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In this paper we determine all non-trivial self-motions @3M manipulators with two parallel rotary axes
which equals the determination of all flexible octahedranetome vertex is an ideal point. This study also closes
the classification of these motions for the whole set of ratanipulators of TSSM type. Our approach is
based on Kokotsakis meshes and the reducible compositiosgherical coupler motions with a spherical
coupler component.
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. INTRODUCTION

A parallel manipulator of TSSM type (Triangular Symmet-
ric Simplified Manipulator) consists of a platform, which is
connected via three Spherical-Prismatical-Rotation&R5
legsl; with the base (see FIG. 1), where the axds= 1,2, 3)
of the rotational joints are coplanar.

In general, the manipulator is rigid if all three leg lengths
are fixed, but in some special cases, the platform can even
perform a continuous motion. Such motions, which also yield
solutions to the famous Borel-Bricard problem (cfusiry
[1]), are called self-motions. As we can replace each SPR leg
li by two SPS legg; andg; (as shown in FIG. 1 for = 1)
the determination of TSSM self-motions can be traced back
to those of planar 6-3 parallel manipulators of Stewart Goug
type (SG type). . . .

Therefore TSSM self-motions must be contained in the sin—'; \'/(gr %HeTiigigﬁgr']pgfllagpvl‘”g:]gslr?!ﬁ:J;)ttg?égxeﬁ r2. More-
gularity loci of the 6-3 manipulators, which have been ana- '
lyzed in previous works [2-6]. Hence, the geometric inter-

Ereléalflon of :]he smgl:clz_atrltleslfof at_6—3 rganlpulatqglmusbalsttype 2 Two pairs of opposite vertices are symmetric with re-
10 hor e?c_ p?se or Its Sei-mo 'é)n' dne %osm fe I?eomi_ spect to a common plane which passes through the re-
ric characterization was given in [5] and reads as follows: maining two vertices,

singular configuration of a 6-3 manipulator occurs when the

moving platform and three planes, each created by a pair afpe 3 For a detailed discussion of this type we refer to [8].

intersecting legs, intersect in at least one point. We only want to mention that these flexible octahedra
In spite of all the work done on singularities of these ma- possess two flat poses.

nipulators a complete classification of all TSSM design$iwit

self-motions is missing until now. The presented papereslos These are all flexible octahedra as long as we assume that no
this gap, where we distinguish four subcases of TSSM manipiwo faces coincide permanently during the flex. Without this
ulators in order to classify their self-motions: assumption we get two more cases (cfASHEL [9]) with
so-called trivial self-motions, which are also knownlag-

terfly motionandspherical four-bar motionrespectively (cf.

(1) TSSM manipulator with intersecting axes: In this case
the corresponding planar 6-3 SG platform can easily betran
formed by so-called-transforms (cf. [7]) into an octahedral KaRGER [10]).

manipulator by choosing the base anchor points as the inter- But TSSM manipulators can also have configurations
P or by 9 P . which are not considered in the theory of flexible octahedra,
section points of the axas. Therefore TSSM manipulators

i Py i as one can generate poses (by changing the leg lengths) where
W'Fh nop t“V'fa' seli-motions correspond to the three typé faces degenerate into lines. Then at least one platformoanch
Bricard’s flexible octahedra

point B has to be located on the rotary axjs As a conse-
type 1 All three pairs of opposite vertices are symmetricwit quence, the self-motion can only be a spherical motion with
respect to a common line. centerR. It can easily be seen, that this can only yield special
cases of théutterfly motionand spherical four-bar motion
respectively.
Finally, one also has to consider the TSSM manipulator
*Electronic addressiawr at i | @eonetrie.tuw en. ac. at with 3 collinear platform anchor points. In this case we-triv



ially get an architectural singular manipulator (cf. [12])1

(2) TSSM manipulators with 3 parallel axes: For TSSM
manipulators with 3 parallel axes (which can also coincide)
the problem reduces to a planar one, as these manipula-
tors possess a cylindrical singularity surface (CAWNRATIL

[13]). Therefore the self-motions correspond to those ef th
3-dof Revolute-Prismatic-Revolute manipulator (withetr
collinear base anchor points) which are well known.

(3) TSSM manipulators with 2 coinciding axes:The deter-
mination of all self-motions of TSSM manipulators with two
coinciding axes :=r1 = rp can be reduced to the following
geometric problem: If we disconnect the third leg from the
platform, the anchor poir®; describes a so-called fourth or-
der cyclide of revolutior. This surface is generated by the FIG. 2: AKokotsakis mesis a polyhedral structure consisting ofia
rotation of the circldiRaboutr, whereRis the path oP; during  sided central polygoBy € E® surrounded by a belt of polygons in the
its rotation aboug := [P1P,] (see FIG. 1). Now there exists a following way: Each sidég of X is shared by an adjacent polygon
self-motion if the circleL (or a segment of it) is located @b, Zi, and the relative motion between cyclically consecutivigfnigor
whereL is generated by the end point of the disconnected Iego'ygons_ is a spherical coupler motion. Here Kekotsakis mesh
during the rotation abous. Therefore the problem reduces to 10 N = 3is given, which determines an octahedron.

the determination of all circle sections @n In the following

we sum up the results of this well studied geometric problem ) o )
(e.g. KRAMES [14]): vertex in the plane at infinity are Bricard octahedra of type 2

and type 3 (with one vertex in the plane at infinity).

a. If g andr are parallel therb is a part of a plane. If they It is not obvious that these flexible octahedra are the only
intersect them is a part of a sphere (or a whole sphere). Inones where one vertexis an ideal point, as there could even ex
these cases the determination of circles (or circle segspentist flexible octahedra which do not have flexible countespart
is trivial. with finite vertices. For example, it was shown by the author

in [16] that there exist two types of flexible octahedra with

b. g andr are skew andR is located in a meridian plane: In two opposite vertices being ideal points, which do not psesse
this cased is a torus. Itis well known that each torus has flexible counterparts with six finite vertices. Thereforis thr-
two one-parametric sets of circles, namely one generateticle can also be seen as the first part of a classification of al
by R and the other set is given by the meridian circles offlexible octahedra in the projective extension of the Eclial
the torus. Only in the case of a ring torus we get two fur-3-spaceE® which is completed in [16].
ther sets additionally, namely those generated by the well Moreover, it should be mentioned that we denote the pro-
knownVillarceau circles jective extension oE2 by E* in the remaining paper.

c. g andr are skew andR is not located in a meridian plane:
If we reflect the generating circl® on a meridian plane
we get the circleR. Therefored has at least three one-
parametric sets of circles, namely the meridian set and the _ _
sets generated b andR, respectively. Only in the case In _1897 all types of flexible octahedra E® were firstly
whereR andr have no point in common, there exist two classified by BRICARD [17]. In 1978 QONNELLY [18]
further one-parametric sets of circles which can be consketched a further algegralc method for the determinatfon o
structed similarly to thé/illarceau circlesby intersecting 2l flexible octahedra ife=.

@ with a double tangent plane (which is not orthogonal to  STACHEL [9] presented a new proof which uses mainly
. arguments from projective geometry beside the converse of

Ivory’s Theoremwhich limits this approach also to flexible

(4) TSSM manipulators with 2 parallel axes: Similar con-  octahedra irE3. But STACHEL [8] also gave the construction
siderations as in item (1) yield that the non-trivial selptons  of flexible octahedra of type 3 with one vertex at infinity.
of TSSM manipulators with two parallel rotary axes corre- KoOKOTSAKIS [19] discussed the flexible octahedra as spe-
spond with flexible octahedra where one vertex is an ideatial cases of a sort of meshes named after him (see FIG. 2).
point. His very short and elegant proof fBricard octahedras also

Therefore the determination of all flexible octahedra withvalid for type 3 inE* if no opposite vertices are ideal points.
one vertex in the plane at infinity is the goal of this artidks.  Up to recent, to the author’s best knowledge this fact was not
a consequence, this work can be regarded as the continuatioecognized before, not even byoKoTSAKIS [19].
of [15], where a conjecture about the solution of this prable ~ Moreover, there are no proofs for Bricard’s famous state-
was formulated and which is proved within this article. In ment known to the author which enclose the projective exten-
[15] we conjectured that the only flexible octahedra with onesion of E2 although these flexible structures attracted many

A. Related work and overview



prominent mathematicians; e.geBNETT [20], BLASCHKE
[21], BOTTEMA [22], LEBESGUE [23] and WUNDERLICH
[24].

We tackle this problem by considering an octahedron as a
Kokotsakis mesfsee FIG. 2) with a 3-sided central polygon
>p. In the next step we investigate the spherical image of such
Kokotsakis meshes.e. we translate each face of the mesh
through the poinM and intersect this translated face with the
sphereS? (with radius 1) centered ivl. Then the relative
motionZ;/Z; 1 (mod 3) appears as a spherical coupler motion
(cf. section 11). Based on reducible compositions of sptadri
coupler motions with spherical coupler components (cf])[25
which meet the so-called closure condition (cf. sectioi I
the set of flexible octahedra with one vertex in the plane at
infinity can be classified into three types (type A, B, C). This
classification (cf. Lemma 1) as well as the discussion of type
A and type C is given in section IV. After some additional
preparatory work done in section V, we solve the missing type
B in section VI.

FIG. 3: Composition of the two spherical four-bdggA;1B;l20 and
II. NOTATION AND RELATED RESULTS 1,0A2B2 30 with spherical side lengths;, 8, i, &, i = 1,2 (Courtesy
of H. Stachel).

As already mentioned, our approach is based on a kinematic
analysis ofKokotsakis meshdsee FIG. 2) as composition of
spherical coupler motions given byr&HEL [26], which is ~ @nd

repeated in this section.
P Ky =coy1sPB1891, M1 = say P10,

3
L1 =sa;1¢B1S0r, N1 =caicfiCo —Cyr. (3)

A Transmission by a spherical four-bar mechanism In this equation s and c are abbreviations for the sine and co-

] . ] ) _sine function, respectively, and the spherical lengthsf1

We start with the analysis of the first spherical four-bakdin - g q 5 are signed.
age?’ (cf. [27, 28]) with the frame linK10l20 and the coupler  Note that the biquadratic equation Eq. (1) describgs2a
A;1B; according to SACHEL [26] (se_e FIG. 2 and FIG. 3)_. _ correspondenchetween pointé; on the circleay = (11; 1)

We setay = l10As for the spherical length of the driving 534, onb, = (10;81) (see FIG. 3). Moreover, it should be
arm, B := l20By for the output armys := AiBy and o :=  gaid that this 2-2-correspondence only depends on theafatio
l10l20. We may suppose @ a1, B1, 1,01 < TT. _ the coefficientsy,: - - - : Cog (cf. Lemma 1 of MWRATIL AND

The coupler motion remains unchanged whienis re-  gracheL [29)).
placed by its antipodéy and at the same time; andy; are In this section we only summed up the information which
substituted byr—as andm—y;, respectively. The same holds g necessary to understand the remaining part of the paper. A

for the other vertices. Whelio is replaced by its antipodgo,  1ore detailed explanation of this basic considerationshean
then also the sense of orientation changes, when the motatig, ,nqin [26].

of the driving bar10A; is inspected from outside & either
atlqp or atl .

We use a cartesian coordinate frame wigon the positive
x-axis andlglyg in the xy-plane such thaky has a positive
y-coordinate (see FIG. 3). The input angies measured be-
tweenl1gl20 and the driving arnhigA; in counter-clock orien- Now we use the output angte of the first four-bar linkage
tation. The output angle, = < 110l20B; is the oriented exte- % as input angle of a second four-bar linkagevith vertices
rior angle at vertexyo. As given in [26] the constant spherical 120A2B2l30 and consecutive spherical side lengihs Vs, >

B. Composition of two spherical four-bar linkages

lengthy; of the coupler implies the following equation andéd, (FIG. 3). The two frame links are assumed in aligned
position. In the cased l1gl2ol30 = 17 the spherical lengtid,
Coott2 + Cogt? + Coat? 4 Ciatato + Coo = O (1) s positive, otherwise negative. Analogously, a negatiye
expresses the fact that the aligned blagB; andI»0A, are
with tj = tan(7i /2), 11 = 4sa1801 # O, pointing to opposite sides. Changing the signBefmeans

replacing the output anglg; by 13 — 1. The sign ofy, has
Coo=N1—Ki+Li1+Mi, cCo2=Ni+Ki+Li—My, 2 "o influence on the transmission and therefore we can assume
Coo=N;—Ki—L;—My, Coo=N;+Ki—Li+My, without loss of generality (w.l.0.g.) thg > 0 holds.



Due to (1) the transmission between the angles, and
the output angles of the second four-bar with := tan(13/2)
can be expressed by the two biquadratic equations

Coot?t2 + Coot? + Coat? + Cratatar + Coo = O,

4
d22t22t32 + dzotzz + dozt% + dyitots + dgo = 0. (4)

Thedj are defined by equations analogue to Egs. (2) and (3).

After this preparatory work we can go in medias res:
Clearly, if a Kokotsakis mesiior n = 3 (< octahedron) is

4

(i) It was already shown in [26] thaho = c22 = 0 is equiv-
alent with the condition§; = a; andd; = y3 which de-
termine a spherical isogram.

(i) In contrary, cyo = co2 = 0 is equivalent with the condi-
tionsB; = m—a; and &, = m— y; (cf. [25]). Note that
the couplers of both isograms have the same movement
because we get item (ii) by replacing eithgy or 5o of
item (i) by its antipode.

flexible then also its spherical image has to be flexible. AMoreover, it should be noted that the cosines of opposite an-

necessary condition for that is that the motion transmissi
from X3 to X3 via 2, (< composition of two spherical four-
bar linkages) can also be produced by a single spherical fou
bar mechanism& the motion transmission frol to 23 via

o gles in the spherical isograms (of both types) are equaggct.

of [19]).

Spherical focal mechanism:Here also two cases can be dis-
tinguished:

V3, see FIG. 2). These are so-called reducible compositions

of spherical four-bar linkages with a spherical coupler eom

ponent, which were already determined by the author in [25]

and can be summarized as follows (cf. Corollary 1 of [25]):

Theorem 1. If a reducible composition of two spherical four-
bar linkages with a spherical coupler component is given,

(i) In [29] it was shown that the characterization of the
spherical focal mechanism given in Theorem 1 is equiv-
alent with the condition:

sa1Sy1 1 sP1SA : (caycyr —cPf1cCdy) =

SB2SY2 : 80250, : (CO2Cd2 — CPB2CY2). (6)

then it is one of the following cases or a special case of them,

respectively:

(a) One spherical coupler is a spherical isogram which hap-
pens in one of the following four cases:

Coo=Co2=0, dogg=022=0, Cxp=Co2=0, dyo=0dg2=0,

(b) The spherical couplers form a spherical focal mechanism
which is analytically given for Fe R\ {0} by:
CooC20 = Fdoodoz,  C22C02 = Fd22020,

5)
C31 — 4(CooCaz + C20C02) = F[d%; — 4(doodz2 + d20do2)],

(c) One of the following two cases hold:
Co2 = Co2 =doo=0do2 =0, drp=dog=Coo=C0=0,

(d) One of the following two cases hold foreAR \ {0} and
BeR:

C20 = Adp2, C22 = Ath2, Co2 = Bdhz, Coo= Bdo2,

doo = d20 =0, do2022 # O,

doz = Aczo, U2 = ACp2, O20= BCz2, doo= BCzo,

Coo = Co2 =0, C20C22 # 0.

C. Geometric aspects of Theorem 1

In the following we point out the already known geometric
aspects of Theorem 1. For a more detailed geometric explan

tion of these cases please see the corresponding pubtisatio

[19, 25, 26, 29].

Spherical isogram: The geometric difference between the
two spherical isograms given loyy = ¢o2 = 0 andcyg = cpp =
0, respectively, is as follows:

Moreover, it should be noted that in this case e
—cyp holds withx; = 4 110A1B1 and i, = < 130B2A.

(ii) Butin the algebraic characterization of the spherical
cal mechanism (5) also a second possibility is hidden,
namely:

sa Sy 1 sP1SA : (caycyr —cPf1cdy) =

SBaSY> 1 S02S0; 1 (CL2CYo — CA2CDy). (7)
In this case g1 = ¢y, holds. Note that we get this case
from the first one by replacing eith&y or 11 by its an-
tipode. Moreover, it should be mentioned that a replace-
ment ofl,g by its antipode would not have any effect on
the given relation (6) of the first case.

Remark 11t should be noted that in item (c) and item (d) of
Theorem 1 both couplers are so-called orthogonal spherical
four-bar mechanisms, as the diagonals of the sphericalquad
rangles are orthogonal (cf. [26]). o

But not all cases where the relation between the input angle
1, of the arml1pA; and the output angles of 130B, can be
produced by a single spherical four-bar linkaigg= spheri-
cal quadranglé;ol;0B3Az), yield a flexible octahedron, as the
resulting configuration of the three spherical four-bakdiges
€, 2, % has not to be closed; i.§g # |30.

Therefore theKokotsakis mesfor n = 3 is flexible if and
only if the transmission of the composition of the two spher-
ical four-bar linkagest” and Z equals the one of the single
gpherical four-bar linkagez which meets the so-called clo-
sure condition;g = I3o.

If we denote the edge lengths of the corresponding spheri-
cal quadranglélolroBgAg of # by a3 = l10As, ﬁg = lyoBs3,
ya := AsB3 and & := I1gl;0, We can rewrite the closure con-
dition in terms of oriented enclosed angl&sof the central
triangle according to FIG. 4 a& = &, + &. Therefore all
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Moreover, we also express the remain@gandd;j in depen-
dency of the angles;, i, i, & with i = 1,2 and substitute the
obtained expressions into Eq. (8). As Eq. (8) gives the trans
mission of a spherical four-bar mechanism the coefficigts
of this equation must be proportional tg; = 4sa3sf3 # 0
and

roo=N3—K3z+L3+Ms3, rg2=Ns3+K3z+Lz—Mg,

12
ro0= N3 —Kz—Lz—Ms, f22:N3+K3*L3+M37( )

with Kz, L3, M3, N3 according to Eq. (3) foas, B3, y3, 33.
FIG. 4: Oriented sides of the central trianglg with the oriented A f||pped over Spherica| deltoid (Cf Remark 2) is the on|y
enclosed angles. spherical four-bar mechanism where an input angle or an out-
put angle remains constant®°(@r 180°) under the motion.

reducible compositions with a spherical coupler com onenxve are not interested in such assembly modes of spherical
S P - P ! pler comp eltoids, as they correspond to flexible octahedra where at
given in Theorem 1 fulfillingd; = &1 + & imply a flexible oc-

. . : least two pairs of neighboring faces coincide (rivial self-
:16:3hx?ireocr:i.o1r;hls result is the base for the understandingeof thmotion, cf. section 1). Therefore we can assume thatithe

are not constant and hence the comparison of coefficients im-
ply 5 equationseqj, which are defined as the numerator of
rij —Arj; with A € R\ {0}. Beside these 5 equations also
& = 01 + & has to hold. Therefore the addition theorems for
tshe sine and cosine function imply:

Ill. PREPARATORY WORK

In order that we can also use the results produced in thi

section for [16], where the determination of all flexible act 33 1= S3,C0 + CO1S3p, O3 = CO1CO, — SHiS%.  (13)
hedra inE* is completed, we generalize our approach in the ’

way that we study a superset of the set of all flexible octednedrafter expressing\ from eqp; = 0 we compute the following
with one vertex on the plane at infinity. This superset cor#tai |inear combination
all flexible octahedra where no pair of opposite vertices are
ideal points. Such octahedra possess at least one face whemp, — etpg— €th2 + ethp = — 4501502503561 53256350150,
all three vertices are iE3. We can assume w.l.0.g. that this
face corresponds th in FIG. 2. which cannot vanish without contradiction (w.c.).
In the following two subsections we show that the reducible
composition of item (c) and item (d) of Theorem 1 cannot ful-
fill the closure conditiord; = & + & without any contradic- ad Theorem 1 (d)
tion:
Here we only discuss the casg = Adyy, Crp = Athy, Cop =
Bdbo, Cog = Bdpy, dop = dog = 0, doodoo 7§ 0. For the second
ad Theorem 1 (c) possibility we refer again to analogy.
This case is the only special asymmetric case (cf. Theorem
Here we only discuss the casg = Co» = doo = dp2 = 0. 6 of [25]). The transmission of the resulting spherical foar

For the other case of item (c) we refer to analogy. linkageZ is given by
The case under consideration stem from the excluded cases PP ,

of the symmetric reducible composition (cf. section 4 of]|25 raoti +riatita +roo =0 (14)
In this case the transmission of the spherical four-baialiyek ith
Z is given by wi

Phot2t3 4 rhot? + rpots + riqtita 4+ roo =0 (8) roo=—0duB, ry=-duA rp=cn.  (15)
with In this case the conditiordy = dyp = 0 imply:

"oo.= ~Cootho, 120 =~Caotl 9) O 1= —S0,0P2/SP. O 1= —SGCaz/Pe.  (16)

!/ !/ !
o2 = —Coodz2, I = —Cpolz2, ryp = C11011. .
Moreover, we also expresl,, dg2 anddp; in dependency

If we substitute (3) into (2) the conditiols, = coo =01imply:  of the anglesxy, 3;, 2, & and substitute the obtained expres-
) _ sions into Eq. (14). As Eg. (14) gives the transmission of a
co = s0,ch1 /5Py, oy :=sdcar/sh. (10)  gpherical four-bar mechanism the coefficienitgry, = rp, =
0) of this equation have to be proportional to theof Eq.
(12). Analogous considerations as in the above discussed
€O :=SOpC02/S2, CYo := SOCP2/S>. (11)  case (c) yield again 5 equatioeg; which are defined as the

Analogous considerations fdgg = dgo = 0 yield:



numerator ofrjj — A ri’j with A € R\ {0}. Moreover, again as follows: If one computes in general the relation betwgen
& = & + & must hold which yields Eq. (13). Froety; we — andy, one will end up with Eq. (11) of [19]:

can expresa w.l.o.g.. Then we compute the following two

linear combinations (caicyr — €d1CP1)SHSa2 — (CP2CY- — COCa2)SO1SP1

20
+5015y150,502CX1 — S01SB1SYeSsPBCY2 = O, (20)
€02+ eto— €thz — €Cho,  €Ch2 — €Cpo+ €Chz — €Cho, (17)
. i . . and Eq. (13) of [19]:
which are linear iPA andB. Moreover, these two equations
can be solved foA andB w.l.o.g.. Then we are left with the (cq,cys — c851081)562502 + (CBaCys — CErCa2)SE1SB1
equation®cp, + egpo = 0 andep, — etpo = 0, where we can (21)

solveeps + egpo = O for cys w.l.o.g.. Now we distinguish the +S015Y150,802CX1 + SO 5P1SYo5B2C2 = O,

following cases: respectively, depending on the circumstance if the aags

1. 1B, — casB, # 0: Under this assumption we can solve andlsg lie on the same side or different sides, respectively,
2 — etpo = 0 for ¢Bs W.1.0.g.. Now we only have to solve  With respect to the lin@v1, V5| (see FIG. 2).

the four remaining equations If we plug the relations of Eqg. (6) under consideration
of cx1 = —cy» into Eq. (20) we will see thay; and (»
€X%0 := Cro— Adpy, €% := Cpo — Adhy, must be constant. This already yields a contradiction as the

(18) corresponding octahedron is rigid. On the other hand, Eq.
(21) is fulfilled identically for the relations of Eq. (6) and

with c;j in dependency of the angles, B, y1, & according cx1 = —cy». But this also yields a contradiction for flexi-
to Egs. (3) and (2). Then we compute the following four ble octahedra as any two sides of the central triangle always

€X2 = Co2 — By, €X0 := Cop — B2,

linear combinations: lie on the same side with respect to the third remaining side.
For the spherical focal mechanism of type (ii) Eqg. (20) is
Vi i=€Xo— X0, V2.=EeXo+ Eexo, fulfilled identically and therefore it is still a possiblelgtion
(19 of bl
Hii=exX2—exp2, H2:=exa+ex2 ot our probiem.

As saocf32 + cassPB, = 0 impliesdy, = 0, a contradiction,
we can assumeoscf; + casBz # 0. Therefore we can ad Theorem 1 (a)
compute a3 fromv, =0w.l.o.g..

It should be noted that the composition of two spherical
isograms of any type also forms a (special) spherical focal
mechanism as Eq. (5) holds. Moreover, we know that this is
&y = 2d1/(1+0d2), cby:=(1—d?)/(1+d?), a reducible composition with a spherical coupler component

As this spherical four-bar mechanism has to have two folded
and eliminate the parametey from the linear combi- ~ POsitions, it can only be a spherical isogram.
nationsv; + u1 andvy — iy with the resultant method.
The resulting expression can only vanish w.c. for

CB1LS02S35CB5 — CP1SaRSB5 + SdFsPrsBICas = O. Gs—ys A Boe s, Qatys—TTA Bot Os=TL

Under consideration of & + c62 = 1 this yields a3=008APs=y, 03+B=TTA[RB+pB=T
sBicay — sacfBy = 0. This condition impliesa, = B
or a = B1+ 1. In both cases the back-substitution It can easily be seen, that these mechanisms which are sum-
into vi + 1 = 0 andvy — iy = 0, respectively, implies marized under the notation spherical deltoidsdo not fit
s31cf — cd1sB, = 0, a contradiction. with both folded positions of the spherical focal mechanism
composed of two spherical isograms.

Moreover, it should be noted that the cosines of one pair of
opposite angles in the spherical deltoid are equal. o

a. @3 # 0: Now we can express/gfrom pp, =0 w.l.o.g..
Then we apply the half angle substitution

Remark 2Note that beside the spherical isogram the follow-
ing spherical four-bars also have two folded positions:

(22)

b. ¢8> = 0: Now p = 0 can only vanish w.c. foray; = 0.
Thenv; + p1 = 0 cannot vanish w.c..

2. 01¢fr —cd18B2 = 0: W.l.o.g. we can expres@gfrom this
condition. Theregp, — etpg = 0 cannot vanish w.c..
IV. CLASSIFICATION OF FLEXIBLE OCTAHEDRA

ad Theorem 1 (b) Now we emphasis on the combinatorial aspect of this prob-
lem because due to the last four subsections a reducible com-
It was already remarked in [29] that the spherical focalposition with a spherical coupler component can only be of
mechanism (i) cannot imply a solution to our problem. Theisogramtype orfocaltype (ii). Together with Theorem 1 this
geometric reasoning for this is hidden in §9 of [19] and readyields the following lemma:



Lemma 1. If an octahedron in the projective extension of E
is flexible where no pair of opposite vertices are ideal pgint
then its spherical image is a composition of spherical fbar-
linkages?’, 2 and# of the following type:

A. ¢ and 2, ¢ andZ as well as? and % form a spherical

focal mechanism of type (i), FIG. 5: Planar four-bar mechanism with driving aenfollower b,

B. ¢ and Z form a spherical focal mechanism of type (i) and couplercand basel.
Z is a spherical isogram,

C. ¢, 2 (= andZ) are spherical isograms. sum of the dihedral angles of the 3-sided prism equals always
1. In contrast, the sum of the dihedral angles of the 3-sided

Remark 3Note that type C can be seen as special case of typgyramid is always greater thamif V € E3. Therefore this

A and type B, respectively, namely if the involved sphericalgjready implies the contradiction.

focal mechanisms of type (ii) are composed of two spherical Now we assume that there do not exist a configuration

isograms (cf. section lll). From this point of view there ynl \yhere only one of these dihedral angles equals zem. dt

exist two classes of flexible octahedra whereby their commoggp, easily be seen that this can only be the case if the spher-

elements are the octahedra of type C. © jcal image of the faces throughis a spherical isogram=¢

The fact that exactly the three types of Lemma 1 yield thos@rthogonal cross section of the prism throlglis a parallel-

of BRICARD [17] (A vields type 1, B yields type 2 and C ©gram or antlparalle_logram). As thls_ already yleIQS atype B
yields type 3) if all vertices are iE2 was already proved by octahedron (cf. section VI) the following theorem is proven
KOKOTSAKIS [19]. His proof that item A yields type 1 and
item B yields type 2 was based on a theor&atguber zwei : . .
\ﬁerkan{e) givezri)n §12 of [19] which is limited ths. More- exist er>.<|bIe octahedra of type A where only one vertex is an
over, he also argued with the help of edge lengths relationsu,jeal point.
which can not be done just like that if one vertex is an ideal

Theorem 3. In the projective extension of®&here do not

point. V. CENTRAL TRIANGLES WITH ONE IDEAL POINT
A. Flexible octahedra of type C with one vertex at infinity For the discussion of flexible octahedra of type B we need
some additional considerations, which are prepared in this
section.

In contrast to type A and type B, ®&OTSAKIS showed Gi . tahed h tox i ideal point
without any limiting argumentation with respect k& that IVEN 1S an octanedron where one Vertexis an iaea; poin
and the remaining five vertices are?. Now we consider

item f Lemma 1 corr nds with Bricard flexibl he- . ) )
tem € of Lemma 1 corresponds wit card flexible octa eoneofthefourfacesthroughthe ideal point as centralgten

dra of type 3. As already mentioned this fact was not recogs ) . .
nized before, not even by&KOTSAKIS. >o. Moreover, these four faces built a 4-sided prism where the

Moreover, SACHEL [8] also proved the existence of type 3 motion transmissipn between opposite facest equals the one
octahedra with one vertex on the plane at infinity. In thig art of the corresponding planar four-bar mechanism (arthogona

cle also the construction of these octahedra s given. Thwere cross section of the prism). It can easily be seen th?t thet inp
the following theorem holds: anglet; and the output angle, of a planar four-bar linkage

(see FIG. 5) are related by:
Theorem 2. There exist flexible octahedra of type C with one

vertex at infinity. These flexible octahedra are nothing else P22tft5 + Poctf + Poats + Pratata+ Poo=0  (23)
than Bricard’s flexible octahedra of type 3 where one verexi
an ideal point. with tj ;= tal’(Ti/Z), p11 = —8aband
p22=(a—b+c+d)(a—b—c+d),
B. Flexible octahedra of type A with one vertex at infinity P20 = (a+b+c+d)(a+b—c+d), (24)
Po2= (a+b+c—d)(a+b-c—d),
W.l.0.g. we can assume thditis the ideal point and that its Poo=(a—b+c—d)(a—b—c—d).

opposite vertex is denoted My Now the spherical coupler at

any of the five vertices E® forms with the spherical coupler  W.l.0.g. we can assunzb, c,d > 0 which impliespy; # 0.

of every neighboring vertex E2 a spherical focal mechanism Therefore using the abbreviatiopg the formula of the 2-2-

of type (ii). This already implies that the cosines of opp®si correspondence of a planar four-bar mechanism equalsfthat o

dihedral angles of the octahedron are equal. a spherical one (cf. Eqg. (1)). Moreover, one only has to check
Now we assume that there exists a configuration where onlghe technical detail that the factdi of [25] with

one of these angles equals zerororThen we get a 3-sided

prism throughU and a 3-sided pyramid with apakx. The We = p7; — 8p%1(PooP22 + P20P02) + 16( PooP22 — P20Po2)?



is also different from zero for the planar four-bar mechamnis
as for the spherical one. As we g&k = 21%a?b?c?d? +# 0,
this already proves the following lemma (see also Corollary
of NAWRATIL [25]):

Lemma 2. If a reducible composition of one planar and one
spherical four-bar linkage with a spherical coupler compo-
nent is given (cf. Eq. (4)), then it is one of the followingesas
or a special case of them, respectively:

(a) One of the following four cases hold:
Coo = C22 =0, doo =022 =0, Coo=Co2 =0, dzo=do2=0,
(b) The following algebraic conditions hold for ER \ {0}:

CooC20 = Fdoodo2, C22Co2 = F a2z,
¢31 — 4(CooCaz + C20C02) = F[d3; — 4(dooz2 + d20002)],

Vs

FIG. 6: Schematic sketch of the octahed¥an. .., Vs. The dihedral

angles are denoted lgy, Y, xi, ki withi=1,2,3.

(c) One of the following two cases hold:

Co2 = Co2 =dgo=0do2 =0, drp=dog= Coo=Co0=0,

combinatioregp, — etpp— eth2+ et can only vanish w.c. for

COp = CO3S072/50y. Now etpr — etpp+ ethz — ethp = 0 implies

(d) One of the following two cases hold foreAR \ {0} and
BeR:
e Cp0=Adp, Co2=Ad, Coz= Bz, Coo= Bdo2,
doo = d20 = 0, do2022 # O,
o doz = Acy, U2 = AC, U0 = B2, doo= Bcyo,
Coo = Co2 =0, C20C22 # 0.

Remark 4.Note that the projection onto the sphere of the
Kokotsakis meskwhere the center triangle has one point at

paragraph of section I). Therefore the spherical image @f th

prism is not a spherical four-bar mechanism but consists of

four great circles which intersect each other in one paimnef a

infinity can be done analogously to the general case (see Ia%t

cds = ca3sozc/(sasd). Moreover, frometp, + etpo— ety —

ecpo = 0 we get B = 333582/ (S0B3).

Then we compute the difference of the two necessary con-

ditions @2 + s82 — 1 = 0 with i = 2,3. The resulting expres-
sion can only vanish w.c. foids = +sd3.

1. & = &: In this case B2+ sB2— 1= 0 withi = 2,3 can

only vanish forf33 = 3, or 33 = B> + 1. Both conditions
imply that the opposite vertex &f is also an ideal point.
As this contradicts our assumptions we are done.

d, = —d3: Now the two arms can only be paralleld and

03 are right angles. This implies that the angéesandas
also have to be orthogonal. At the very end of section VI
we show that this case also implies a contradiction.

tipodal points. Moreover, the relative motion of the twoafre Remark 5.As preparatory work for [16] we continue the
circles which correspond with the input and output face ef th discussion of case 1 under considerationfaf= £, and

prism, respectively, is determined by Eq. (23). o

For the following closer study of the items (a)-(d) of
Lemma 2 we can assume w.l.0.g. thatdenotes the ideal

Bs = B2+ m, respectively. Thencg +ca?—1=0 and
s82 4 ¢d2 — 1 =0 can only vanish for@, = +s5,. Moreover,
SB+cBZ—1=0and 3§28 +cys —1=0imply LB, = +s)p.

point. Moreover, for the remainder of this article we use the! Nerefore the spherical four-bar linkageis a spherical del-
systematic notation of dihedral angles according to FIG. 6. toid (cf. Remark 2) with > = c¢s (cf. FIG. 6). ©

ad Lemma 2 (c)

The casealy, = dyg = Cop = Cpo = 0 does not yield a solution
becauseyy = cx9 = 0 cannot be fulfilled foa,b,c,d > 0 .

The other casdyg = dg2 = c2 = co2 = 0 can be done anal-
ogously to the corresponding case of section Il if one sub-
stitutes thecjj’s by the pij's of Eqg. (24). The conditions
Co2 =Co2 =0 imply a=candb = d. Therefore the cor-
responding planar four-bar mechanism is a deltoidal liekag
with c¢; = cy (cf. FIG. 6).

Then we compute the five equatioaq; (cf. section )
whereeq;; = 0 can be solved foh w.l.o.g.. Then the linear

ad Lemma 2 (d)

o Cp0 = Adpz, Co2 = Ath), Coo = By, Coo = Bz, dpo = o=

0, do2d22 # 0: This case can again be done analogously to
the corresponding case of section Il if one substitutes the
Cij’'s by thepjj’s of Eq. (24).

We compute the five equatiorsy; (cf. section Ill) where
equ1 = 0 can be solved fok w.l.o.g.. Now we compute the
two linear combinations given in Eq. (17) which can again
be solved foAandBw.l.0.g.. We are left with the equations
e+ et = 0 andetps — etho = 0 which can only vanish

w.c. for ¢33 = cdssPB3/sd3 and gi = sPzcas/sos.
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Now the four equations given in Eq. (17) remain. Againwith c¢3 = cys (cf. FIG. 6), if the opposite vertex &f; is an

we compute the four linear combinatiopsv; (i = 1,2) of  ideal point as well. Therefore this case is the same as the one

Eq. (19). Thervy 4+ u; = 0 andv; — pu; = 0 can only van-  given in Remark 5, if one interchanges the verti¢ggandVs.

ish w.c. for $§, = —sd,cd3cf2 and s, = —caxcdzsdb/d. In the preprint version of this paper on which [16] is based,

Now it can easily be seen that the sum of the two necessary computational error yields for this case the wrong deétbid

conditions & +sd2 — 1 = 0 fori = 2,3 cannotvanish w.c.. condition @; = cxz instead of ¢3 = cys3. As a consequence,

we can skip the first part of the proof of Theorem 6 of [16], as

® do2 = ACz, d22 = ACz2, 020 = B2, doo = BG20, Coo=Co2 = this case has not to be discussed. o

0, CxoC22 # 0: The conditiongyg = co2 = 0 implyc=band

a = d. Therefore the corresponding planar four-bar mecha-

nism is a deltoidal linkage, which already yieldg,c= cx1 ad Lemma 2 (a)

(cf. FIG. 6). Moreover, the remaining;’'s are set to the

values of the corresponding;’s of Eq. (24). The conditiong = ¢z, = 0 implya=bandc=d, i.e. the
In this case (cf. [25]) the transmission of the resultingesph  planar four-bar mechanism is a parallelogram or an antipara

ical four-bar linkageZ is given by lelogram. Note that the opposite angles in the parallelogra
PP , and in the antiparallelogram are equal.
roots +riatats +roo="0 (25) The conditionscyg = coz = 0 have no solution under the

. assumptiora,b,c,d > 0.
with
rIOO = 7CllBa rIOZ = 7C11Aa l"11 = dy1. (26) ad Lemma 2 (b)

As Eq. (25) gives the transmission of a spherical four-bar ) ) ) ) )

mechanism the coefficients (1}, = ry, = 0) of this equa- Analogous considerations as in [29] yield for this case that

tion have to be proportional to thg of Eq. (12). There- ©One of the following two relations has to hold:

fore a comparison of coefficients imply the 5 equations : ) (a2 W22 42y

eq;j which are defined as the numeratorrgf— Arj; with (i) 2ac: 2bd: (&~ b+ —d) = (28)

A €R\{0}. SB2Sys : Sa25, : (Ca2Cd — CPCys),

Fromeq 1 = 0 we can express w.l.o.g.. Now we compute i s o o o

the two linear combinations given in Eq. (17) which can (if) 2ac:2bd:(a®—b"+c"—d) = (29)

again be solved foA andB w.l.0.g.. Thereg, — e =0 SB2SYs 1 S50, : (Cf2CYs — CO2CAy).

can only vanish w.c. for @z = —cdzsas/sdz and etpz + - ) ]

epo = 0 implies o5 = —cB3s013/S33. Moreover, the conditions of Eq. (28) imply agaigc= —cy»

and from those of Eq. (29) we gex£= cyr. Again the arms
l10 andl3g can lie on the same side or different sides with
respect to the lindVy,V,]. Therefore only type (i) yields a
(27)  possible solution.

Now we only have to solve the four remaining equations

€x0:= dyg— By, €% := o — ACpo,
€X2 := do2 — Acpp, €X0 := doo — By,

with djj in dependency of the angles, 3., y», & according
to Egs. (3) and (2). Then we compute the four linear com- V!- FLEXIBLE OCTAHEDRA OF TYPE B WITH ONE
binations of Eq. (19). Now; + vi = 0 implies @3 = ¢, VERTEX AT INFINITY
and i — vo = 0 yields &, = —cazsdhb/(sazd). Finally,
Hy — v1 = 0 can be solved w.l.0.g. foBs = cB3B3/Bs. W.l.0.g. we can assume that the spherical image of the mo-
tion transmission from the facl/,Vs,Vs] to [Vz,Vs3, V4] via
r\/1 andV, corresponds to a spherical focal mechanism of type
(i). Consequently the motion transmission fréwvh, Vs, Vs to
[V2,V3,V4] via V3 corresponds to a spherical isogram. There-
1. &, = & In this case 5i2+55i2 —1=0withi =2,3can fore the following relations hold (cf. FIG. 6):
only vanish if the opposite vertex &f is also an ideal
point. As this contra?dpicts our assumptions we are done. CX1=Cl, CXs=Cf1, Chs=Cls.

2. & = —3&: Now the two arms can only be paralleld Due to the symmetry we can assume w.l.0.g.Yhas$ no ideal
and &; are right angles. This implies that the angtes ~ point. Now the spherical image of the faces throvfglannot
andas also have to be orthogonal. This is the same cas&€e a spherical isogram because otherwise we would end up
as the one given in item 2 of the last subsection, if onewith a flexible octahedron of type 3. Therefore the spherical
interchanges the vertic®s andVs. image of the motion transmission from the fdde, V4, Vs| to

[V1, V2, V3] viaV, andV, has to be a spherical focal mechanism
Remark 6Analogous considerations as in Remark 5 yield thatof type (ii). This implies @, = ck» (cf. FIG. 6).
the spherical four-bar linkag# has to be a spherical deltoid  Now we have to distinguish the following cases:

Then we compute the difference of the two necessary co
ditions @2+ sd? — 1 = 0 with i = 2,3. The resulting ex-
pression can only vanish w.c. fods= +s0s.

(30)
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Vs

1. Vs is an ideal point: There are the following subcases: A vy
v . \
a. The spherical image of the faces throdghs a spheri- ! v s
cal isogram. This implies the relation: 4
V2 \2) Vs
CX2 = CK3, CK1=CY). (31) Ve Ve

. b
As a consequence the cosines of angles along the four (@ (®)

edges throughW, andVs are pairwise the same. Then
analogous considerations as in subsection IV B yield th
contradiction.

b. The spherical coupler at the vertéxforms with every
spherical coupler of the neighboring verticésVa,V, Analogous considerations fos andVs yield cgs = cka.
a spherical focal mechanism of type (ii). Moreover, we  Analogous considerations fo andV yield cxz = ci.

can assume w.l.0.g. that the spherical image of the faces These four conditions imply under consideration of Eq. (30)
throughVg is no spherical isogram. This implies: the following contradiction:

IG. 7: The two cases implied by the conditions/, = V,V5 and
4V5 = V]_V2.

CP3 =CK3, CP1=CK1=Cln, (32) CX2 =CKkz and & =cl. (33)

with k1 and k3 according to FIG. 6. Due to section V
the motion transmission frorfVs, Vs, Vs] to [V, Va, Ve
via Vs and V5 is reducible in one of the following two
cases:

Step 2) Due to the above considerations, we can assume
w.l.o.g. that Eq. (33) holds. As a consequence, the cosines
of the angles along the four edges throvgltandV, are pair-
wise the same. A¥; andV, are no ideal points, we can apply
i. As the spherical image of the faces throlghs no  Kokotsakis theoremSJatzuiber zwei Vierkanfegiven in §12
spherical isogram, item (a) can only imply the caseof [19] which implies:
Ckp = cx1. Therefore the spherical images of the

faces through, andVs are isograms. A¥3, V4 and IV3ViVs = SVoVyVs,  IVoViVe = S VsVaVe, 34
Vs are the vertices of one face, this implies a type 3 IVeViVe = IVaViaVe, I VaViVa = JVaV4Vs, (34)
octahedron.

i. Item (b) implies (> = ¢y which already yields if the spherical image of the faces through(i = 1,4) is no
that the spherical image of the faces throlghis spherical isogram (otherwise we get a type 3 octahedron).
a spherical isogram (a contradiction). Moreover, the cosines of the angles along the four edges

) ) ] ] ] ] throughV, andVs are pairwise the same. Analogous consid-
2. If Ve is an ideal point: We will show that this case yields grations yield:

the following solution:

Theorem 4. In the projective extension of¥Ehere exists the FVIVRVe = I VaVsVe, L VaVoVs = G ViVeVs,
following flexible octahedron of type B where only one vertex ~ ¥VaVaVe = 5 VaVsVe,  JViVaVa = VaVsVa.
is an ideal point: The two pairéVi,Vs) and (V»,Vs) of op- )

posite vertices are symmetric with respect to a common plan@S & consequence the trianglegVs, Vi, Va) andA (Vs, Vs, Vi )
which passes through the vertices ahd the ideal pointy, ¢ similar as well as the triangles\(Vs,Vi,V2) and
This flexible octahedron is nothing else than Bricard’s fei ~ £(V3,Va;V5). Moreover, these triangles must not only be

octahedron of type 2 where one vertex located in the plane gimilar but even congruent in order that the 4-sided pyra-
symmetry is an ideal point. mid with apexV3 can be assembled. Therefarg/s = V4Vs

andVyVs = V15 hold. As a consequence&(Vy,Vs,Vy) is an
isosceles triangle which implies that the plang orthogo-
al to [V1,Vy] through the midpoint 0¥, andV, containsvs.
Clearly, the same holds for the isosceles triany(®>, Vs, Vs)
and the pland , orthogonal toV-, V5] through the midpoint
of Vb, andVs. The intersection line df; andl™; is denoted by
s.
Step 1) The proof is done by contradiction, i.e. we assume In the following we prove that the pointg, Vs, Vs, Vs have
that the motion transmission of the faces throughdoes to be coplanar. This can be done as follows: We assume that
not correspond to the one of a parallelogram or antipacallel the prism is in one of its two flat poses. Now there exist two
gram. Due to this assumption and section V the motion transeonfigurations such thabV, = ViVs andV,Vs = V1V, is ful-
mission from([Vs,Vy, V5] to [V2,Va, Vs (or from [Vi,V3,Vs] to filled (see FIG. 7):
[V1,V2,Vs]) via Vs andVs is reducible for @iz = cx», as the
spherical image of the faces through has to differ from a 1. [V1,Vy] || [Va, V5] and[V1, Vs] || [Vo, V3] (cf. FIG. 7 (a)): If the
spherical isogram (otherwise we get a type 3 octahedron). motion transmission of the faces througicorresponds to
Analogous considerations fof andVg yield cg; = ckj. the one of a parallelogram then the poisisVs, Vs, Vs are

(35)

Proof: The proof of this theorem is split into two parts. In the
first one we show that the motion transmission of the face
throughVs corresponds to the one of a parallelogram or an
tiparallelogram. In the second step the given geometric-cha
acterization of flexible octahedra of type B is proven.




11

always coplanar during the flex. If this transmission cor- Vi=V; sV,
responds to the one of an antiparallelogram we distinguish
the following two cases:

a. If ViVy] and [V1Vs] are orthogonal to the edges of the
prism therVy,V,, Vs, Vs remain coplanar during the flex.

b. In any other cas¥1,V,,V4,Vs5 form at least in one of ¢
the two possible flat poses of the prism a parallelogram. \& Ve 2 \5
The intersection point of its diagonals is denoted\by
ThenVs has to be located on the lireorthogonal to
the carrier plan& of Vi, V5, V4, Vs, Ve throughM. We FIG. 8: The carrie_r plgne of both flat pos&s,V>,Vy4,Vs and
denote the point which results from reflectiigon Q  V1:V2,Va, Vs of the prism is spanned Hy:, Vs, V).
by Vs.

If a pointVs 7= M exists such that the structure is flex- ideal point and its opposite vertex are coplanar during the fl

ible then the octahedron, Vs, Vs, Va, Vs, V3 also has to
be flexible due to the symmetry. As this octahedron iSTherefore we can also apply footnote 6 akSHEL [9]. Due

convex, we get a contradiction wiauchys Theorem Eﬁeaa:n t? 2?;@ E ?;ﬁ;&g :c(::o?nnc?i;e:a ?“) tvxéod \tl)(\e/rélrcriscw?lf-
For the special cas& =M the structur&/;, Vs, V3, Vs, Vs b 9 Y bp

can only flex either along the diagorfs V] of along bus). This can only yield a trivial self-motion as some faces

. LY gy . coincide permanently during the flex.
the diagonalVz, Vs|. This yields a trivial self-motion as i ¢|oses the determination of all non-trivial self-noots
some faces coincide permanently during the flex.

of TSSM manipulators with parallel rotary axes. Again it is

2. In the second case we get the poidisand Vs by re-  notdifficult to verify that the trivial self-motions of thesna-
flecting V1 and Vs, respectively, on the ling (cf. FIG. 7 nipulators can only be thbutterfly motionor the spherical
(b)). As|V1, Vs || [Va,Vs] implies item (1a) we can assume four-bar motion respectively.

[V1,Va] 4 [Va, V5] w.l.0.g.. If the motion transmission of the  ngte as we have completed the classification of all TSSM
faces through/s corresponds to the one of an antiparal- janipulators with self-motions, it is an easy task to coraput
lelogram then the pointey, V2, Va, Vs are always coplanar e associated self-motions themselves. The simplest vay f
during the flex. doing this is to consider the corresponding 6-3 parallel ma-
Now we assume that this transmission corresponds to theipulators of SG type and to run the algorithm for the so-
one of a parallelogram. We consider the two plangand lution of the forward kinematics of SG platforms given by
"> which are always parallel to the edges of the prism. AsHusTY [30], wheren-dimensional self-motions appear &s

in all poses withl"; # "2, the intersection lins contains  dimensional solutions of the direct kinematic problem.

Ve during the flex, this also has to hold in the limit where
1 andl", coincide.

Vs =V

7]

Vo = V4

Remark 7Finally, we consider a polyhedron consisting of two
pyramids/\; andA; and a cylindrical middle pafig (with an
Now we consider both flat pose¥i,V2,Va, V5 and  antiparallelogram as orthogonal cross section). Thishmly
VI, V,,Vy, Ve of the prism, which are illustrated in FIG. 8 gron is flexible if A; and My form a flexible octahedron of
Due to the above consideratiosss spanned by the mid- type 2 or type 3 with one vertex in the plane at infinity for

points ofV1V, andV,Vs. The condition tha/s has to be  j— 1,2, This construction is a generalization of the one given
located ors andV; on s, respectively, already determines py StacHEL in the concluding remarks of [8]. N

these points uniquely as they have to be related by a re-
flection on[V4,Vs] (which neither cannot be parallel nor
orthogonal tcs). VIl. CONCLUSION

Trivial computations (which are left to the reader) show

that e.g. the anglesqVaV4Vo and VgV4Vs are equal, In this article we determined the whole set of non-trivial
which already yields a contradiction as the spherical imageelf-motions of TSSM manipulators with two parallel rotary
of the faces throug¥, is an isogram. axes which equals the determination of all flexible octahe-
. dra where one vertex is an ideal point. In Theorem 2, 3 and
As a consequence of this case study We can assume W'l'c"!t}'it was shown that there are only two such flexible octahe-
that the points/y, V2, V4, Vs are planar during the flex of the g, \yhich proves the conjecture formulated by the author in
prism. .NOW the proof is closed by footnote 6 OTATHEL [15]. This study also closes the classification of self-iosi

[9], which says that a planar base polydén\Vz,Va,Vs of a ¢, parallel manipulators of TSSM type and of planar 6-3 SG
4-sided pyramld remams_planar during the flgx if and only 'fplatforms respectively.

the quadrlla.teral is an antiparallelogram and its planeg/of-s Asa by’product of this work we also gained a deeper insight
metry contains the apés. into the classicaBricard octahedrgcf. Lemma 1 and Remark

It remains to show that case 2 of item (c) of section V (resp3). Moreover, this article is the fist part of a classificatidall

its corresponding case of item (d) of section V) does not im{lexible octahedra in the projective extension of the Eedial

ply a solution: In this case, again all vertices apart from th 3-space which is completed in [16].
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