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Abstract. In a recent publication [10] the author showed that self-motions of general planar Stew-
art Gough platforms can be classified into two so-called Darboux Mannheim (DM) types (I and II).
Moreover, in [10] the author was able to compute the set of equations yielding a type II DM self-
motion explicitly. Based on these equations we present a basic result for this class of self-motions.
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1 Introduction

The geometry of a planar Stewart Gough (SG) platform is given by the six base
anchor points Mi with coordinates Mi := (Ai,Bi,0)T with respect to the fixed system
Σ0 and by the six platform anchor points mi with coordinates mi := (ai,bi,0)T with
respect to the moving system Σ . By using Study parameters (e0 : . . . : e3 : f0 : . . . : f3)
to parametrize Euclidean displacements, the coordinates m′

i of the platform anchor
points with respect to Σ0 can be written as Km′

i = Rmi +(t1, t2, t3)T with

t1 = 2(e0 f1− e1 f0 + e2 f3− e3 f2), t2 = 2(e0 f2− e2 f0 + e3 f1− e1 f3),

t3 = 2(e0 f3− e3 f0 + e1 f2− e2 f1), K = e2
0 + e2

1 + e2
2 + e2

3 6= 0 and

R = (ri j) =

e2
0 + e2

1− e2
2− e2

3 2(e1e2− e0e3) 2(e1e3 + e0e2)
2(e1e2 + e0e3) e2

0− e2
1 + e2

2− e2
3 2(e2e3− e0e1)

2(e1e3− e0e2) 2(e2e3 + e0e1) e2
0− e2

1− e2
2 + e2

3

 .

Now all points of P7
R which are located on the so-called Study quadricΨ : ∑

3
i=0 ei fi =

0, correspond to an Euclidean displacement, with exception of the subspace e0 =
. . . = e3 = 0 of Ψ , as these points cannot fulfill the normalizing condition K = 1.

If the geometry of the manipulator is given as well as the six leg lengths, then the
SG platform is in general rigid, but it can even be the case that the manipulator can
perform an n-parametric motion (n > 0), which is called self-motion. Note that such
motions are also solutions to the famous Borel Bricard problem (cf. [1, 3, 4, 11]).
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2 Types of self-motions

In section 2 and 3 we give a very short review of the results and ideas stated in [10],
where also more details and examples can be found.

It is known that architecturally singular SG platforms, which are well studied,
possess self-motions in each pose. Therefore, we are only interested in the com-
putation of self-motions of non-architecturally singular SG platforms. A detailed
review of self-motions of this type was given by the author in [10].

Moreover, it is known that if a planar SG platform with anchor points m1, . . . ,M6
is not architecturally singular, then at least a one-parametric set of legs exists, which
can be attached to the given manipulator without changing the forward kinematics
[5, 9] and the singularity set [2] of the manipulator. Moreover, it was shown that
in general the base anchor points Mi as well as the corresponding platform anchor
points mi are located on planar cubic curves C and c, respectively.

Assumption 1. We assume that there exist such cubics c and C (which can also be
reducible) in the Euclidean domain of the platform and the base, respectively.

We consider the complex projective extension P3
C of the Euclidean 3-space with

(ai,bi,0) 7→ (wi : xi : yi : 0), (Ai,Bi,0) 7→ (Wi : Xi : Yi : 0) and wi,xi,yi,Wi,Xi,Yi ∈ C.
Note that ideal points are characterized by wi = 0 and Wi = 0, respectively.

Moreover, we consider the correspondence between the points of C and c, which
is determined by the geometry of the manipulator m1, . . . ,M6 (cf. [2, 5, 9]). As this
correspondence has not to be a bijection, a point ∈ P3

C of c resp. C is in general
mapped to a non-empty set of points ∈ P3

C of C resp. c. We denote this set by the
term corresponding location and indicate this fact by the usage of brackets {}.

In P3
C the cubic C has three ideal points U1,U2,U3, where at least one of these

points (e.g. U1) is real. The remaining points U2 and U3 are real or conjugate com-
plex. Then we compute the corresponding locations {u1} ,{u2} ,{u3} of c (⇒ {u1}
contains real points). We denote the ideal points of c by u4,u5,u6, where again one
(e.g. u4) has to be real. The remaining points u5 and u6 are again real or conjugate
complex. Then we compute the corresponding locations {U4} ,{U5} ,{U6} of C (⇒
{U4} contains real points).

Assumption 2. For guaranteeing a general case, we assume that each of the corre-
sponding locations {u1}, {u2}, {u3} ,{U4}, {U5}, {U6} consists of a single point.
Moreover, we assume that no 4 collinear platform anchor points u j or base anchor
points U j ( j = 1, . . . ,6) exist.

Under consideration of Assumption 1 and 2, following theorem was proven [10]:

Theorem 1. The resulting manipulator u1, . . . ,U6 is architecturally singular.

Moreover, it was proven in [10] that there only exist type I and type II Darboux
Mannheim (DM) self-motions, where the definition of types reads as follows:

Definition 1. Assume M is a one-parametric self-motion of a non-architecturally
singular SG platform m1, . . . ,M6. Then M is of the type n DM if the corresponding
architecturally singular manipulator u1, . . . ,U6 has an n-parametric self-motion.
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3 Computation of type II DM self-motions

The only examples of type II DM self-motions known to the author are those con-
structed by Karger in [7, 8], which are characterized by e0 = 0.

The computation of type II DM self-motions in [10] was based on Darboux and
Mannheim constraints, which are repeated next. With this approach it seems for the
first time possible to give a complete classification of type II DM self-motions:

Darboux constraint: The constraint that the platform anchor point ui (i = 1,2,3)
moves in a plane of the fixed system orthogonal to the direction of the ideal point
Ui can be written as (cf. [10])

Ωi : X i(air11 +bir12 + t1)+Y i(air21 +bir22 + t2)+LiK = 0,

with Xi,Yi,ai,bi,Li ∈ C. This is a homogeneous quadratic equation in the Study
parameters where X i and Y i denote the conjugate complex of Xi and Yi, respectively.

Mannheim constraint: The constraint that the plane orthogonal to ui (i = 4,5,6)
through the platform point (gi,hi,0) slides through the point Ui of the fixed system
can be written as (cf. [10])

Πi : xi[Air11 +Bir21−giK−2(e0 f1− e1 f0− e2 f3 + e3 f2)]+
yi[Air12 +Bir22−hiK−2(e0 f2 + e1 f3− e2 f0− e3 f1)] = 0,

with xi,yi,Ai,Bi,gi,hi ∈ C. This is again a homogeneous quadratic equation in the
Study parameters where xi and yi denote the conjugate complex of xi and yi.

The content of the following lemma was also proven in [10]:

Lemma 1. Without loss of generality (w.l.o.g.) we can assume that the variety of
the two-parametric self-motion of u1, . . . ,U6 is spanned by Ψ ,Ω1,Ω2,Ω3,Π4,Π5.
Moreover, we can choose following special coordinate systems in Σ0 and Σ w.l.o.g.:
X1 = Y2 = Y3 = x4 = y5 = 1, a1 = b1 = y4 = A4 = B4 = Y1 = h4 = g5 = 0 and
X2(X2−X3)x5 6= 0.

We solve the linear system of equations Ψ ,Ω1,Ω2,Π4 for f0, . . . , f3 and plug the
obtained expressions in the remaining two equations.1 This yields in general two
homogeneous polynomials Ω [40] and Π [96] in the Euler parameters of degree 2
and 4, respectively. The number in the square brackets gives the number of terms.

Finally, we compute the resultant of Ω and Π with respect to one of the
Euler parameters. Here we choose2 e0. This yields a homogeneous polynomial
Γ [117652] of degree 8 in e1,e2,e3. In the following we denote the coefficients of
ei

1,e
j
2,e

k
3 of Γ by Γi jk. We get a set E of 24 equations Γi jk = 0 in the 14 unknowns

a2,b2,a3,b3,A5,B5,X2,X3,x5,L1,L2,L3,g4,h5.
Moreover, it should be noted that we denote the coefficients of ei

0e j
1,e

k
2,e

l
3 of Ω

and Π by Ωi jkl and Πi jkl , respectively.

1 For e0e2− e1e3 6= 0 this can be done w.l.o.g., as this factor belongs to the denominator of fi.
2 Therefore we are looking for a common factor of Ω and Π , which depends on e0.
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4 The basic result

An important step in direction of a complete classification of type II DM self-
motions is done by the basic result given in Theorem 2. As preparatory work for
the formulation of this theorem we have to define the following two special cases:
It can easily be seen, that Ω does not depend on e0 and e3 (upper signs) or e1 and e2
(lower signs) if the following three equations are fulfilled:

L1(X2−X3)−L2 +L3 = 0, (1)

a2(X2−X3)±X3(X2b2−X3b3)±b2∓b3 = 0, (2)

a3(X2−X3)±X2(X2b2−X3b3)±b2∓b3 = 0. (3)

Theorem 2. With exception of the above mentioned two special cases, the corre-
sponding manipulator u1, . . . ,U6 of a planar SG platform (fulfilling Assumptions 1,
2 and Lemma 1) with a type II DM self-motion, has to have further 3 collinear an-
chor points in the base or in the platform beside the points U1,U2,U3 and u4,u5,u6.

The proof is done by contradiction, i.e. we stop the case study if 3 anchor points
beside U1,U2,U3 and u4,u5,u6 are collinear or if we get one of the 2 special cases.

Proof for the general case Ω2000Π3000 6= 0
We assume Ω200Π3000 6= 0, as only those solutions of E correspond to type II self-
motions, which do not cause a vanishing of the coefficient of the highest power of
e0 in Ω and Π , respectively.

Γ800 can only vanish without contradiction (w.c.) for L1 = g4 or if F = X2(L1−
a2)−X3(L1−a3)−L2 +L3 +b2−b3 is fulfilled identically. We distinguish 3 parts:

Part [A] Assuming L1 6= g4: Now F = 0 has to hold. W.l.o.g. we express L1 from
F = 0. Then Γ710 = 0 implies a2 = a3−X2b2 +X3b3. Now Γ620 cannot vanish w.c..

Part [B] L1 = g4 and F = 0: We express L1 from F = 0. W.l.o.g. we can compute
h5 from the only non-contradicting factor of Γ602. Now Γ530 can vanish w.c. for:

1. L3 = X3(L2− b2)/X2 + X3(a2− a3)+ b3: W.l.o.g. we can express A5 from the
only non-contradicting factor of Γ422. Again we distinguish two cases:

a. X2b2 −X3b3 + a2 − a3 6= 0: Now Γ350 has only one non-contradicting fac-
tor, which can be solved for L2 w.l.o.g.. Then we can solve the only non-
contradicting factor of Γ314 for x5 w.l.o.g.. Now the resultant of the only non-
contradicting factors of Γ206 and Γ242 with respect to B5 cannot vanish w.c..

b. a3 = X2b2−X3b3 +a2: Then Γ314 = 0 implies L2 = 2X2
2b2 +X2a2 +b2.

i. X3(X2b2−X3b3)+ a2(X3−X2)+ x2
5(b3− b2) 6= 0: Under this assump-

tion we can express B5 from the only non-contradicting factor of Γ242.
Then Γ224 can only vanish w.c. for X i = −x5 with i = 2 or i = 3. As
for x5b j + X jbi = 0 with i 6= j and i, j ∈ {2,3} the expression Γ080 can-
not vanish w.c., we can assume x5b j + X jbi 6= 0. Under this assumption
we can compute a2 from Γ080 = 0 w.l.o.g.. Then the linear-combination
Γ044−Γ026−Γ062 equals b2

2b2
3(X j + x5)2(b2−b3), a contradiction.
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ii. X3(X2b2−X3b3)+a2(X3−X2)+x2
5(b3−b2) = 0: W.l.o.g. we can solve

this equation for a2. Then Γ242 can only vanish w.c. for X i = −x5 and
Γ080 = 0 implies X j = x5 with i 6= j and i, j ∈ {2,3}. Now x2

5Γ206−Γ026
equals bib2

jB5x6
5(b2−b3), a contradiction.

2. a2 = X3b3−X2b2 +a3 and X2X3(a2−a3)+X2(b3−L3)−X3(b2−L2) 6= 0: In
this case Γ440 = 0 already yields the contradiction.

Part [C] Assuming F 6= 0: Now L1 = g4 has to hold. Then Γ080 factors into
G[8]H[18]2. We distinguish 3 cases:

1. G[8] = 0: W.l.o.g. we can express L1 from G[8] = 0. Now Γ170 can only vanish
w.c. for (X3b3−X2b2−a2 +a3)V [18] = 0:

a. a2 = X3b3 −X2b2 + a3: We can solve the only non-contradicting factor of
Γ620 for h5. Now we can express L3 from the only non-contradicting factor of
Γ602. Moreover, we can compute A5 from the only non-contradicting factor of
Γ260. Then we can solve the only non-contradicting factor of Γ062 for L2.

i. x2
5(b2−b3)+2x5(X2b2−X3b3)+a3(X3−X2)+X2(X2b2−X3b3) 6= 0:

Now we can compute B5 from the only non-contradicting factor of Γ404
w.l.o.g.. We distinguish two cases:
? X2b3−X3b2 6= 0: Under this assumption we can express a3 from the

only non-contradicting factor of Γ026. Then Γ206 cannot vanish w.c..
? X2 = X3b2/b3: Now Γ026 = 0 implies b2 =−b3. Finally Γ206 = 0 yields

the contradiction.
ii. x2

5(b2−b3)+2x5(X2b2−X3b3)+a3(X3−X2)+X2(X2b2−X3b3) = 0:
W.l.o.g. we can solve this equation for a3. Then Γ206 can only vanish w.c.
for the following two cases:
? X3 = −x5: Now Γ404 = 0 implies b2 = −b3 and from Γ422 = 0 we get

B5 =−b3. Then Γ440−Γ242 = 0 yields the contradiction.
? X2 =−x5: Γ404 = 0 implies b2 =−b3 and Γ422 cannot vanish w.c..

b. V [18] = 0, X3b3−X2b2−a2 +a3 6= 0: W.l.o.g. we can solve this equation for
A5. We can solve the only non-contradicting factor of Γ620 for h5. Then we
can express L3 from the only non-contradicting factor of Γ602. Moreover, we
can solve the only non-contradicting factor of Γ062 for L2.

i. x2
5(b3−b2)+ x5(a2−a3 +X3b3−X2b2)+X2a2−X3a3 6= 0: Under this

assumption we can solve Γ404 = 0 for B5. Then Γ026 = 0 implies a2 =
X3a3b2/(X2b3) and Γ206 = 0 yields the contradiction.

ii. x2
5(b3−b2)+ x5(a2−a3 +X3b3−X2b2)+X2a2−X3a3 = 0:

? a2−x5b2 6= 0: In this case we can express X2 from the above equation.
Now Γ206 = 0 implies a3 = x5b3. From Γ404 = 0 we get a2 = −X3b2
and Γ422 = 0 yields B5 = b3. Then Γ440−Γ242 cannot vanish w.c..

? a2 = x5b2: Now Γ026 = 0 implies b3 = X3a3/(X2x5) and from Γ422 = 0
we get X3 =−x5. Then Γ440−Γ242 = 0 yields the contradiction.

2. H[18] = 0, G[8] 6= 0 and X2a2−X3a3 6= 0: Under this assumption we can com-
pute h5 from H[18] = 0. Then we can express B5 from the only non-contradicting
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factor of Γ620. Moreover, from the only non-contradicting factor of Γ602 we can
compute L2. Then we consider the only non-contradicting factor I[14] of Γ260.

a. x2
5(b2− b3)+ x5(X3b3−X2b2− a2 + a3)+ X2a2−X3a3 6= 0: Under this as-

sumption we can express A5 from I[14] = 0.
i. a3− x5b3 6= 0: Under this assumption we can express L3 from the only

non-contradicting factor of Γ062. Then Γ044 = 0 implies a2 = X2b2 −
X3b3 + a3. Then the resultant of Γ404 and Γ422 with respect to x5 can
only vanish w.c. for J[12](X2b3−a3)(X3b2 +X3b3−X2b2−a3) = 0:
? J[12] = 0: W.l.o.g. we can solve this equation for a3. Then Γ404 = 0

implies X3 = x5. Now Γ026 cannot vanish w.c..
? a3 = X3b2 +X3b3−X2b2: Then Γ404 cannot vanish w.c..
? a3 = X2b3: Now Γ404 = 0 implies X3 = x5 and Γ206 cannot vanish w.c..

ii. a3 = x5b3: From Γ062 = 0 we get L1 = 0. Then Γ404 = 0 implies a2 =
X2b2−X3b2 + x5b2. Now Γ422 cannot vanish w.c..

b. x2
5(b2−b3)+ x5(X3b3−X2b2−a2 +a3)+X2a2−X3a3 = 0:
i. X3 6= x5: Under this assumption we can express a3 from the above

equation. Then I = 0 implies X2 = x5. Now we can solve the only
non-contradicting factor of Γ404 for A5 w.l.o.g.. Then Γ026 = 0 implies
a2 = X3b2. Now the difference of the only non-contradicting factors of
Γ062 and Γ422 can only vanish w.c. for:
? X3 = 1/x5: Then we can solve Γ062 = 0 for L3 w.l.o.g.. Finally Γ044 = 0

yields the contradiction.
? L1 = 4b2b3(x5−X3)/(b2−b3): Now Γ062 cannot vanish w.c..

ii. X3 = x5: The equation of item b can only vanish w.c. for a2 = x5b2. Then
we can express A5 w.l.o.g. from the only non-contradicting factor of Γ404.
Now Γ026 = 0 implies a3 = X2b3. Then the difference of the only non-
contradicting factors of Γ062 and Γ422 can only vanish w.c. for:
? X2 = 1/x5: Now we can solve Γ062 = 0 for L3 w.l.o.g.. Then Γ044 = 0

implies b2 =−b3. Finally Γ026 = 0 yields the contradiction.
? L1 = 4b2b3(X2− x5)/(b2−b3): Now Γ062 cannot vanish w.c..

3. H[18] = 0, G[8] 6= 0 and a2 = X3a3/X2: Now H = 0 implies A5 = −X3a3/x5.
W.l.o.g. we can express h5 from the only non-contradicting factor of Γ620. More-
over, the only non-contradicting factor of Γ602 can be solved w.l.o.g. for L2. Then
we consider the only non-contradicting factor E[12] of Γ260.

a. X2x5(b3−b2)−X2(X3b3−X2b2)−a3(X2−X3) 6= 0: Under this assumption
we can solve E[12] = 0 for B5. Then Γ062 = 0 implies a3 = x5b3. Now we
can express x5 w.l.o.g. from the only non-contradicting factor of Γ404. Then
Γ026 = 0 implies X3 = 0. Finally Γ044 = 0 yields the contradiction.

b. X2x5(b3−b2)−X2(X3b3−X2b2)−a3(X2−X3) = 0: W.l.o.g. we can express
a3 from this equation. Then E can only vanish w.c. for:

i. X3 = x5: Now Γ062 = 0 already yields the contradiction.
ii. X2 = x5: Now Γ062 = 0 implies B5 = −b3. Then we can solve the only

non-contradicting factor of Γ404 for x5. Γ026 = 0 yields the contradiction.



Basic result on type II DM self-motions of planar Stewart Gough platforms 7

Proof for the special case Ω2000Π3000 = 0
If we set ei equal to zero for any i ∈ {0, . . . ,3}, then Ω and Π have to be fulfilled
identically. It can be seen immediately that the conditions implied by Ω = 0 already
yield a contradiction. Therefore we can assume e0e1e2e3 6= 0 w.l.o.g. for this section
of the proof.

Part [A] Ω2000 = 0, Ω1000Π3000 6= 0: From Ω2000 = 0 we can express L1 w.l.o.g..
Moreover, we can compute e0 from Ω = 0 and plug the resulting expression into Π

which yields in the numerator a homogeneous polynomial Γ [10058] of degree 7 in
e1,e2,e3. From Γ700 = 0 we can compute g4. Then Γ610 = 0 yields the contradiction.

Part [B] Ω2000 = Π3000 = 0, Ω1000Π2000 6= 0: Again we express L1 from Ω2000 = 0.
It can be seen immediately from Ω = 0 that all coefficients of Π3000 = 0 with respect
to the remaining Study parameters have to vanish in order to get no contradiction.
Therefore we can compute g4 and h5 from Π3100 = 0 and Π3010 = 0, respectively. We
solve Ω = 0 for e0 and plug it into Π which yields in the numerator a homogeneous
polynomial Γ [1666] of degree 5 in e1,e2,e3.

W.l.o.g. we can compute L3 from Γ500 = 0. Then we can solve the only non-
contradicting factor of Γ410 for L2. Moreover, the only non-contradicting factor of
Γ320 can be solved for A5. Now Γ302 = 0 has only one non-contradicting factor which
can be solved for x5. Then the difference of the only non-contradicting factors of
Γ230 and Γ104 can only vanish w.c. for a2 = X3a3b2/(X2b3).

1. X2
2b2

3(X2B5− a3) + X3a3(X2b2
3−B5a3) 6= 0: Now we can express b2 from the

only non-contradicting factor of Γ230. Then Γ014 cannot vanish w.c..
2. X2

2b2
3(X2B5−a3)+X3a3(X2b2

3−B5a3) = 0:

a. a3B5−X2b2
3 6= 0: Under this assumption we can compute X3 from the above

equation. Now Γ230 = 0 implies a3 = X2B5. Then Γ014 cannot vanish w.c..
b. a3 = X2b2

3/B5: Now the equation of item 2 can only vanish w.c. for B5 =±b3.
In both cases Γ212 = 0 yields the contradiction.

Part [C] Ω2000 = Π3000 = Π2000 = 0, Ω1000Π1000 6= 0: Again we express L1 from
Ω2000 = 0. It can be seen immediately from Ω = 0 that all coefficients of Πi000 =
0 (for i = 2,3) with respect to the remaining Study parameters have to vanish in
order to get no contradiction. Therefore we compute g4 and h5 from Π3100 = 0 and
Π3010 = 0, respectively. Moreover, we can solve Π2101 = 0 and Π2011 = 0 for L3 and
L2 w.l.o.g.. We solve Ω = 0 for e0 and plug it into Π which yields in the numerator
a homogeneous polynomial Γ [191] of degree 5 in e1,e2,e3.

Now Γ410 = 0 implies b2 = −B5. Then we can solve the only non-contradicting
factor of Γ320 for A5 w.l.o.g.. Now Γ230 = 0 implies a2 =−B5x5. Then we can solve
the only non-contradicting factor of Γ302 for a3 w.l.o.g.. We get X3 = −x5 from
Γ104 = 0. Finally Γ212 = 0 yields the contradiction.

Part [D] Π3000 = 0, Ω2000Π2000 6= 0: It can be seen immediately from Ω = 0 that
all coefficients of Π3000 = 0 with respect to the remaining Study parameters have
to vanish in order to get no contradiction. Therefore we can express L1 and h5 from
Π3100 = 0 and Π3010 = 0, respectively. Then we compute the resultant of Ω [40]
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and Π [44] with respect to e0 which yields a homogeneous polynomial Γ [15153] of
degree 8 in e1,e2,e3. Γ080 can only vanish w.c. in the following 2 cases:

1. L2 = g4(X2−X3)+L3 +X2a2−X3a3−b2 +b3: Then we can solve Γ602 = 0 for
L3 w.l.o.g.. Now Γ620 can only vanish w.c. in the following 2 cases:

a. B5 =−b2: Due to Γ170 = 0 we have to distinguish again 2 cases:
i. a2 =−A5x5/X2: Then Γ440 can only vanish w.c. for:

? X2 = x5: Then Γ062 = 0 implies g4 = 0 and from Γ026 = 0 we get A5 =
−x5b2. Now Γ242 = 0 implies b3 = X3a3/x2

5. Finally Γ422 = 0 yields
the contradiction.

? A5 = −x5b2: Again Γ062 = 0 implies g4 = 0. Moreover, we get b3 =
X3a3/(X2x5) from Γ242 = 0 and X3 = −x5 from Γ206 = 0. Finally
Γ422 = 0 yields the contradiction.

? b2 = b3−X3a3−A5x5: Again Γ062 = 0 yields g4 = 0. Then Γ026 = 0
implies X2 =−x5. We can express b3 from the only non-contradicting
factor of Γ350 = 0. Then Γ206 can only vanish w.c. for ST = 0 with

S = A5x5(x2
5 +1)+X3a3(x2

5−1)−2x5a3,

T = A5x5(X
2
3−1)+X3a3(X

2
3 +1)−2X3A5.

(4)

α) S = 0: As for x5 =±i the equation S = 0 cannot vanish w.c. we can
assume w.l.o.g. 1+ x2

5 6= 0. Now we can express A5 from S = 0. Then
Γ224 = 0 implies X3 = 1/x5. Finally Γ242 = 0 yields the contradiction.
β ) T = 0, x5(X

2
3−1)−2X3 6= 0: Under this assumption we can express

A5 from T = 0. Then Γ224 = 0 implies X3 = 1/x5. Now Γ242 = 0 yields
the contradiction.
γ) T = 0, x5(X

2
3− 1)− 2X3 = 0: W.l.o.g. we can express x5 from the

last equation. Then T = 0 implies a3 = 0. Now Γ224 cannot vanish w.c..
ii. a2 = a3 +X3b3−X2b2, X2a2 +A5x5 6= 0: Then Γ260 cannot vanish w.c..

b. b2 = X2a2−X3a3 +b3, B5 6=−b2: Now Γ530 cannot vanish w.c..

2. a2 = −A5x5/X2, g4(X2−X3)−L2 + L3 + X2a2−X3a3− b2 + b3 6= 0: W.l.o.g.
we can express b2 from the only non-contradicting factor of Γ260. Then Γ440 can
only vanish w.c. for:

a. X2 = x5: Then Γ602 = 0 implies an expression for L3. Now Γ404 can only
vanish w.c in the following 2 cases:

i. a3 = X3b3 +B5x5−A5: We distinguish again 2 cases:
? X3B5 + x5b3 6= 0: Under this assumption we can compute A5 from the

only non-contradicting factor of Γ206. Then we can solve the only non-
contradicting factor of Γ062 for g4 w.l.o.g.. Now Γ242 = 0 implies X3 =
−x5 and Γ422 = 0 yields the contradiction.

? X3 =−x5b3/B5: Now Γ206 = 0 implies B5 = b3 and from Γ062 = 0 we
get an expression for g4. Then we get A5 = x5b3 from Γ026 = 0 and
Γ422 = 0 yields the contradiction.
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ii. L2 = x5(A5 +g4)−B5, X3b3 +B5x5−A5−a3 6= 0: Then Γ422 = 0 can be
solved w.l.o.g. for g4. From the only non-contradicting factor of Γ314 we
can express a3 w.l.o.g.. We distinguish 2 cases:
? X3B5 +x5b3 6= 0: Under this assumption we can solve Γ242 = 0 for A5.

Then Γ206 = 0 implies X3 = 0. Finally Γ062 = 0 yields the contradiction.
? X3 =−x5b3/B5: Now Γ242 = 0 cannot vanish w.c..

b. A5 = X2B5, X2 6= x5: W.l.o.g. we can solve Γ602 = 0 for L2. Then Γ062 can
only vanish w.c. for:

i. g4 = 0: Then Γ422 = 0 implies a3 = b3(X2−X3 +x5). Now Γ242 = 0 yields
X3 = x5. Finally Γ224 cannot vanish w.c..

ii. B5 = −X3a3/(X2x5), g4 6= 0: Now the only non-contradicting factor of
Γ044 can be solved for b3. Then Γ026 = 0 yields the contradiction.

Part [E] Π3000 = Π2000 = 0, Ω2000Π1000 6= 0: It can be seen immediately from
Ω = 0 that all coefficients of Πi000 = 0 (for i = 2,3) with respect to the remaining
Study parameters have to vanish in order to get no contradiction. Therefore we can
express L1 and h5 from Π3100 = 0 and Π3010 = 0, respectively. Moreover, we can
compute L2 and g4 from Π2101 = 0 and Π2011 = 0, respectively. Then we solve
Π = 0 for e0 and plug it into Ω which yields in the numerator a homogeneous
polynomial Γ [2408] of degree 8 in e1,e2,e3.

Now Γ602 can only vanish w.c. for B5 = b2. Then we can solve the only non-
contradicting factor of Γ620 for L3. Then Γ530 = 0 implies a2 = X3b3−X2b2 + a3.
Finally Γ440 cannot vanish w.c..

Part [F] Ω2000 = Ω1000 = 0: W.l.o.g. we can express L1 and a2 from Ω2000 = 0 and
Ω1001 = 0, respectively. As Ω0002 cannot vanish w.c. we proceed as follows:

1. Π0003 6= 0: Now we compute the resultant of Ω and Π with respect to e3 which
yields a homogeneous polynomial Γ [87839] of degree 8 in e0,e1,e2. In the fol-
lowing we denote the coefficients of ei

1,e
j
2,e

k
0 of Γ by Γi jk. Now Γ080 equals

(b2−b3)C[4]D[10].

a. C[4] = 0: W.l.o.g. we can express a3 from C = 0. Moreover, we can solve the
only non-contradicting factor of Γ800 for A5 w.l.o.g.. Then we can compute L2
from the only non-contradicting factor of Γ170. Now Γ206 = 0 implies g4 = 0
and from Γ404 = 0 we get h5 = B5− b3− L3. Moreover, we can express L3
from the only non-contradicting factor of Γ062. Then Γ026 = 0 implies X3 = 0
and finally Γ620 = 0 yields the contradiction.

b. D[10] = 0, C[4] 6= 0: W.l.o.g. we can solve D = 0 for L2. Then Γ206 = 0 im-
plies g4 = 0. Now we can solve the only non-contradicting factor of Γ026
for h5. Then Γ404 = 0 implies L3 = −b3 −X3a3. W.l.o.g. we can solve the
only non-contradicting factor of Γ602 for a3. Now Γ044 = 0 yields A5 = B5x5.
The difference of the only non-contradicting factors of Γ260 and Γ062 implies
X2 =−X3. Then Γ260 can only vanish w.c. for:

i. X3 = x5: Γ620 = 0 implies B5 = b3 and Γ242 = 0 yields the contradiction.
ii. X3 =−x5: Then Γ620 = 0 already yields the contradiction.
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2. Π0003 = 0, Π0002 6= 0: It can be seen immediately from Ω = 0 that all coefficients
of Π0003 = 0 with respect to the remaining Study parameters have to vanish in
order to get no contradiction. Therefore we can express h5 and L2 from Π0103 = 0
and Π0013 = 0, respectively. Now we compute the resultant of Ω and Π with
respect to e3 which yields a homogeneous polynomial Γ [7821] of degree 8 in
e0,e1,e2. In the following we denote the coefficients of ei

1,e
j
2,e

k
0 of Γ by Γi jk.

W.l.o.g. we can solve the only non-contradicting factor of Γ800 for a3. Moreover,
we can compute b2 from the only non-contradicting factor of Γ620 w.l.o.g.. Then
Γ206 = 0 implies g4 = 0. Now Γ602 = 0 yields A5 = B5X2. Then we solve the only
non-contradicting factor of Γ026 for L3.

a. X3B5 −X2b3 6= 0: Under this assumption we can express x5 from the only
non-contradicting factor of Γ062. Then Γ224 = 0 implies X2 = −X3. Finally
Γ242 = 0 yields the contradiction.

b. b3 = X3B5/X2: Then Γ062 = 0 implies X2 = −X3. From Γ224 = 0 we get
X3 =−x5. Finally Γ242 = 0 yields the contradiction.

3. Π0003 = Π0002 = 0, Π0001 6= 0: It can be seen immediately from Ω = 0 that all
coefficients of Π000i = 0 (for i = 2,3) with respect to the remaining Study param-
eters have to vanish in order to get no contradiction. Therefore we can express h5
and L2 from Π0103 = 0 and Π0013 = 0, respectively. Moreover, we can compute
g4 and L3 from Π1102 = 0 and Π1012 = 0, respectively. Then we solve Π for e3
and plug it into Ω which yields in the numerator a homogeneous polynomial
Γ [1766] of degree 8 in e0,e1,e2. In the following we denote the coefficients of
ei

1,e
j
2,e

k
0 of Γ by Γi jk.

W.l.o.g. we can solve the only non-contradicting factor of Γ800 for a3. Moreover,
we can compute b2 from the only non-contradicting factor of Γ620 w.l.o.g.. Now
Γ206 = 0 yields A5 = B5X2. Finally Γ062 = 0 yields the contradiction.

4. Π0003 = Π0002 = Π0001 = 0, Π0300 6= 0: It can be seen immediately from Ω = 0
that all coefficients of Π000i = 0 (for i = 1,2,3) with respect to the remaining
Study parameters have to vanish in order to get no contradiction. Therefore we
can express h5 and L2 from Π0103 = 0 and Π0013 = 0, respectively. Moreover, we
can compute g4 and L3 from Π1102 = 0 and Π1012 = 0, respectively. Π0121 = 0
implies B5 = b2. From Π2011 = 0 we get A5 = a3 +x5b2−X3b3. Now Π0211 can
only vanish w.c. for X2 = x5.
As Ω0200 cannot vanish w.c. and due to our assumption Π0300 6= 0 we can com-
pute the resultant of Ω and Π with respect to e1 which yields a homogeneous
polynomial Γ [1013] of degree 6 in e0,e2,e3. Now the coefficient of e6

3 of Γ can-
not vanish w.c..

5. Π0003 = Π0002 = Π0001 = Π0300 = 0: Now we proceed analogously to the first and
second paragraph of the last case but with the extra condition Π0300 = 0 which
implies a3 = X3b3. Now Π0200 and Ω0200 cannot vanish w.c. and therefore we can
compute the resultant of Ω and Π with respect to e1 which yields a homogeneous
polynomial Γ [87] of degree 6 in e0,e2,e3. Again the coefficient of e6

3 of Γ cannot
vanish w.c..
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Part [G] Π3000 = Π2000 = Π1000 = 0: In contrast to Π1000 = 0, it can be seen im-
mediately from Ω = 0 that all coefficients of Πi000 = 0 (for i = 2,3) with respect
to the remaining Study parameters have to vanish in order to get no contradiction.
Therefore we can solve Π3100 = 0 for L1, Π3010 = 0 for h5, Π2101 = 0 for L2 and
Π2011 = 0 for g4 w.l.o.g..
Part [G1] Π1000 = 0 does not vanish identically for all e1,e2,e3: If the coefficient
Z of e2

3 of Π1000 vanishes, then Π1000 = 0 only depends on e1,e2 and this already
yields together with Ω = 0 the contradiction. Therefore we can assume w.l.o.g.
Z 6= 0. Now we have to distinguish the following cases:

1. Ω0002Π0003 6= 0: We can compute the resultant of Π1000 and Ω resp. Π with re-
spect to e3 w.l.o.g. which yields RΩ and RΠ , respectively. Now RΩ and RΠ have
to vanish independently of e0,e1,e2, whereby RΠ spits up into e2P[8]Q[38]2. It
can easily be seen that the coefficients of the quadratic homogeneous polynomial
P = 0 in the unknowns e1,e2 cannot vanish w.c.. Therefore we set Q = 0 which
is a quartic polynomial in e1,e2. We denote the coefficients of ei

1e j
2 of Q by Qi j.

Now Q04 can only vanish w.c. for:

a. b2 =−B5: Q40 = 0 implies an expression for a2 and Q31 cannot vanish w.c..
b. A5 = a2 +B5x5−X2b2: Then Q40 can vanish w.c. for:

i. b2 = B5: Then Q31 = 0 implies an expression for a2. Finally Q13 cannot
vanish w.c..

ii. a2 = X2b2: Now Q31 can only vanish w.c. for x5 =±X2. As for x5 =−X2
the expression Q22 cannot vanish w.c. we set x5 = X2. Then Q is fulfilled
identically. Now it is not difficult to verify that the coefficients of RΩ

cannot vanish w.c. (proof is left to the reader).

2. Π0003 = 0, Ω0002 6= 0: W.l.o.g. we can compute B5 from Π0103 = 0.

a. X2 6= x5: Under this assumption we can express b2 from Π0013 = 0. Now it
can easily be seen that Π0002 cannot vanish w.c.. Therefore we can compute
the resultant of Π1000 and Ω resp. Π with respect to e3 w.l.o.g. which yields
RΩ and RΠ , respectively. Then RΠ splits up and can only vanish w.c. for
P[6] = 0 or Q[14]. It can easily be seen that the coefficients of the quadratic
homogeneous polynomial P = 0 in the unknowns e1,e2 cannot vanish w.c..
Therefore we set Q = 0 which is also a quadratic polynomial in the unknowns
e1,e2. We denote the coefficients of ei

1e j
2 of Q by Qi j. Now Q02 = 0 implies

A5 =−X2a2/x5. Then we get x5 =−1/X2 from Q11 = 0. Then Q is fulfilled
identically. Now Π1000 = 0 cannot vanish w.c..

b. X2 = x5: In this case Π0013 can only vanish w.c. for:
i. A5 = a2: Now Π1000 is a factor of Π . Therefore we can only compute

the resultant of Π1000 and Ω with respect to e3 w.l.o.g. which yields a
homogeneous polynomial RΩ [674] of degree 6 in e0,e1,e2. It is again not
difficult to verify that the coefficients of RΩ cannot vanish w.c. (proof is
left to the reader).

ii. x5 = ±i, A5 6= a2: Now it can easily be seen that Π0002 cannot vanish
w.c.. Therefore we can compute the resultant of Π1000 and Ω resp. Π
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with respect to e3 w.l.o.g. which yields RΩ and RΠ , respectively. Then
RΠ splits up and can only vanish w.c. for P[5] = 0. It can easily be seen
that the coefficients of the linear homogeneous polynomial P = 0 in the
unknowns e1,e2 cannot vanish w.c..

3. Ω0002 = 0, Ω0001Π0003 6= 0: W.l.o.g. we can express L3 from Ω0002 = 0. Now the
remaining discussion of this case can exactly be done as in item 1 of part [G1].

4. Ω0002 = Ω0001 = 0, Π0003 6= 0: W.l.o.g. we can express L3 from Ω0002 = 0 and
a2 from Ω1001 = 0. Then we compute the resultant of Π1000 and Π with respect
to e3 w.l.o.g. which yields RΠ . Now RΠ splits up and can only vanish w.c. for
P[11] = 0 or Q[49] = 0.

a. P[11] = 0: Now the coefficients of this equation can only vanish w.c. for:

b2 =−B5, A5 = X2B5, a3 = B5(X2− x5)+X3b3.

But then Π1000 equals e1e2
3B5(X2− x5) which yields the contradiction.

b. Q[49] = 0: This is a quartic polynomial in the unknowns e1,e2. We denote the
coefficients of ei

1e j
2 of Q by Qi j. Then Q04 can only vanish w.c. for:

i. b2 =−B5: Q40 = 0 implies an expression for a3. Q31 cannot vanish w.c..
ii. A5 = a3 +B5x5−X3b3: Then Q40 can vanish w.c. for:

? b2 = B5: Then Q31 = 0 implies an expression for a3. Finally Q13 cannot
vanish w.c..

? a3 = X3b3: Now Q31 can only vanish w.c. for x5 = ±X2. As for x5 =
−X2 the expression Q22 cannot vanish w.c. we set x5 = X2. Then Q is
fulfilled identically. As now the coefficient of the highest exponent of
e2 in Π1000 and Ω = 0 cannot vanish w.c. we can compute the resultant
of Π1000 = 0 and Ω with respect to e2 w.l.o.g. which yields RΩ [87].
Now it is not difficult to verify that the coefficients of RΩ cannot vanish
w.c. (proof is left to the reader).

5. Ω0002 = Π0003 = 0, Ω0001 6= 0: We can express L3 from Ω0002 = 0 and Π0103 = 0
implies b2 = x5A5 +B5−X2a2.

a. X2 6= x5: Under this assumption we can express B5 from Π0013 = 0. As Π0002
cannot vanish w.c. we can compute the resultant of Π1000 and Π with respect
to e3, which yields RΠ . Now RΠ splits up and can only vanish w.c. for P[6] = 0
or Q[14] = 0. As it can easily be seen, that the coefficients of P[6] = 0 cannot
vanish w.c., we set Q[14] equal to zero, which is a quadratic polynomial in
the unknowns e1,e2. We denote the coefficients of ei

1e j
2 of Q by Qi j. Then

Q02 = 0 implies a2 =−x5A5/X2. Now Q11 = 0 can only vanish w.c. for:
i. X2 =−x5: Then Q20 can only vanish for x5 =±1. In both cases Π1000 = 0

yields the contradiction.
ii. x5 =−1/X2, X2 + x5 6= 0: Again, Π1000 = 0 yields the contradiction.

b. X2 = x5: Now Π0013 can only vanish w.c. for:
i. a2 = A5: Now Π1000 is a factor of Π . Therefore we compute the resul-

tant of Π1000 and Ω with respect to e3, which yields RΩ [244]. Moreover,
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RΩ = 0 is a homogeneous equation of degree 5 in e0,e1,e2. Now it is not
difficult to verify that the coefficients of RΩ cannot vanish w.c. (proof is
left to the reader).

ii. x5 =±i, a2 6= A5: In this case we can compute the resultant of Ω and the
only non-contradicting factor of Π1000 with respect to e3, which yields
RΩ [207]. Moreover, RΩ = 0 is a homogeneous equation of degree 4 in
e0,e1,e2. Then the coefficient of e3

2 of RΩ yields the contradiction.

6. Ω0002 = Ω0001 = Π0003 = 0: We can express L3 from Ω0002 = 0 and Π0001 =
0 implies a2 = a3 + X2b2−X3b3. Moreover we get a3 = A5X3b3− x5B5 from
Π0013 = 0.

a. X2 6= x5: Under this assumption we can express A5 from Π0103 = 0. As Π0002
cannot vanish w.c. we can compute the resultant of Π1000 and Π with respect
to e3, which yields RΠ . Now RΠ splits up and can only vanish w.c. for P[6] = 0
or Q[14] = 0. As it can easily be seen, that the coefficients of P[6] = 0 cannot
vanish w.c., we set Q[14] equal to zero, which is a quadratic polynomial in
the unknowns e1,e2. We denote the coefficients of ei

1e j
2 of Q by Qi j. Then

Q20 = 0 implies B5 =−b2. Now Q02 = 0 can only vanish w.c. for:
i. X2 =−x5: Then Q11 = 0 yields the contradiction.

ii. x5 =−1/X2, X2 + x5 6= 0: Now Π1000 = 0 yields the contradiction.
b. X2 = x5: Now Π0103 can only vanish w.c. for:

i. b2 = B5: Now Π1000 is a factor of Π . Moreover, Ω0020 cannot vanish w.c..
? A5 6= 0: Under this assumption we can compute the resultant of Π1000

and Ω with respect to e2, which yields RΩ [792]. The coefficient of e6
0

of RΩ cannot vanish w.c..
? A5 = 0: Now the coefficient of e2

2 of Π1000 cannot vanish w.c., and
therefore we can compute the resultant of Π1000 and Ω with respect
to e2, which yields RΩ [80]. Then the coefficient of e4

0 of RΩ yields the
contradiction.

ii. X2 =±i, b2 6= B5: We distinguish two cases:
? 2A5 ± b2i∓B5i 6= 0: Under this assumption the highest exponent of

e2 in Π and Π1000 cannot vanish w.c.. Therefore we can compute the
resultant of the only non-contradicting factors of Π1000 and Π with
respect to e2, which yields RΠ . It can immediately be seen, that RΠ

cannot vanish w.c..
? A5 =(±B5i∓b2i)/2: Now Π1000 can only vanish w.c. for e1 =∓e2

3i/e2.
Then it can immediately be seen, that Π = 0 yields the contradiction.

Part [G2] Π1000 = 0 vanishes identically for all e1,e2,e3: Now Π1210 = 0 implies
b2 =−B5 and from Π1012 = 0 we get a2 =−A5x5/X2. Then Π1120 = 0 and Π1102 =
0 can only vanish w.c. for X2 = x5. Now we distinguish the following cases:

1. Ω0200 6= 0: As Π0300 cannot vanish w.c. and due to our assumption Ω0200 6= 0
we can compute the resultant of Ω and Π with respect to e1 which yields a
homogeneous polynomial Γ [3200] of degree 6 in e0,e2,e3. In the following we
denote the coefficients of ei

0,e
j
2,e

k
3 of Γ by Γi jk.
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W.l.o.g. we can solve Γ600 = 0 for L3. Then Γ303 = 0 implies a3 = X3b3 +B5x5−
A5. Now Γ006 can only vanish w.c. for X5(A5B5−X3B5b3−B2

5x5)+A5x5b3 = 0.
Now we have to distinguish again two cases:

a. X3B5 + x5b3 6= 0: Under this assumption we can compute A5 from N = 0.
i. X3−2X2

3x5−x5 6= 0: Now we can solve the only non-contradicting factor
of Γ024 = 0 for b3. Then Γ042 = 0 yields the contradiction.

ii. X3− 2X2
3x5− x5 = 0: W.l.o.g. we can solve this expression for x5. Now

Γ024 = 0 yields the contradiction.
b. X3 =−x5b3/B5: Now N = 0 implies B5 = b3. Then Γ024 can only vanish w.c.

for b3 =−A5(1+2x2
5)/x5. Finally Γ060 = 0 yields the contradiction.

2. Ω0200 = 0, Ω0100 6= 0: W.l.o.g. we can express L3 from Ω0200 = 0. Then we solve
Ω for e1 and plug it into Π which yields in the numerator a homogeneous poly-
nomial Γ [621] of degree 6 in e0,e2,e3. Then the coefficient of e6

0 of Γ already
yields the contradiction.

3. Ω0200 = Ω0100 = 0, Π0030 6= 0: W.l.o.g. we can express L3 from Ω0200 = 0 and
a3 from Ω0110 = 0. Now it can easily be seen that Ω0020 cannot vanish w.c.. Due
to this fact an the assumption Π0020 6= 0 we can compute the resultant of Ω and
Π with respect to e2 which yields a homogeneous polynomial Γ [838] of degree
6 in e0,e1,e3. Again we get the contradiction from the coefficient of e6

0 of Γ .
4. Ω0200 = Ω0100 = Π0030 = 0: W.l.o.g. we can express L3 from Ω0200 = 0 and a3

from Ω0110 = 0. Now Π0030 = 0 implies A5 = B5x5.
Now it can easily be seen that Ω0020 as well as Π0020 cannot vanish w.c.. There-
fore we can compute the resultant of Ω and Π with respect to e2 w.l.o.g. which
yields a homogeneous polynomial Γ [100] of degree 4 in e0,e1,e3. Finally we get
the contradiction from the coefficient of e4

0 of Γ .

Due to the structure3 of Ω it can easily be seen, that Ω and Π can only have a com-
mon factor, which does not depend on e0 (cf. footnote 2) if Ω = 0 has this property
too. As this case was already treated in part [F] we remain with the discussion of
those cases excluded by the assumption e0e2− e1e3 6= 0 (cf. footnote 1).

Proof for the case e0e2− e1e3 = 0
We split up this section of the proof into three parts.

Part [A] As e0 = e1 = e2 = e3 = 0 does not correspond with an Euclidean motion,
we start by discussing the following 4 cases:

e0 = e1 = e2 = 0, e0 = e1 = e3 = 0, e0 = e2 = e3 = 0, e1 = e2 = e3 = 0.

We only discuss the case e0 = e1 = e2 = 0 in more detail because the other 3 cases
can be done analogously. Now Ψ = 0 implies f3 = 0. Then Ω1 = 0 yields an ex-
pression for f2 and from Ω2 = 0 we get an expression for f1. This cannot yield a
2-parametric self-motion as only the homogeneous parameters e3 and f0 are free.

3 Ω : ∑
3
i=0 cie2

i +c4e0e3 +c5e1e2 where c0, . . . ,c5 only depend on the geometry of the SG platform.
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Part [B] In this part we discuss the following four special cases:

1. e0 = e1 = 0: Due to part [A] we can assume w.l.o.g. e2e3 6= 0. We can compute f2
w.l.o.g. from Ψ = 0. Then Ω1 implies f3 = −L1e2/2. Then Π4 can only vanish
w.c. for g4 = −L1. Moreover, we can express f1 from Π5 w.l.o.g.. Finally the
coefficients of e2 f0 of Ω2 and Ω3 cannot vanish w.c..

2. e2 = e3 = 0: This case can be done analogously to the last one.
3. e0 = e3 = 0: Due to part [A] we can assume e1e2 6= 0. We can compute f1 from

Ψ = 0. Then we can express f0 from Π4 = 0. Moreover, we can compute f3 from
Π5 = 0. Now Ω1, Ω2 and Ω3 have to vanish independently of the choice of the
unknowns e1,e2, f2.
The coefficient of e4

1 of Ω2 implies an expression for h5. Then we get L2 from
the coefficient of e1

1e3
2 of Ω2 and L3 from the coefficient of e4

1 of Ω3. Then the
coefficients of e4

1 and e4
2 of Ω1 imply L1 = g4 = 0. Now we can compute a2 from

the coefficient of e1
1e3

2 of Ω1. Moreover, the coefficient of e3
1e1

2 of Ω1 implies
B5 = x5A5 and from the coefficient of e1

1e3
2 of Ω3 we get a3 = A5(1+x2

5)−X3b3.
Then the coefficient of e2

1e2
2 of Ω1 can only vanish w.c. for x5 = ∓i. Then the

coefficient of e4
2 of Ω2 implies X2 =±i. Finally, the coefficient of e4

2 of Ω3 yields
the contradiction.

4. e1 = e2 = 0: This case can be done analogously to the last one.

Part [C] Due to the discussion of the special cases in part [A] and part [B] we can
assume w.l.o.g. e0e1e2e3 6= 0. Therefore we can solve e0e2− e1e3 = 0 w.l.o.g. for
e2. Moreover, we can solve Ψ ,Ω1,Π4,Π5 w.l.o.g. for f0, f1, f2, f3.

Now Ω2 and Ω3 have to vanish independently of the choice of the unknowns
e0,e1,e3. Therefore the coefficient of e6

0 of Ω2 implies L1 = g4. Then the coefficient
of e5

0e3 of Ω2 yields an expression for L2. Now we get g4 = 2a2− 2X2b2 from the
coefficient of e4

0e2
3 of Ω2. Moreover, we get a2 = X2b2 from the coefficient of e2

1e4
3

of Ω2. Finally the coefficient of e0e2
1e3

3 of Ω2 cannot vanish w.c..
This finishes the proof of Theorem 2. �

5 Conclusion and future research

In this paper we presented the basic result (cf. Theorem 2) on type II Darboux
Mannheim (DM) self-motions of planar SG platforms. Due to Lemma 2 of [6] and
Theorem 1 we can replace the word “or” in Theorem 2 by the word “and”; i.e. with
exception of the two special cases there always exist three collinear platform points
ui,u j,uk and three collinear base points Ul ,Um,Un beside the points U1,U2,U3 and
u4,u5,u6 where (i, j,k, l,m,n) consists of all indices from 1 to 6.

The presented basic result raises the hope of giving a complete classification of
type II DM self-motions in the future, which would be an important step in solving
the famous Borel Bricard problem. On base of Theorem 2 the work towards this
goal is in progress.
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