . . ,An and B1, . . . ,Bn form
regular n-gons.

This discretized cylindrical strip has a bi-stable behavior according
to Wunderlich [13], where these structures appear as special cases
(regular ones) of snapping anti-prisms.

These snapping regular anti-prisms can be composed repetitively to
cylindrical towers [1, 3, 5, 6].

A0 A1 A2 An−1 An

B0 B1 B2 Bn−1 Bn
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Helical arrangement of the Kresling pattern

The strip can be assumed of infinite length where every label Vi with
i ≥ n − 1 (n ≥ 3) appears twice (once on the lower rim and once
on the upper one). One can fold up the strip in a way that points
with the same labels match and are located on a helix.

The resulting triangulated cylinder studied in [2, 12] are multi-stable
and from the formulation used in [12], it can be seen that there
exists in general n− 2 cylindrical realizations (without taking reality
or self-intersections into account).

V0 V1 V2 Vn−1 Vn

Vn−1 Vn Vn+1 V2n−1V2n−2
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Rough goal

Generalize these two constructions for conical structures, i.e. verti-
ces are located on a cone of revolution, which can e.g. be used as
reconfigurable antenna [7] or foldable horn speakers [11].
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Review on the triangulated conical structures

They are studied in a journal article of Ishida et al. [4] and a pre-
sentation manuscript of Nojima [9] (which are based on three works
written in Japanese).

In [4] the crease patterns of conical structures are generated from
crease patterns of cylindrical structures by applying planar confor-
mal maps. This approach does not allow direct access to its spatial
conical shape, with exception of the flat foldable state, which can be
added as an extra condition to the crease pattern (cf. [Eq. (14),4]).

We do not generate the planar crease pattern but construct directly
the triangulation on the 3-dimensional shape (cone).
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Kinematic construction

We sliced the cone along parallel planes
orthogonal to the rotation axis and dis-
cretize the resulting circles by regular n-
gons, where adjacent ones are connected
in the combinatorics of an anitprism. We
call these objects regular anti-frusta.

To archive periodicity of the structure we
demand that each anti-frustum can be
transformed into any other one by a so-
called spiral displacement σ; i.e. com-
position of a rotation about the cone axis
and a scaling with center in the apex.



September 20th 2021, Research funded by

Kinematic construction

We start with a line-segment V0V1 with
non-zero slope, whose end points are lo-
cated on the cone. Now we apply a spiral
displacement σ to this line segment, in
such a way that σ(V0) = V1 holds.

By iterating the process, i.e. σi (V0) =
σi−1(V1), we get all vertices of the struc-
ture, which are located on a so-called
concho-spiral (or conical helix). In the re-
mainder of the talk we will name this cur-
ve a spiral for short.
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Triangulated cones are origami structures

A cone is a developable surface, but also the proposed triangulations
of the cone are developable:

The triangulated cone
consists of two types of
triangles with respect to
spiral displacements.

In every vertex all six
angles determined by
these two triangles meet
and sum up to 2π.
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Shaky and snapping realizations

In general, there exists a finite number of realizations of such a
conical framework; i.e. they are multistable.

A realization is called a snapping realization if it is close enough
to another incongruent realization such that the physical model can
snap into this neighboring realization due to non-destructive elastic
deformations of material. It is well-known that infinitesimal flexibi-
lity can be seen as the limiting case where two realizations coincide.

Snapping anti-frustum Shaky anti-frustum
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Construction of shaky and snapping anti-frusta

A′′±1,2

A′±1

A′±2

x′′

x′

y′

z′′

B ′−1 B ′+1

S ′±

B ′′−1

B ′′+1

S ′′−

S ′′+

λ+

λ− Shaky and snapping regular
anti-frusta correspond to spe-
cial cases in the study of Wun-
derlich [13].

Therefore we will focus on
spiral-motion based conical tri-
angulations in the remainder of
the talk.
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Outline

1. Algebraic formulation
2. Realizations on different cones
3. Two realizations on the same cone

a. Shaky realizations
b. On self-intersection free realizations

4. Orthogonal cross sections
5. Snappability computation
6. Open problems & References
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1. Parametrization
We start with a parametrization of the spiral, which reads as:

s(ϕ) =

 remϕ cosϕ
remϕ sinϕ
−remϕ cotλ

 with r > 0 and m = sinλ cot δ

where δ ∈]π2 , π[ is the angle between the spiral tangent and the
corresponding generator of the cone with half apex angle λ. We
consider the part of the spiral which starts below the xy -plane (for
ϕ = 0) and winds up (math. positive) to the origin for ϕ→∞.

Two different spatial states R+ and R− of our vertex set Vi :

V±i =

r±pi
± cos(iϕ±)

r±pi
± sin(iϕ±)
−r±pi

±q±

 p± := eϕ± sinλ± cot δ± , q± = cotλ±

for fixed ϕ−, ϕ+ ∈]0;π[ and r+ = 1.
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1. Set of equations

The lengths of corresponding edges have to
agree, which yields an infinite set E of equations
d(i , j) = 0 with d(i , j) := V+iV+j

2 − V−iV−j
2.

As the complete edge set can be generated
by the spiral displacement of the three edges
V±0V±1, V±0V±(n−1) and V±0V±n, the follo-
wing relations hold for k ∈ N:

V0

V1

Vn−1

Vn

d(k, k + 1) = p2k
+ V+0V+1

2 − p2k
− V−0V−1

2

d(k, k + n − 1) = p2k
+ V+0V+(n−1)

2 − p2k
− V−0V−(n−1)

2

d(k, k + n) = p2k
+ V+0V+n

2 − p2k
− V−0V−n

2

This already implies, that E can only have a solution for p := p− =
p+ as p± ∈]0; 1[ has to hold (for reasons of reality).



September 20th 2021, Research funded by

1. Set of equations

The lengths of corresponding edges have to
agree, which yields an infinite set E of equations
d(i , j) = 0 with d(i , j) := V+iV+j

2 − V−iV−j
2.

As the complete edge set can be generated
by the spiral displacement of the three edges
V±0V±1, V±0V±(n−1) and V±0V±n, the follo-
wing relations hold for k ∈ N:

V0

V1

Vn−1

Vn

d(k, k + 1) = p2k
+ V+0V+1

2 − p2k
− V−0V−1

2

d(k, k + n − 1) = p2k
+ V+0V+(n−1)

2 − p2k
− V−0V−(n−1)

2

d(k, k + n) = p2k
+ V+0V+n

2 − p2k
− V−0V−n

2

This already implies, that E can only have a solution for p := p− =
p+ as p± ∈]0; 1[ has to hold (for reasons of reality).



September 20th 2021, Research funded by

1. The three basic equations

This bowls down the problem to the solution of the equations d(0, 1) =
0, d(0, n − 1) = 0 and d(0, n) = 0. By using Chebyshev polyno-
mials of the first kind Ti (x), which are recursively defined by:

Ti+1(x) = 2xTi (x)−Ti−1(x) with T0(x) = 1 and T1(x) = x ,

we can rewrite d(0, k) for k = 1, n − 1, n under consideration of
Ti (cosϕ±) = cos(iϕ±) by

d(0, k) =(p2kq2
+ − 2pkq2

+ − 2Tk(c+)pk + p2k + q2
+ + 1)−

(p2kq2
− − 2pkq2

− − 2Tk(c−)pk + p2k + q2
− + 1)r2

−

with c± = cosϕ±. By the conducted substitutions d(0, k) turns into
an algebraic expression in the variables p, q±, c±, r−, where q+ and
q− are known design inputs.
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2. Two realizations on different cones
By eliminating r− and p from the three basic equations, one ends up
with a planar algebraic curve h(c−, c+). We distinguish two cases:

1. General case: None of the two cones degenerate to a plane.
The planar curve h is of degree n2 − 9.

2. Special case: One of the two cones degenerates to a plane.
The planar curve h is of degree (n − 1)2 − 4.

Remark 1: Multi-stable designs can only exist for n > 3.
Example 1: n = 4, λ− = π

6 and λ+ = π
3 =⇒ h is a septic

R−

c− = −0.55
p ≈ 0.915

R+

c+ ≈ −0.62
p ≈ 0.915

c−

c+

1

10
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3. Three realizations on different cones

The existence of a one-parametric solution curve h for the design
of bi-stable conical structures allows theoretically the design of tri-
stable ones. We index the third realization by the symbol ◦.

Example 2: n = 7 and λ+ = π
3 , λ◦ = π

4 , λ− = π
6 .

R+

c+ ≈ 0.642
p ≈ 0.872

R◦

c◦ ≈ −0.016
p ≈ 0.872

R−

c− ≈ −0.141
p ≈ 0.872

Remark 2: We were not able to find examples where all three rea-
lizations are free of self-intersections.
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3. Two realizations on the same cone
We set q := q+ = q− and do the same elimination as before ending
up with the algebraic curve h(c−, c+). We distinguish two cases:

1. General case: q 6= 0.
The planar curve h is of degree n(n − 1)− 6.

2. Special case: q = 0
The planar curve h is of degree (n − 2)(n − 3).

Remark 3: Multi-stable designs can only exist for n > 3.
Example 3: n = 4 and λ+ = λ− = π

6 =⇒ h is a sextic

R−

c− = −0.55
p ≈ 0.733

R+

c+ ≈ −0.615
p ≈ 0.733

c−

c+

1

10
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3a. Shaky realizations
Shaky realization Rs are algebraically characterized by setting cs :=
c− = c+ in the expression of h. The zeros of this univariate polyno-
mial in cs result in double solutions.

Example 4: n = 6 and λ+ = λ− = π
6 =⇒ h is of degree 24

R1
s

cs ≈ 0.192
p ≈ 0.81

R2
s

cs ≈ −0.834
p ≈ 0.773

c−

c+

1

10

H2
s

H1
s

Remark 4: A geometric characterization of the shakiness remains
an open problem. A necessary condition for the flat state (⇔ q = 0)
is that one of the two kinds of triangles has collinear vertices.
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3b. Types of self-intersections
We call a self-intersection local, if triangles with a common vertex
intersect each other; otherwise global.

Continuation of Example 3:

R1
−

c− = −0.55
p ≈ 0.733

R2
−

c− = −0.5
p ≈ 0.736

R3
−

c− = −0.45
p ≈ 0.741

R1
+

c+ ≈ −0.615
p ≈ 0.733

R2
+

c+ ≈ −0.662
p ≈ 0.736

R3
+

c+ ≈ −0.705
p ≈ 0.741
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3b. On local self-intersections

We consider the vertex star of Vk , which
is split by the edges Vk−1Vk and VkVk+1
into two sets of three triangles; an upper
set and a lower one. As the vertices are
located on a spiral it is impossible that
triangles of the upper set intersect tri-
angles of the lower set and vice versa.

W.l.o.g. we can focus on the three tri-
angles of the upper set of the vertex star.

Vk

Vk+1

Vk−1

Vk+n

Vk+n−1
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3b. On local self-intersections

Let us assume that we start with a self-
intersection free vertex star and deform it
continuously such that the three triangles
of the upper set intersect each other. The
deformation has to pass a configuration,
where two adjacent triangles of the upper
set are coplanar (dihedral angle is zero).

This can happen along the edges
VkVk+n−1 and VkVk+n. Hence the-
re are two boundaries of local self-
intersection.

Vk

Vk+1

Vk−1

Vk+n

Vk+n−1
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3b. Theorem on local self-intersections

Theorem 1.
R− is a realization which is located on a right pyramid over a regular
(n−1)-gon or n-gon. If there exists a second realization R+ located
on the same cone then it is on the boundary of local self-intersection.

Proof: This theorem was proven algebraically for n = 4, . . . , 9.

Clearly, one can try to prove this result for further values of n > 9,
which is a cumbersome task due to the increasing degree of involved
polynomials but the procedure is straight forward.

Remark 5: We conjecture that this theorem holds for all n > 3 but
an elegant proof (preferably a pure geometric one) remains open.
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3b. Implications for global self-intersections

A snap of the framework on the cone corresponds to a path along
the curve h between the point (a, b) and (b, a). As a consequence
such a snap has to pass a shaky realization Rs .

Therefore the bounds of local self-intersection free realizations are
given by R− located on right pyramid over a regular (n− 1)-gon or
n-gon and the shaky realization Rs .

Hence, only these intervals can contain feasible candidates for a
global self-intersection free snapping between two realizations.
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3b. Continuation of Example 4

c−

c+

1

10

H2
s

H1
s
H5,1
−

H5,1
+

H6
−

H6
+

H5,2
−

H5,2
+

R1
s

cs ≈ 0.192
p ≈ 0.81

R5,1
−

c− =
√

5−1
4

p ≈ 0.82

R2
s

cs ≈ −0.834
p ≈ 0.773

R5,1
+

c+ ≈ 0.065
p ≈ 0.82
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3b. Continuation of Example 4

c−

c+

1

10

H2
s

H1
s
H5,1
−

H5,1
+

H6
−

H6
+

H5,2
−

H5,2
+

R5,2
−

c− =
√

5−1
4

p ≈ 0.966

R6
−

c− = 1
2

p ≈ 0.905

R5,2
+

c+ ≈ −0.858
p ≈ 0.966

R6
+

c+ ≈ −0.249
p ≈ 0.905
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4. Orthogonal cross sections

We compute the cross sectional area A of a rea-
lization R, which is free of self-intersections.

Due to the kinematic construction we can re-
strict ourselves to cross sections, which intersect
the line-segment VnVn+1. Then the intersection
polygon consists of:

Vn

Vn+1

E1 := VnVn+1 ∩ ε, E2 := V1Vn+1 ∩ ε, E3 := Vn+1V2 ∩ ε,
E4 := V2Vn+2 ∩ ε, . . . E2n−1 := V2n−1Vn ∩ ε, E2n := V2V2n ∩ ε

where ε denotes the cross sectional plane. Then we get A by:

A := 1
2 | det(E1,E2)+det(E2,E3)+. . . det(E2n−1,E2n)+det(E2n,E1)|
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4. Orthogonal cross sections

Theorem 2.
For any realization R the expression A/h2 is constant; i.e. it does
not depend on the cut height h (distance of ε to the cone apex).

Proof: This theorem was proven algebraically for n = 3, . . . , 6.

This result holds for any realization but only for self-intersection
free ones a geometric interpretation for A as cross sectional area is
available. In this case the volume is hA/3.

Remark 6: For a self-intersection free realization of a triangulated
cylinder based on a helical arrangement it was proven by Wittenburg
[12] (for n = 3, . . . , 6) that the area of the cross section (orthogonal
to the cylinder axis) does not depend on the cut height.
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4. Continuation of Example 3

We consider the two self-intersection free realizations R1
− and R1

+.

We cut both realizations at the height h = −0.45 and consider the
conical structures above.

Both base polygons are visualized and their corresponding areas
equals A− ≈ 0.073 and A+ ≈ 0.051, respectively.

R1
−

E1

R1
+

E1

E1

E1

R1
− ∩ ε

R1
+ ∩ ε
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5. Snappability computation

We study the snap between two realizations R+ and R− on the
same cone, as these structures can change the cross-sectional area
and volume while their conical shape is preserved.

Assumption: As in the study [2] by Guest and Pellegrino on the
analogue construction for the cylindrical case, we assume that the
folding process is uniform; i.e. the vertices remain on a spiral curve
during the deformation.

The snappability index [8], which measures the snapping capability
of the structure, is based on the following property:
The snap between two realizations R+ and R− has to pass a shaky
configuration Rs at the maximum state of deformation with respect
to the total elastic strain energy. The snappability ς equals the total
elastic strain energy density of Rs .
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5. Snappability computation
By using results for geometric series we can compute the snappability
of these infinite structures in two ways:

1. Rough computation: Rs is assumed to be on the same cone.
2. Improved computation: No assumption on Rs

Continuation of Example 4:
We consider the set of global self-intersection free snapping realiza-
tions, i.e. curve segment of h bounded by H5,1

− and H1
s .

c−

c+

1

10

H2
s

H1
s
H5,1
−

H5,1
+

H6
−

H6
+

H5,2
−

H5,2
+

0.2 c− 0.3

2
104

0

ς

1
103

0.2 c− 0.3

λs

30◦

29.5◦
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6. Open problems

• Geometric proofs of Theorems 1 and 2 for all n.
• Geometric characterization of shaky configurations.
• Existence of three self-intersection free realizations on

different cones?
• Conjecture: There are at most two realizations on the same

cone.
• Generalization to polyhedral cone surfaces with quadrilateral

faces in analogy to cylinders formed from Kokotsakis’ flexible
tessellations [10].
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