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In this paper we determine all non-trivial self-motions of TSSM manipulators with two parallel rotary axes
which equals the determination of all flexible octahedra where one vertex is an ideal point. This study also closes
the classification of these motions for the whole set of parallel manipulators of TSSM type. Our approach is
based on Kokotsakis meshes and the reducible compositions of spherical coupler motions with a spherical
coupler component.
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I. INTRODUCTION

A parallel manipulator of TSSM type (Triangular Symmet-
ric Simplified Manipulator) consists of a platform, which is
connected via three Spherical-Prismatical-Rotational (SPR)
legsl i with the base (see FIG. 1), where the axesr i (i = 1,2,3)
of the rotational joints are coplanar.

In general, the manipulator is rigid if all three leg lengths
are fixed, but in some special cases, the platform can even
perform a continuous motion. Such motions, which also yield
solutions to the famous Borel-Bricard problem (cf. HUSTY

[1]), are called self-motions. As we can replace each SPR leg
l i by two SPS legspi andqi (as shown in FIG. 1 fori = 1)
the determination of TSSM self-motions can be traced back
to those of planar 6-3 parallel manipulators of Stewart Gough
type (SG type).

Therefore TSSM self-motions must be contained in the sin-
gularity loci of the 6-3 manipulators, which have been ana-
lyzed in previous works [2–6]. Hence, the geometric inter-
pretation of the singularities of a 6-3 manipulator must also
hold for each pose of its self-motion. One possible geomet-
ric characterization was given in [5] and reads as follows: A
singular configuration of a 6-3 manipulator occurs when the
moving platform and three planes, each created by a pair of
intersecting legs, intersect in at least one point.

In spite of all the work done on singularities of these ma-
nipulators a complete classification of all TSSM designs with
self-motions is missing until now. The presented paper closes
this gap, where we distinguish four subcases of TSSM manip-
ulators in order to classify their self-motions:

(1) TSSM manipulator with intersecting axes: In this case
the corresponding planar 6-3 SG platform can easily be trans-
formed by so-called∆-transforms (cf. [7]) into an octahedral
manipulator by choosing the base anchor points as the inter-
section points of the axesr i . Therefore TSSM manipulators
with non-trivial self-motions correspond to the three types of
Bricard’s flexible octahedra:

type 1 All three pairs of opposite vertices are symmetric with
respect to a common line.

∗Electronic address:nawratil@geometrie.tuwien.ac.at

R

P3

P2
P1

L

r2

r3

r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1

l3 l2

g

p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1
l1l1l1l1l1l1l1l1l1l1l1l1l1l1l1l1l1

q1q1q1q1q1q1q1q1q1q1q1q1q1q1q1q1q1

FIG. 1: TSSM manipulator with parallel rotary axesr1, r2. More-
over, the substitution ofl1 by p1 andq1 is illustrated.

type 2 Two pairs of opposite vertices are symmetric with re-
spect to a common plane which passes through the re-
maining two vertices.

type 3 For a detailed discussion of this type we refer to [8].
We only want to mention that these flexible octahedra
possess two flat poses.

These are all flexible octahedra as long as we assume that no
two faces coincide permanently during the flex. Without this
assumption we get two more cases (cf. STACHEL [9]) with
so-called trivial self-motions, which are also known asbut-
terfly motionandspherical four-bar motion, respectively (cf.
KARGER [10]).

But TSSM manipulators can also have configurations
which are not considered in the theory of flexible octahedra,
as one can generate poses (by changing the leg lengths) where
faces degenerate into lines. Then at least one platform anchor
point Pi has to be located on the rotary axisr i . As a conse-
quence, the self-motion can only be a spherical motion with
centerPi. It can easily be seen, that this can only yield special
cases of thebutterfly motionandspherical four-bar motion,
respectively.

Finally, one also has to consider the TSSM manipulator
with 3 collinear platform anchor points. In this case we triv-
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ially get an architectural singular manipulator (cf. [11, 12]).

(2) TSSM manipulators with 3 parallel axes: For TSSM
manipulators with 3 parallel axes (which can also coincide)
the problem reduces to a planar one, as these manipula-
tors possess a cylindrical singularity surface (cf. NAWRATIL

[13]). Therefore the self-motions correspond to those of the
3-dof Revolute-Prismatic-Revolute manipulator (with three
collinear base anchor points) which are well known.

(3) TSSM manipulators with 2 coinciding axes:The deter-
mination of all self-motions of TSSM manipulators with two
coinciding axesr := r1 = r2 can be reduced to the following
geometric problem: If we disconnect the third leg from the
platform, the anchor pointP3 describes a so-called fourth or-
der cyclide of revolutionΦ. This surface is generated by the
rotation of the circleRaboutr, whereR is the path ofP3 during
its rotation aboutg := [P1P2] (see FIG. 1). Now there exists a
self-motion if the circleL (or a segment of it) is located onΦ,
whereL is generated by the end point of the disconnected leg
during the rotation aboutr3. Therefore the problem reduces to
the determination of all circle sections onΦ. In the following
we sum up the results of this well studied geometric problem
(e.g. KRAMES [14]):

a. If g andr are parallel thenΦ is a part of a plane. If they
intersect thenΦ is a part of a sphere (or a whole sphere). In
these cases the determination of circles (or circle segments)
is trivial.

b. g andr are skew andR is located in a meridian plane: In
this caseΦ is a torus. It is well known that each torus has
two one-parametric sets of circles, namely one generated
by R and the other set is given by the meridian circles of
the torus. Only in the case of a ring torus we get two fur-
ther sets additionally, namely those generated by the well
knownVillarceau circles.

c. g andr are skew andR is not located in a meridian plane:
If we reflect the generating circleR on a meridian plane
we get the circleR. ThereforeΦ has at least three one-
parametric sets of circles, namely the meridian set and the
sets generated byR andR, respectively. Only in the case
whereR and r have no point in common, there exist two
further one-parametric sets of circles which can be con-
structed similarly to theVillarceau circlesby intersecting
Φ with a double tangent plane (which is not orthogonal to
r).

(4) TSSM manipulators with 2 parallel axes: Similar con-
siderations as in item (1) yield that the non-trivial self-motions
of TSSM manipulators with two parallel rotary axes corre-
spond with flexible octahedra where one vertex is an ideal
point.

Therefore the determination of all flexible octahedra with
one vertex in the plane at infinity is the goal of this article.As
a consequence, this work can be regarded as the continuation
of [15], where a conjecture about the solution of this problem
was formulated and which is proved within this article. In
[15] we conjectured that the only flexible octahedra with one
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FIG. 2: AKokotsakis meshis a polyhedral structure consisting of an-
sided central polygonΣ0 ∈E3 surrounded by a belt of polygons in the
following way: Each sideIi0 of Σ0 is shared by an adjacent polygon
Σi , and the relative motion between cyclically consecutive neighbor
polygons is a spherical coupler motion. Here theKokotsakis mesh
for n = 3 is given, which determines an octahedron.

vertex in the plane at infinity are Bricard octahedra of type 2
and type 3 (with one vertex in the plane at infinity).

It is not obvious that these flexible octahedra are the only
ones where one vertex is an ideal point, as there could even ex-
ist flexible octahedra which do not have flexible counterparts
with finite vertices. For example, it was shown by the author
in [16] that there exist two types of flexible octahedra with
two opposite vertices being ideal points, which do not possess
flexible counterparts with six finite vertices. Therefore this ar-
ticle can also be seen as the first part of a classification of all
flexible octahedra in the projective extension of the Euclidean
3-spaceE3 which is completed in [16].

Moreover, it should be mentioned that we denote the pro-
jective extension ofE3 by E⋆ in the remaining paper.

A. Related work and overview

In 1897 all types of flexible octahedra inE3 were firstly
classified by BRICARD [17]. In 1978 CONNELLY [18]
sketched a further algebraic method for the determination of
all flexible octahedra inE3.

STACHEL [9] presented a new proof which uses mainly
arguments from projective geometry beside the converse of
Ivory’s Theorem, which limits this approach also to flexible
octahedra inE3. But STACHEL [8] also gave the construction
of flexible octahedra of type 3 with one vertex at infinity.

KOKOTSAKIS [19] discussed the flexible octahedra as spe-
cial cases of a sort of meshes named after him (see FIG. 2).
His very short and elegant proof forBricard octahedrais also
valid for type 3 inE⋆ if no opposite vertices are ideal points.
Up to recent, to the author’s best knowledge this fact was not
recognized before, not even by KOKOTSAKIS [19].

Moreover, there are no proofs for Bricard’s famous state-
ment known to the author which enclose the projective exten-
sion of E3 although these flexible structures attracted many
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prominent mathematicians; e.g. BENNETT [20], BLASCHKE

[21], BOTTEMA [22], LEBESGUE [23] and WUNDERLICH

[24].
We tackle this problem by considering an octahedron as a

Kokotsakis mesh(see FIG. 2) with a 3-sided central polygon
Σ0. In the next step we investigate the spherical image of such
Kokotsakis meshes; i.e. we translate each face of the mesh
through the pointM and intersect this translated face with the
sphereS2 (with radius 1) centered inM. Then the relative
motionΣi/Σi+1 (mod 3) appears as a spherical coupler motion
(cf. section II). Based on reducible compositions of spherical
coupler motions with spherical coupler components (cf. [25])
which meet the so-called closure condition (cf. section III)
the set of flexible octahedra with one vertex in the plane at
infinity can be classified into three types (type A, B, C). This
classification (cf. Lemma 1) as well as the discussion of type
A and type C is given in section IV. After some additional
preparatory work done in section V, we solve the missing type
B in section VI.

II. NOTATION AND RELATED RESULTS

As already mentioned, our approach is based on a kinematic
analysis ofKokotsakis meshes(see FIG. 2) as composition of
spherical coupler motions given by STACHEL [26], which is
repeated in this section.

A. Transmission by a spherical four-bar mechanism

We start with the analysis of the first spherical four-bar link-
ageC (cf. [27, 28]) with the frame linkI10I20 and the coupler
A1B1 according to STACHEL [26] (see FIG. 2 and FIG. 3).

We setα1 := I10A1 for the spherical length of the driving
arm, β1 := I20B1 for the output arm,γ1 := A1B1 and δ1 :=
I10I20. We may suppose 0< α1,β1,γ1,δ1 < π .

The coupler motion remains unchanged whenA1 is re-
placed by its antipodeA1 and at the same timeα1 andγ1 are
substituted byπ−α1 andπ−γ1, respectively. The same holds
for the other vertices. WhenI10 is replaced by its antipodeI10,
then also the sense of orientation changes, when the rotation
of the driving barI10A1 is inspected from outside ofS2 either
at I10 or atI10.

We use a cartesian coordinate frame withI10 on the positive
x-axis andI10I20 in the xy-plane such thatI20 has a positive
y-coordinate (see FIG. 3). The input angleτ1 is measured be-
tweenI10I20 and the driving armI10A1 in counter-clock orien-
tation. The output angleτ2 = <) I10I20B1 is the oriented exte-
rior angle at vertexI20. As given in [26] the constant spherical
lengthγ1 of the coupler implies the following equation

c22t
2
1t2

2 +c20t
2
1 +c02t

2
2 +c11t1t2 +c00 = 0 (1)

with ti = tan(τi/2), c11 = 4sα1sβ1 6= 0,

c00 = N1−K1 +L1 +M1, c02 = N1 +K1 +L1−M1,

c20 = N1−K1−L1−M1, c22 = N1 +K1−L1 +M1,
(2)
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FIG. 3: Composition of the two spherical four-barsI10A1B1I20 and
I20A2B2I30 with spherical side lengthsαi ,βi ,γi ,δi , i = 1,2 (Courtesy
of H. Stachel).

and

K1 = cα1sβ1sδ1 , M1 = sα1 sβ1cδ1 ,
L1 = sα1 cβ1sδ1 , N1 = cα1 cβ1cδ1−cγ1 .

(3)

In this equation s and c are abbreviations for the sine and co-
sine function, respectively, and the spherical lengthsα1, β1
andδ1 are signed.

Note that the biquadratic equation Eq. (1) describes a2-2-
correspondencebetween pointsA1 on the circlea1 = (I10;α1)
andB1 on b1 = (I20;β1) (see FIG. 3). Moreover, it should be
said that this 2-2-correspondence only depends on the ratioof
the coefficientsc22 : · · · : c00 (cf. Lemma 1 of NAWRATIL AND

STACHEL [29]).
In this section we only summed up the information which

is necessary to understand the remaining part of the paper. A
more detailed explanation of this basic considerations canbe
found in [26].

B. Composition of two spherical four-bar linkages

Now we use the output angleτ2 of the first four-bar linkage
C as input angle of a second four-bar linkageD with vertices
I20A2B2I30 and consecutive spherical side lengthsα2, γ2, β2
andδ2 (FIG. 3). The two frame links are assumed in aligned
position. In the case<) I10I20I30 = π the spherical lengthδ2
is positive, otherwise negative. Analogously, a negativeα2
expresses the fact that the aligned barsI20B1 and I20A2 are
pointing to opposite sides. Changing the sign ofβ2 means
replacing the output angleτ3 by τ3 − π . The sign ofγ2 has
no influence on the transmission and therefore we can assume
without loss of generality (w.l.o.g.) thatγ2 > 0 holds.
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Due to (1) the transmission between the anglesτ1, τ2 and
the output angleτ3 of the second four-bar witht3 := tan(τ3/2)
can be expressed by the two biquadratic equations

c22t2
1t2

2 +c20t2
1 +c02t2

2 +c11t1t2 +c00 = 0,

d22t2
2t2

3 +d20t2
2 +d02t2

3 +d11t2t3 +d00 = 0.
(4)

Thedik are defined by equations analogue to Eqs. (2) and (3).
After this preparatory work we can go in medias res:

Clearly, if a Kokotsakis meshfor n = 3 (⇔ octahedron) is
flexible then also its spherical image has to be flexible. A
necessary condition for that is that the motion transmission
from Σ1 to Σ3 via Σ2 (⇔ composition of two spherical four-
bar linkages) can also be produced by a single spherical four-
bar mechanism (⇔ the motion transmission fromΣ1 to Σ3 via
V3, see FIG. 2). These are so-called reducible compositions
of spherical four-bar linkages with a spherical coupler com-
ponent, which were already determined by the author in [25]
and can be summarized as follows (cf. Corollary 1 of [25]):

Theorem 1. If a reducible composition of two spherical four-
bar linkages with a spherical coupler component is given,
then it is one of the following cases or a special case of them,
respectively:

(a) One spherical coupler is a spherical isogram which hap-
pens in one of the following four cases:

c00 = c22 = 0, d00 = d22 = 0, c20 = c02 = 0, d20 = d02 = 0,

(b) The spherical couplers form a spherical focal mechanism,
which is analytically given for F∈ R\ {0} by:

c00c20 = Fd00d02, c22c02 = Fd22d20,

c2
11−4(c00c22+c20c02) = F[d2

11−4(d00d22+d20d02)],
(5)

(c) One of the following two cases hold:

c22 = c02 = d00 = d02 = 0, d22 = d20 = c00 = c20 = 0,

(d) One of the following two cases hold for A∈ R \ {0} and
B∈ R:

• c20 = Ad02, c22 = Ad22, c02 = Bd22, c00 = Bd02,

d00 = d20 = 0, d02d22 6= 0,

• d02 = Ac20, d22 = Ac22, d20 = Bc22, d00 = Bc20,

c00 = c02 = 0, c20c22 6= 0.

C. Geometric aspects of Theorem 1

In the following we point out the already known geometric
aspects of Theorem 1. For a more detailed geometric explana-
tion of these cases please see the corresponding publications
[19, 25, 26, 29].

Spherical isogram: The geometric difference between the
two spherical isograms given byc00 = c22 = 0 andc20 = c02 =
0, respectively, is as follows:

(i) It was already shown in [26] thatc00 = c22 = 0 is equiv-
alent with the conditionsβ1 = α1 andδ1 = γ1 which de-
termine a spherical isogram.

(ii) In contrary,c20 = c02 = 0 is equivalent with the condi-
tionsβ1 = π −α1 andδ1 = π − γ1 (cf. [25]). Note that
the couplers of both isograms have the same movement
because we get item (ii) by replacing eitherI10 or I20 of
item (i) by its antipode.

Moreover, it should be noted that the cosines of opposite an-
gles in the spherical isograms (of both types) are equal (cf.§8
of [19]).

Spherical focal mechanism:Here also two cases can be dis-
tinguished:

(i) In [29] it was shown that the characterization of the
spherical focal mechanism given in Theorem 1 is equiv-
alent with the condition:

sα1 sγ1 : sβ1sδ1 : (cα1 cγ1−cβ1cδ1) =

sβ2sγ2 : sα2 sδ2 : (cα2 cδ2−cβ2cγ2).
(6)

Moreover, it should be noted that in this case cχ1 =
−cψ2 holds withχ1 = <) I10A1B1 andψ2 = <) I30B2A2.

(ii) But in the algebraic characterization of the sphericalfo-
cal mechanism (5) also a second possibility is hidden,
namely:

sα1 sγ1 : sβ1sδ1 : (cα1 cγ1−cβ1cδ1) =

sβ2sγ2 : sα2 sδ2 : (cβ2cγ2−cα2cδ2).
(7)

In this case cχ1 = cψ2 holds. Note that we get this case
from the first one by replacing eitherI30 or I10 by its an-
tipode. Moreover, it should be mentioned that a replace-
ment ofI20 by its antipode would not have any effect on
the given relation (6) of the first case.

Remark 1.It should be noted that in item (c) and item (d) of
Theorem 1 both couplers are so-called orthogonal spherical
four-bar mechanisms, as the diagonals of the spherical quad-
rangles are orthogonal (cf. [26]). ⋄

But not all cases where the relation between the input angle
τ1 of the armI10A1 and the output angleτ3 of I30B2 can be
produced by a single spherical four-bar linkageR (= spheri-
cal quadrangleI10Ir0B3A3), yield a flexible octahedron, as the
resulting configuration of the three spherical four-bar linkages
C , D , R has not to be closed; i.e.Ir0 6= I30.

Therefore theKokotsakis meshfor n = 3 is flexible if and
only if the transmission of the composition of the two spher-
ical four-bar linkagesC andD equals the one of the single
spherical four-bar linkageR which meets the so-called clo-
sure conditionIr0 = I30.

If we denote the edge lengths of the corresponding spheri-
cal quadrangleI10Ir0B3A3 of R by α3 := I10A3, β3 := Ir0B3,
γ3 := A3B3 andδ3 := I10Ir0, we can rewrite the closure con-
dition in terms of oriented enclosed anglesδi of the central
triangle according to FIG. 4 asδ3 = δ1 + δ2. Therefore all
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FIG. 4: Oriented sides of the central triangleΣ0 with the oriented
enclosed anglesδi .

reducible compositions with a spherical coupler component
given in Theorem 1 fulfillingδ3 = δ1+δ2 imply a flexible oc-
tahedron. This result is the base for the understanding of the
next section.

III. PREPARATORY WORK

In order that we can also use the results produced in this
section for [16], where the determination of all flexible octa-
hedra inE⋆ is completed, we generalize our approach in the
way that we study a superset of the set of all flexible octahedra
with one vertex on the plane at infinity. This superset contains
all flexible octahedra where no pair of opposite vertices are
ideal points. Such octahedra possess at least one face where
all three vertices are inE3. We can assume w.l.o.g. that this
face corresponds toΣ0 in FIG. 2.

In the following two subsections we show that the reducible
composition of item (c) and item (d) of Theorem 1 cannot ful-
fill the closure conditionδ3 = δ1 + δ2 without any contradic-
tion:

ad Theorem 1 (c)

Here we only discuss the casec22 = c02 = d00 = d02 = 0.
For the other case of item (c) we refer to analogy.

The case under consideration stem from the excluded cases
of the symmetric reducible composition (cf. section 4 of [25]).
In this case the transmission of the spherical four-bar linkage
R is given by

r ′22t
2
1t2

3 + r ′20t
2
1 + r ′02t

2
3 + r ′11t1t3 + r ′00 = 0 (8)

with

r ′00 = −c00d20, r ′20 = −c20d20,

r ′02 = −c00d22, r ′22 = −c20d22, r ′11 = c11d11.
(9)

If we substitute (3) into (2) the conditionsc22 = c02 = 0 imply:

cδ1 := sδ1cβ1/sβ1, cγ1 := sδ1cα1/sβ1. (10)

Analogous considerations ford00 = d02 = 0 yield:

cδ2 := sδ2cα2/sα2, cγ2 := sδ2cβ2/sα2. (11)

Moreover, we also express the remainingci j anddi j in depen-
dency of the anglesαi ,βi ,γi ,δi with i = 1,2 and substitute the
obtained expressions into Eq. (8). As Eq. (8) gives the trans-
mission of a spherical four-bar mechanism the coefficientsr ′i j
of this equation must be proportional tor11 = 4sα3 sβ3 6= 0
and

r00 = N3−K3 +L3 +M3, r02 = N3 +K3 +L3−M3,

r20 = N3−K3−L3−M3, r22 = N3 +K3−L3+M3,
(12)

with K3,L3,M3,N3 according to Eq. (3) forα3,β3,γ3,δ3.
A flipped over spherical deltoid (cf. Remark 2) is the only

spherical four-bar mechanism where an input angle or an out-
put angle remains constant (0◦ or 180◦) under the motion.
We are not interested in such assembly modes of spherical
deltoids, as they correspond to flexible octahedra where at
least two pairs of neighboring faces coincide (⇒ trivial self-
motion, cf. section I). Therefore we can assume that theti ’s
are not constant and hence the comparison of coefficients im-
ply 5 equationseqi j , which are defined as the numerator of
r i j − λ r ′i j with λ ∈ R \ {0}. Beside these 5 equations also
δ3 = δ1 + δ2 has to hold. Therefore the addition theorems for
the sine and cosine function imply:

sδ3 := sδ1cδ2 +cδ1sδ2, cδ3 := cδ1cδ2−sδ1sδ2. (13)

After expressingλ from eq11 = 0 we compute the following
linear combination

eq22−eq20−eq02+eq00 = −4sα1sα2sα3sβ1sβ2sβ3sδ1sδ2

which cannot vanish without contradiction (w.c.).

ad Theorem 1 (d)

Here we only discuss the casec20 = Ad02, c22 = Ad22, c02 =
Bd22, c00 = Bd02, d00 = d20 = 0, d02d22 6= 0. For the second
possibility we refer again to analogy.

This case is the only special asymmetric case (cf. Theorem
6 of [25]). The transmission of the resulting spherical four-bar
linkageR is given by

r ′20t
2
1 + r ′11t1t3 + r ′00 = 0 (14)

with

r ′00 = −d11B, r ′20 = −d11A, r ′11 = c11. (15)

In this case the conditionsd00 = d20 = 0 imply:

cδ2 := −sδ2cβ2/sβ2, cγ2 := −sδ2cα2/sβ2. (16)

Moreover, we also expressd22, d02 and d11 in dependency
of the anglesα2,β2,γ2,δ2 and substitute the obtained expres-
sions into Eq. (14). As Eq. (14) gives the transmission of a
spherical four-bar mechanism the coefficientsr ′i j (r ′22 = r ′02 =
0) of this equation have to be proportional to ther i j of Eq.
(12). Analogous considerations as in the above discussed
case (c) yield again 5 equationseqi j which are defined as the
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numerator ofr i j − λ r ′i j with λ ∈ R \ {0}. Moreover, again
δ3 = δ1 + δ2 must hold which yields Eq. (13). Fromeq11 we
can expressλ w.l.o.g.. Then we compute the following two
linear combinations

eq22+eq20−eq02−eq00, eq22−eq20+eq02−eq00, (17)

which are linear inA andB. Moreover, these two equations
can be solved forA andB w.l.o.g.. Then we are left with the
equationseq22+eq20 = 0 andeq22−eq20 = 0, where we can
solveeq22+eq20 = 0 for cγ3 w.l.o.g.. Now we distinguish the
following cases:

1. sδ1cβ2−cδ1sβ2 6= 0: Under this assumption we can solve
eq22−eq20 = 0 for cβ3 w.l.o.g.. Now we only have to solve
the four remaining equations

ex20 := c20−Ad02, ex22 := c22−Ad22,

ex02 := c02−Bd22, ex00 := c00−Bd02,
(18)

with ci j in dependency of the anglesα1,β1,γ1,δ1 according
to Eqs. (3) and (2). Then we compute the following four
linear combinations:

ν1 := ex00−ex20, ν2 := ex00+ex20,

µ1 := ex22−ex02, µ2 := ex22+ex02.
(19)

As sα2cβ2 + cα2sβ2 = 0 impliesd02 = 0, a contradiction,
we can assume sα2cβ2 + cα2sβ2 6= 0. Therefore we can
compute cα3 from ν2 = 0 w.l.o.g..

a. cβ2 6= 0: Now we can express cγ1 from µ2 = 0 w.l.o.g..
Then we apply the half angle substitution

sδ1 := 2d1/(1+d2
1), cδ1 := (1−d2

1)/(1+d2
1),

and eliminate the parameterd1 from the linear combi-
nationsν1 + µ1 andν1 − µ1 with the resultant method.
The resulting expression can only vanish w.c. for

cβ1sα2sδ 2
2 cβ 2

2 −cβ1sα2sβ 2
2 +sδ 2

2sβ1sβ 2
2 cα2 = 0.

Under consideration of sδ 2
2 + cδ 2

2 = 1 this yields
sβ1cα2 − sα2cβ1 = 0. This condition impliesα2 = β1
or α2 = β1 + π . In both cases the back-substitution
into ν1 + µ1 = 0 andν1− µ1 = 0, respectively, implies
sδ1cβ2−cδ1sβ2 = 0, a contradiction.

b. cβ2 = 0: Now µ2 = 0 can only vanish w.c. for cα1 = 0.
Thenν1 + µ1 = 0 cannot vanish w.c..

2. sδ1cβ2−cδ1sβ2 = 0: W.l.o.g. we can express cβ2 from this
condition. Theneq22−eq20 = 0 cannot vanish w.c..

ad Theorem 1 (b)

It was already remarked in [29] that the spherical focal
mechanism (i) cannot imply a solution to our problem. The
geometric reasoning for this is hidden in §9 of [19] and reads

as follows: If one computes in general the relation betweenχ1
andψ2 one will end up with Eq. (11) of [19]:

(cα1cγ1−cδ1cβ1)sδ2sα2− (cβ2cγ2−cδ2cα2)sδ1sβ1

+sα1sγ1sδ2sα2cχ1−sδ1sβ1sγ2sβ2cψ2 = 0,
(20)

and Eq. (13) of [19]:

(cα1cγ1−cδ1cβ1)sδ2sα2 +(cβ2cγ2−cδ2cα2)sδ1sβ1

+sα1sγ1sδ2sα2cχ1 +sδ1sβ1sγ2sβ2cψ2 = 0,
(21)

respectively, depending on the circumstance if the armsI10
and I30 lie on the same side or different sides, respectively,
with respect to the line[V1,V2] (see FIG. 2).

If we plug the relations of Eq. (6) under consideration
of cχ1 = −cψ2 into Eq. (20) we will see thatχ1 and ψ2
must be constant. This already yields a contradiction as the
corresponding octahedron is rigid. On the other hand, Eq.
(21) is fulfilled identically for the relations of Eq. (6) and
cχ1 = −cψ2. But this also yields a contradiction for flexi-
ble octahedra as any two sides of the central triangle always
lie on the same side with respect to the third remaining side.

For the spherical focal mechanism of type (ii) Eq. (20) is
fulfilled identically and therefore it is still a possible solution
of our problem.

ad Theorem 1 (a)

It should be noted that the composition of two spherical
isograms of any type also forms a (special) spherical focal
mechanism as Eq. (5) holds. Moreover, we know that this is
a reducible composition with a spherical coupler component.
As this spherical four-bar mechanism has to have two folded
positions, it can only be a spherical isogram.

Remark 2.Note that beside the spherical isogram the follow-
ing spherical four-bars also have two folded positions:

α3 = γ3 ∧ β3 = δ3, α3 + γ3 = π ∧ β3 + δ3 = π ,

α3 = δ3 ∧ β3 = γ3, α3 + δ3 = π ∧ β3 + γ3 = π .
(22)

It can easily be seen, that these mechanisms which are sum-
marized under the notation ofspherical deltoids, do not fit
with both folded positions of the spherical focal mechanism
composed of two spherical isograms.

Moreover, it should be noted that the cosines of one pair of
opposite angles in the spherical deltoid are equal. ⋄

IV. CLASSIFICATION OF FLEXIBLE OCTAHEDRA

Now we emphasis on the combinatorial aspect of this prob-
lem because due to the last four subsections a reducible com-
position with a spherical coupler component can only be of
isogramtype orfocal type (ii). Together with Theorem 1 this
yields the following lemma:
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Lemma 1. If an octahedron in the projective extension of E3

is flexible where no pair of opposite vertices are ideal points,
then its spherical image is a composition of spherical four-bar
linkagesC , D andR of the following type:

A. C andD , C andR as well asD andR form a spherical
focal mechanism of type (ii),

B. C andD form a spherical focal mechanism of type (ii) and
R is a spherical isogram,

C. C , D (⇒ andR) are spherical isograms.

Remark 3.Note that type C can be seen as special case of type
A and type B, respectively, namely if the involved spherical
focal mechanisms of type (ii) are composed of two spherical
isograms (cf. section III). From this point of view there only
exist two classes of flexible octahedra whereby their common
elements are the octahedra of type C. ⋄

The fact that exactly the three types of Lemma 1 yield those
of BRICARD [17] (A yields type 1, B yields type 2 and C
yields type 3) if all vertices are inE3 was already proved by
KOKOTSAKIS [19]. His proof that item A yields type 1 and
item B yields type 2 was based on a theorem (Satzüber zwei
Vierkante) given in §12 of [19] which is limited toE3. More-
over, he also argued with the help of edge lengths relations,
which can not be done just like that if one vertex is an ideal
point.

A. Flexible octahedra of type C with one vertex at infinity

In contrast to type A and type B, KOKOTSAKIS showed
without any limiting argumentation with respect toE⋆ that
item C of Lemma 1 corresponds with Bricard flexible octahe-
dra of type 3. As already mentioned this fact was not recog-
nized before, not even by KOKOTSAKIS.

Moreover, STACHEL [8] also proved the existence of type 3
octahedra with one vertex on the plane at infinity. In this arti-
cle also the construction of these octahedra is given. Therefore
the following theorem holds:

Theorem 2. There exist flexible octahedra of type C with one
vertex at infinity. These flexible octahedra are nothing else
than Bricard’s flexible octahedra of type 3 where one vertex is
an ideal point.

B. Flexible octahedra of type A with one vertex at infinity

W.l.o.g. we can assume thatU is the ideal point and that its
opposite vertex is denoted byV. Now the spherical coupler at
any of the five vertices∈ E3 forms with the spherical coupler
of every neighboring vertex∈E3 a spherical focal mechanism
of type (ii). This already implies that the cosines of opposite
dihedral angles of the octahedron are equal.

Now we assume that there exists a configuration where only
one of these angles equals zero orπ . Then we get a 3-sided
prism throughU and a 3-sided pyramid with apexV. The

τ1 τ2

a b

d

c

FIG. 5: Planar four-bar mechanism with driving arma, follower b,
couplerc and based.

sum of the dihedral angles of the 3-sided prism equals always
π . In contrast, the sum of the dihedral angles of the 3-sided
pyramid is always greater thanπ if V ∈ E3. Therefore this
already implies the contradiction.

Now we assume that there do not exist a configuration
where only one of these dihedral angles equals zero orπ . It
can easily be seen that this can only be the case if the spher-
ical image of the faces throughV is a spherical isogram (⇒
orthogonal cross section of the prism throughU is a parallel-
ogram or antiparallelogram). As this already yields a type B
octahedron (cf. section VI) the following theorem is proven:

Theorem 3. In the projective extension of E3 there do not
exist flexible octahedra of type A where only one vertex is an
ideal point.

V. CENTRAL TRIANGLES WITH ONE IDEAL POINT

For the discussion of flexible octahedra of type B we need
some additional considerations, which are prepared in this
section.

Given is an octahedron where one vertex is an ideal point
and the remaining five vertices are inE3. Now we consider
one of the four faces through the ideal point as central triangle
Σ0. Moreover, these four faces built a 4-sided prism where the
motion transmission between opposite faces equals the one
of the corresponding planar four-bar mechanism (orthogonal
cross section of the prism). It can easily be seen that the input
angleτ1 and the output angleτ2 of a planar four-bar linkage
(see FIG. 5) are related by:

p22t
2
1t2

2 + p20t
2
1 + p02t

2
2 + p11t1t2 + p00 = 0 (23)

with ti := tan(τi/2), p11 = −8aband

p22 = (a−b+c+d)(a−b−c+d),

p20 = (a+b+c+d)(a+b−c+d),

p02 = (a+b+c−d)(a+b−c−d),

p00 = (a−b+c−d)(a−b−c−d).

(24)

W.l.o.g. we can assumea,b,c,d > 0 which impliesp11 6= 0.
Therefore using the abbreviationspi j the formula of the 2-2-
correspondence of a planar four-bar mechanism equals that of
a spherical one (cf. Eq. (1)). Moreover, one only has to check
the technical detail that the factorW6 of [25] with

W6 = p4
11−8p2

11(p00p22+ p20p02)+16(p00p22− p20p02)
2
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is also different from zero for the planar four-bar mechanism
as for the spherical one. As we getW6 = 212a2b2c2d2 6= 0,
this already proves the following lemma (see also Corollary1
of NAWRATIL [25]):

Lemma 2. If a reducible composition of one planar and one
spherical four-bar linkage with a spherical coupler compo-
nent is given (cf. Eq. (4)), then it is one of the following cases
or a special case of them, respectively:

(a) One of the following four cases hold:

c00 = c22 = 0, d00 = d22 = 0, c20 = c02 = 0, d20 = d02 = 0,

(b) The following algebraic conditions hold for F∈ R\ {0}:

c00c20 = Fd00d02, c22c02 = Fd22d20,

c2
11−4(c00c22+c20c02) = F [d2

11−4(d00d22+d20d02)],

(c) One of the following two cases hold:

c22 = c02 = d00 = d02 = 0, d22 = d20 = c00 = c20 = 0,

(d) One of the following two cases hold for A∈ R \ {0} and
B∈ R:

• c20 = Ad02, c22 = Ad22, c02 = Bd22, c00 = Bd02,

d00 = d20 = 0, d02d22 6= 0,

• d02 = Ac20, d22 = Ac22, d20 = Bc22, d00 = Bc20,

c00 = c02 = 0, c20c22 6= 0.

Remark 4.Note that the projection onto the sphere of the
Kokotsakis meshwhere the center triangle has one point at
infinity can be done analogously to the general case (see last
paragraph of section I). Therefore the spherical image of the
prism is not a spherical four-bar mechanism but consists of
four great circles which intersect each other in one pair of an-
tipodal points. Moreover, the relative motion of the two great
circles which correspond with the input and output face of the
prism, respectively, is determined by Eq. (23). ⋄

For the following closer study of the items (a)–(d) of
Lemma 2 we can assume w.l.o.g. thatV1 denotes the ideal
point. Moreover, for the remainder of this article we use the
systematic notation of dihedral angles according to FIG. 6.

ad Lemma 2 (c)

The cased22 = d20 = c00 = c20 = 0 does not yield a solution
becausec00 = c20 = 0 cannot be fulfilled fora,b,c,d > 0 .

The other cased00 = d02 = c22 = c02 = 0 can be done anal-
ogously to the corresponding case of section III if one sub-
stitutes theci j ’s by the pi j ’s of Eq. (24). The conditions
c22 = c02 = 0 imply a = c and b = d. Therefore the cor-
responding planar four-bar mechanism is a deltoidal linkage
with cϕ1 = cψ1 (cf. FIG. 6).

Then we compute the five equationseqi j (cf. section III)
whereeq11 = 0 can be solved forλ w.l.o.g.. Then the linear

V1

V2

V3

V5

V6V4

ϕ1

χ1ψ3

κ3κ2

ϕ2ϕ3

κ1

ψ1χ3

χ2ψ2

FIG. 6: Schematic sketch of the octahedronV1, . . . ,V6. The dihedral
angles are denoted byϕi ,ψi ,χi ,κi with i = 1,2,3.

combinationeq22−eq20−eq02+eq00 can only vanish w.c. for
cα2 = cδ3sα2/sδ2. Noweq22−eq20+eq02−eq00 = 0 implies
cδ3 = cα3sδ3c/(sα3d). Moreover, fromeq22+eq20−eq02−
eq00 = 0 we get cβ2 = sδ3cβ3sβ2/(sδ2sβ3).

Then we compute the difference of the two necessary con-
ditions cδ 2

i +sδ 2
i −1 = 0 with i = 2,3. The resulting expres-

sion can only vanish w.c. for sδ2 = ±sδ3.

1. δ2 = δ3: In this case cβ 2
i + sβ 2

i − 1 = 0 with i = 2,3 can
only vanish forβ3 = β2 or β3 = β2 + π . Both conditions
imply that the opposite vertex ofV1 is also an ideal point.
As this contradicts our assumptions we are done.

2. δ2 = −δ3: Now the two arms can only be parallel ifδ2 and
δ3 are right angles. This implies that the anglesα2 andα3
also have to be orthogonal. At the very end of section VI
we show that this case also implies a contradiction.

Remark 5.As preparatory work for [16] we continue the
discussion of case 1 under consideration ofβ3 = β2 and
β3 = β2 + π , respectively. Then sα2

2 + cα2
2 − 1 = 0 and

sδ 2
2 +cδ 2

2 −1= 0 can only vanish for sα2 =±sδ2. Moreover,
sβ 2

2 + cβ 2
2 −1 = 0 and sγ2

2 + cγ2
2 −1 = 0 imply sβ2 = ±sγ2.

Therefore the spherical four-bar linkageD is a spherical del-
toid (cf. Remark 2) with cχ2 = cϕ3 (cf. FIG. 6). ⋄

ad Lemma 2 (d)

• c20 = Ad02, c22 = Ad22, c02 = Bd22, c00 = Bd02, d00 = d20 =
0, d02d22 6= 0: This case can again be done analogously to
the corresponding case of section III if one substitutes the
ci j ’s by thepi j ’s of Eq. (24).

We compute the five equationseqi j (cf. section III) where
eq11 = 0 can be solved forλ w.l.o.g.. Now we compute the
two linear combinations given in Eq. (17) which can again
be solved forA andB w.l.o.g.. We are left with the equations
eq22+eq20 = 0 andeq22−eq20 = 0 which can only vanish
w.c. for cβ3 = cδ3sβ3/sδ3 and cγ3 = sβ3cα3/sδ3.
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Now the four equations given in Eq. (17) remain. Again
we compute the four linear combinationsµi ,νi (i = 1,2) of
Eq. (19). Thenν1 + µ1 = 0 andν1− µ1 = 0 can only van-
ish w.c. for sβ2 = −sδ2cδ3cβ2 and sα2 = −cα2cδ3sδ2b/d.
Now it can easily be seen that the sum of the two necessary
conditions cδ 2

i +sδ 2
i −1= 0 for i = 2,3 cannot vanish w.c..

• d02 = Ac20, d22 = Ac22, d20 = Bc22, d00 = Bc20, c00 = c02 =
0,c20c22 6= 0: The conditionsc00 = c02 = 0 imply c= b and
a = d. Therefore the corresponding planar four-bar mecha-
nism is a deltoidal linkage, which already yields cϕ2 = cχ1
(cf. FIG. 6). Moreover, the remainingci j ’s are set to the
values of the correspondingpi j ’s of Eq. (24).

In this case (cf. [25]) the transmission of the resulting spher-
ical four-bar linkageR is given by

r ′02t
2
3 + r ′11t1t3 + r ′00 = 0 (25)

with

r ′00 = −c11B, r ′02 = −c11A, r ′11 = d11. (26)

As Eq. (25) gives the transmission of a spherical four-bar
mechanism the coefficientsr ′i j (r ′22 = r ′20 = 0) of this equa-
tion have to be proportional to ther i j of Eq. (12). There-
fore a comparison of coefficients imply the 5 equations
eqi j which are defined as the numerator ofr i j − λ r ′i j with
λ ∈ R\ {0}.

Fromeq11 = 0 we can expressλ w.l.o.g.. Now we compute
the two linear combinations given in Eq. (17) which can
again be solved forA andB w.l.o.g.. Theneq22−eq20 = 0
can only vanish w.c. for cα3 = −cδ3sα3/sδ3 and eq22 +
eq20 = 0 implies cγ3 = −cβ3sα3/sδ3.

Now we only have to solve the four remaining equations

ex20 := d20−Bc22, ex22 := d22−Ac22,

ex02 := d02−Ac20, ex00 := d00−Bc20,
(27)

with di j in dependency of the anglesα2,β2,γ2,δ2 according
to Eqs. (3) and (2). Then we compute the four linear com-
binations of Eq. (19). Nowµ1 + ν1 = 0 implies cδ3 = cδ2
andµ2 − ν2 = 0 yields cδ2 = −cα2sδ2b/(sα2d). Finally,
µ1−ν1 = 0 can be solved w.l.o.g. for cβ2 = cβ3sβ2/sβ3.

Then we compute the difference of the two necessary con-
ditions cδ 2

i + sδ 2
i − 1 = 0 with i = 2,3. The resulting ex-

pression can only vanish w.c. for sδ2 = ±sδ3.

1. δ2 = δ3: In this case cβ 2
i +sβ 2

i −1 = 0 with i = 2,3 can
only vanish if the opposite vertex ofV1 is also an ideal
point. As this contradicts our assumptions we are done.

2. δ2 = −δ3: Now the two arms can only be parallel ifδ2
andδ3 are right angles. This implies that the anglesα2
andα3 also have to be orthogonal. This is the same case
as the one given in item 2 of the last subsection, if one
interchanges the verticesV2 andV3.

Remark 6.Analogous considerations as in Remark 5 yield that
the spherical four-bar linkageR has to be a spherical deltoid

with cϕ3 = cψ3 (cf. FIG. 6), if the opposite vertex ofV1 is an
ideal point as well. Therefore this case is the same as the one
given in Remark 5, if one interchanges the verticesV2 andV3.

In the preprint version of this paper on which [16] is based,
a computational error yields for this case the wrong deltoidal
condition cϕ1 = cχ3 instead of cϕ3 = cψ3. As a consequence,
we can skip the first part of the proof of Theorem 6 of [16], as
this case has not to be discussed. ⋄

ad Lemma 2 (a)

The conditionsc00 = c22 = 0 imply a= b andc= d, i.e. the
planar four-bar mechanism is a parallelogram or an antiparal-
lelogram. Note that the opposite angles in the parallelogram
and in the antiparallelogram are equal.

The conditionsc20 = c02 = 0 have no solution under the
assumptiona,b,c,d > 0.

ad Lemma 2 (b)

Analogous considerations as in [29] yield for this case that
one of the following two relations has to hold:

(i) 2ac : 2bd : (a2−b2+c2−d2) =

sβ2sγ2 : sα2sδ2 : (cα2cδ2−cβ2cγ2),
(28)

(ii) 2ac : 2bd : (a2−b2+c2−d2) =

sβ2sγ2 : sα2 sδ2 : (cβ2cγ2−cα2cδ2).
(29)

Moreover, the conditions of Eq. (28) imply again cχ1 =−cψ2
and from those of Eq. (29) we get cχ1 = cψ2. Again the arms
I10 and I30 can lie on the same side or different sides with
respect to the line[V1,V2]. Therefore only type (ii) yields a
possible solution.

VI. FLEXIBLE OCTAHEDRA OF TYPE B WITH ONE
VERTEX AT INFINITY

W.l.o.g. we can assume that the spherical image of the mo-
tion transmission from the face[V1,V3,V5] to [V2,V3,V4] via
V1 andV2 corresponds to a spherical focal mechanism of type
(ii). Consequently the motion transmission from[V1,V3,V5] to
[V2,V3,V4] via V3 corresponds to a spherical isogram. There-
fore the following relations hold (cf. FIG. 6):

cχ1 = cψ2, cχ3 = cϕ1, cϕ3 = cψ3. (30)

Due to the symmetry we can assume w.l.o.g. thatV4 is no ideal
point. Now the spherical image of the faces throughV4 cannot
be a spherical isogram because otherwise we would end up
with a flexible octahedron of type 3. Therefore the spherical
image of the motion transmission from the face[V3,V4,V5] to
[V1,V2,V3] viaV4 andV2 has to be a spherical focal mechanism
of type (ii). This implies cϕ2 = cκ2 (cf. FIG. 6).

Now we have to distinguish the following cases:
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1. V5 is an ideal point: There are the following subcases:

a. The spherical image of the faces throughV6 is a spheri-
cal isogram. This implies the relation:

cχ2 = cκ3, cκ1 = cψ1. (31)

As a consequence the cosines of angles along the four
edges throughV2 andV5 are pairwise the same. Then
analogous considerations as in subsection IV B yield the
contradiction.

b. The spherical coupler at the vertexV6 forms with every
spherical coupler of the neighboring verticesV1,V2,V4
a spherical focal mechanism of type (ii). Moreover, we
can assume w.l.o.g. that the spherical image of the faces
throughV6 is no spherical isogram. This implies:

cϕ3 = cκ3, cϕ1 = cκ1 = cψ1, (32)

with κ1 andκ3 according to FIG. 6. Due to section V
the motion transmission from[V3,V4,V5] to [V2,V4,V6]
via V5 andV6 is reducible in one of the following two
cases:

i. As the spherical image of the faces throughV6 is no
spherical isogram, item (a) can only imply the case
cκ2 = cχ1. Therefore the spherical images of the
faces throughV4 andV5 are isograms. AsV3, V4 and
V5 are the vertices of one face, this implies a type 3
octahedron.

ii. Item (b) implies cχ2 = cψ3 which already yields
that the spherical image of the faces throughV6 is
a spherical isogram (a contradiction).

2. If V6 is an ideal point: We will show that this case yields
the following solution:

Theorem 4. In the projective extension of E3 there exists the
following flexible octahedron of type B where only one vertex
is an ideal point: The two pairs(V1,V4) and (V2,V5) of op-
posite vertices are symmetric with respect to a common plane
which passes through the vertices V3 and the ideal point V6.
This flexible octahedron is nothing else than Bricard’s flexible
octahedron of type 2 where one vertex located in the plane of
symmetry is an ideal point.

Proof: The proof of this theorem is split into two parts. In the
first one we show that the motion transmission of the faces
throughV6 corresponds to the one of a parallelogram or an-
tiparallelogram. In the second step the given geometric char-
acterization of flexible octahedra of type B is proven.

Step 1) The proof is done by contradiction, i.e. we assume
that the motion transmission of the faces throughV6 does
not correspond to the one of a parallelogram or antiparallelo-
gram. Due to this assumption and section V the motion trans-
mission from[V3,V4,V5] to [V2,V4,V6] (or from [V1,V3,V5] to
[V1,V2,V6]) via V5 andV6 is reducible for cψ3 = cχ2, as the
spherical image of the faces throughV5 has to differ from a
spherical isogram (otherwise we get a type 3 octahedron).

Analogous considerations forV1 andV6 yield cϕ1 = cκ1.

V1

V2

V5

V4

V6

M

(a)

V2

V1 V4

V5
V6

s

(b)

FIG. 7: The two cases implied by the conditionsV2V4 = V1V5 and
V4V5 = V1V2.

Analogous considerations forV2 andV6 yield cϕ3 = cκ3.
Analogous considerations forV4 andV6 yield cχ3 = cψ1.
These four conditions imply under consideration of Eq. (30)

the following contradiction:

cχ2 = cκ3 and cκ1 = cψ1. (33)

Step 2) Due to the above considerations, we can assume
w.l.o.g. that Eq. (33) holds. As a consequence, the cosines
of the angles along the four edges throughV1 andV4 are pair-
wise the same. AsV1 andV4 are no ideal points, we can apply
Kokotsakis theorem (Satzüber zwei Vierkante) given in §12
of [19] which implies:

<) V3V1V5 = <) V2V4V3, <) V2V1V6 = <) V5V4V6,

<) V5V1V6 = <) V2V4V6, <) V2V1V3 = <) V3V4V5,
(34)

if the spherical image of the faces throughVi (i = 1,4) is no
spherical isogram (otherwise we get a type 3 octahedron).
Moreover, the cosines of the angles along the four edges
throughV2 andV5 are pairwise the same. Analogous consid-
erations yield:

<) V1V2V6 = <) V4V5V6, <) V3V2V4 = <) V1V5V3,

<) V4V2V6 = <) V1V5V6, <) V1V2V3 = <) V3V5V4.
(35)

As a consequence the triangles△(V3,V2,V4) and△(V3,V5,V1)
are similar as well as the triangles△(V3,V1,V2) and
△(V3,V4,V5). Moreover, these triangles must not only be
similar but even congruent in order that the 4-sided pyra-
mid with apexV3 can be assembled. ThereforeV2V4 = V1V5
andV4V5 = V1V2 hold. As a consequence△(V1,V3,V4) is an
isosceles triangle which implies that the planeΓ1 orthogo-
nal to [V1,V4] through the midpoint ofV1 andV4 containsV3.
Clearly, the same holds for the isosceles triangle△(V2,V3,V5)
and the planeΓ2 orthogonal to[V2,V5] through the midpoint
of V2 andV5. The intersection line ofΓ1 andΓ2 is denoted by
s.

In the following we prove that the pointsV1,V2,V4,V5 have
to be coplanar. This can be done as follows: We assume that
the prism is in one of its two flat poses. Now there exist two
configurations such thatV2V4 = V1V5 andV4V5 = V1V2 is ful-
filled (see FIG. 7):

1. [V1,V2] ‖ [V4,V5] and[V1,V5] ‖ [V2,V3] (cf. FIG. 7 (a)): If the
motion transmission of the faces throughV6 corresponds to
the one of a parallelogram then the pointsV1,V2,V4,V5 are
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always coplanar during the flex. If this transmission cor-
responds to the one of an antiparallelogram we distinguish
the following two cases:

a. If [V1V2] and [V1V5] are orthogonal to the edges of the
prism thenV1,V2,V4,V5 remain coplanar during the flex.

b. In any other caseV1,V2,V4,V5 form at least in one of
the two possible flat poses of the prism a parallelogram.
The intersection point of its diagonals is denoted byM.
ThenV3 has to be located on the lines orthogonal to
the carrier planeΩ of V1,V2,V4,V5,V6 throughM. We
denote the point which results from reflectingV3 on Ω
by V3.
If a pointV3 6= M exists such that the structure is flex-
ible then the octahedronV1,V2,V3,V4,V5,V3 also has to
be flexible due to the symmetry. As this octahedron is
convex, we get a contradiction withCauchys Theorem.
For the special caseV3 = M the structureV1,V2,V3,V4,V5
can only flex either along the diagonal[V1,V4] or along
the diagonal[V2,V5]. This yields a trivial self-motion as
some faces coincide permanently during the flex.

2. In the second case we get the pointsV4 and V5 by re-
flecting V1 andV2, respectively, on the lines (cf. FIG. 7
(b)). As [V1,V2] ‖ [V4,V5] implies item (1a) we can assume
[V1,V2] ∦ [V4,V5] w.l.o.g.. If the motion transmission of the
faces throughV6 corresponds to the one of an antiparal-
lelogram then the pointsV1,V2,V4,V5 are always coplanar
during the flex.

Now we assume that this transmission corresponds to the
one of a parallelogram. We consider the two planesΓ1 and
Γ2 which are always parallel to the edges of the prism. As
in all poses withΓ1 6= Γ2, the intersection lines contains
V6 during the flex, this also has to hold in the limit where
Γ1 andΓ2 coincide.

Now we consider both flat posesV1,V2,V4,V5 and
V ′

1,V
′
2,V

′
4,V

′
5 of the prism, which are illustrated in FIG. 8:

Due to the above considerationss is spanned by the mid-
points ofV1V4 andV2V5. The condition thatV3 has to be
located ons andV ′

3 on s′, respectively, already determines
these points uniquely as they have to be related by a re-
flection on [V1,V5] (which neither cannot be parallel nor
orthogonal tos).

Trivial computations (which are left to the reader) show
that e.g. the angles<) V3V4V2 and <) V6V4V5 are equal,
which already yields a contradiction as the spherical image
of the faces throughV4 is an isogram.

As a consequence of this case study we can assume w.l.o.g.
that the pointsV1,V2,V4,V5 are planar during the flex of the
prism. Now the proof is closed by footnote 6 of STACHEL

[9], which says that a planar base polygonV1,V2,V4,V5 of a
4-sided pyramid remains planar during the flex if and only if
the quadrilateral is an antiparallelogram and its plane of sym-
metry contains the apexV3.

It remains to show that case 2 of item (c) of section V (resp.
its corresponding case of item (d) of section V) does not im-
ply a solution: In this case, again all vertices apart from the

V ′
2

V1 = V ′
1

V5 = V ′
5

V4

s

s′

V6 = V ′
6

V ′
4 V3

V2V ′
3

FIG. 8: The carrier plane of both flat posesV1,V2,V4,V5 and
V ′

1,V
′
2,V

′
4,V

′
5 of the prism is spanned by[V1,V5,V6].

ideal point and its opposite vertex are coplanar during the flex.
Therefore we can also apply footnote 6 of STACHEL [9]. Due
to a = c andb = d (resp. b = c anda = d) two vertices of
the antiparallelogram always coincide (= a flipped over rhom-
bus). This can only yield a trivial self-motion as some faces
coincide permanently during the flex.

This closes the determination of all non-trivial self-motions
of TSSM manipulators with parallel rotary axes. Again it is
not difficult to verify that the trivial self-motions of these ma-
nipulators can only be thebutterfly motionor the spherical
four-bar motion, respectively.

Note, as we have completed the classification of all TSSM
manipulators with self-motions, it is an easy task to compute
the associated self-motions themselves. The simplest way for
doing this is to consider the corresponding 6-3 parallel ma-
nipulators of SG type and to run the algorithm for the so-
lution of the forward kinematics of SG platforms given by
HUSTY [30], wheren-dimensional self-motions appear asn-
dimensional solutions of the direct kinematic problem.

Remark 7.Finally, we consider a polyhedron consisting of two
pyramidsΛ1 andΛ2 and a cylindrical middle partΠ0 (with an
antiparallelogram as orthogonal cross section). This polyhe-
dron is flexible if Λi and Π0 form a flexible octahedron of
type 2 or type 3 with one vertex in the plane at infinity for
i = 1,2. This construction is a generalization of the one given
by STACHEL in the concluding remarks of [8]. ⋄

VII. CONCLUSION

In this article we determined the whole set of non-trivial
self-motions of TSSM manipulators with two parallel rotary
axes which equals the determination of all flexible octahe-
dra where one vertex is an ideal point. In Theorem 2, 3 and
4 it was shown that there are only two such flexible octahe-
dra which proves the conjecture formulated by the author in
[15]. This study also closes the classification of self-motions
for parallel manipulators of TSSM type and of planar 6-3 SG
platforms, respectively.

As a byproduct of this work we also gained a deeper insight
into the classicalBricard octahedra(cf. Lemma 1 and Remark
3). Moreover, this article is the fist part of a classificationof all
flexible octahedra in the projective extension of the Euclidean
3-space which is completed in [16].
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