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Abstract. In a recent publication [10] the author showed that self-motions of general planar Stew-
art Gough platforms can be classified into two so-called Darboux Mannheim (DM) types (I and II).
Moreover, in [10] the author was able to compute the set of equations yielding a type II DM self-
motion explicitly. Based on these equations we present a basic result for this class of self-motions.
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1 Introduction

The geometry of a planar Stewart Gough (SG) platform is given by the six base
anchor points M; with coordinates M; := (A;, B;, O)T with respect to the fixed system
X, and by the six platform anchor points m; with coordinates m; := (a;,b;,0)” with
respect to the moving system X. By using Study parameters (eg:...:e3: fo:...: f3)
to parametrize Euclidean displacements, the coordinates m of the platform anchor
points with respect to Xy can be written as Km§ =Rm;+ (t17t2,t3)T with

11 =2(eofi —eifot+erfs —esfa), 1 =2eofr—erfo+esfi—eifs),
t3=2(eofs —e3fo+eifa—exrfr), K=ej+ei+e5+e3#0 and
e% +e% — e% — e% 2(ejep —epe3)  2(ejes+eper)
iy 2 2,2 2 _
R=(r;j)=| 2(etex+tepes) ej—ej+e;—e5 2(erez—eper)
2(ere3 —eper)  2(ere3+eper) e% — e% — e% —|—e§

Now all points of PH% which are located on the so-called Study quadric ¥ : 21-3:0 eifi=
0, correspond to an Euclidean displacement, with exception of the subspace ey =
...=e3 =0 of ¥, as these points cannot fulfill the normalizing condition K = 1.

If the geometry of the manipulator is given as well as the six leg lengths, then the
SG platform is in general rigid, but it can even be the case that the manipulator can
perform an n-parametric motion (n > 0), which is called self-motion. Note that such
motions are also solutions to the famous Borel Bricard problem (cf. [1, 3, 4, 11]).
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2 Types of self-motions

In section 2 and 3 we give a very short review of the results and ideas stated in [10],
where also more details and examples can be found.

It is known that architecturally singular SG platforms, which are well studied,
possess self-motions in each pose. Therefore, we are only interested in the com-
putation of self-motions of non-architecturally singular SG platforms. A detailed
review of self-motions of this type was given by the author in [10].

Moreover, it is known that if a planar SG platform with anchor points my,. .., Mg
is not architecturally singular, then at least a one-parametric set of legs exists, which
can be attached to the given manipulator without changing the forward kinematics
[5, 9] and the singularity set [2] of the manipulator. Moreover, it was shown that
in general the base anchor points M; as well as the corresponding platform anchor
points m; are located on planar cubic curves C and c, respectively.

Assumption 1. We assume that there exist such cubics c and C (which can also be
reducible) in the Euclidean domain of the platform and the base, respectively.

We consider the complex projective extension Pé of the Euclidean 3-space with
(ai,b;,0) — (w; 1 x;:y; 2 0), (A;,B;,0) — (W; : X; : ¥;: 0) and w;, x;, v, W;, X;, Y; € C.
Note that ideal points are characterized by w; = 0 and W; = 0, respectively.

Moreover, we consider the correspondence between the points of C and ¢, which
is determined by the geometry of the manipulator my,..., Mg (cf. [2, 5, 9]). As this
correspondence has not to be a bijection, a point € P(é of ¢ resp. C is in general
mapped to a non-empty set of points € Pé of C resp. c. We denote this set by the
term corresponding location and indicate this fact by the usage of brackets { }.

In Pé the cubic C has three ideal points Uy, Uy, Us, where at least one of these
points (e.g. Uy) is real. The remaining points U, and Us are real or conjugate com-
plex. Then we compute the corresponding locations {u;},{uz},{us} of c (= {u;}
contains real points). We denote the ideal points of ¢ by ug4, us, ug, where again one
(e.g. ug) has to be real. The remaining points us and ug are again real or conjugate
complex. Then we compute the corresponding locations {Us},{Us},{U¢} of C (=
{U4} contains real points).

Assumption 2. For guaranteeing a general case, we assume that each of the corre-
sponding locations {u;}, {u2}, {us},{Ua}, {Us}, {Us} consists of a single point.
Moreover, we assume that no 4 collinear platform anchor points u; or base anchor
points Uj (j=1,...,6) exist.

Under consideration of Assumption 1 and 2, following theorem was proven [10]:
Theorem 1. The resulting manipulator uy,...,Ug is architecturally singular.

Moreover, it was proven in [10] that there only exist type I and type II Darboux
Mannheim (DM) self-motions, where the definition of types reads as follows:

Definition 1. Assume .# is a one-parametric self-motion of a non-architecturally
singular SG platform my, ..., Mg. Then .# is of the type n DM if the corresponding
architecturally singular manipulator uy,...,Ug has an n-parametric self-motion.
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3 Computation of type II DM self-motions

The only examples of type II DM self-motions known to the author are those con-
structed by Karger in [7, 8], which are characterized by ep = 0.

The computation of type Il DM self-motions in [10] was based on Darboux and
Mannheim constraints, which are repeated next. With this approach it seems for the
first time possible to give a complete classification of type II DM self-motions:

Darboux constraint: The constraint that the platform anchor point u; (i = 1,2,3)
moves in a plane of the fixed system orthogonal to the direction of the ideal point
U; can be written as (cf. [10])

Q;: Xi(airi +bira+n)+Yi(aira +birn +1)+ LiK =0,

with X;,Y;,a;,b;,L; € C. This is a homogeneous quadratic equation in the Study
parameters where X; and Y; denote the conjugate complex of X; and ¥;, respectively.

Mannheim constraint: The constraint that the plane orthogonal to u; (i = 4,5,6)
through the platform point (g;,4;,0) slides through the point U; of the fixed system
can be written as (cf. [10])

IT; : Xi[Air11 + Biry — giK —2(eo fi —e1fo —exfs +e3f2)]+
VilAiri2 +Birny — hiK —2(eo fo +e1f3 —eafo—e3f1)] =0,

with x;,y;,A;,B;, gi,h; € C. This is again a homogeneous quadratic equation in the
Study parameters where X; and y; denote the conjugate complex of x; and y;.
The content of the following lemma was also proven in [10]:

Lemma 1. Without loss of generality (w.l.o.g.) we can assume that the variety of
the two-parametric self-motion of uy,...,Ug is spanned by ¥, Q21,82 ,3,I1y,I1s.
Moreover, we can choose following special coordinate systems in Xy and X w.l.o.g.:
Xi=Yh=Y=xy=ys=1, a1 =by=y4=Ay =By =Y, =hy = g5 =0 and
X (X, — X3)x5 # 0.

We solve the linear system of equations ¥, 1, ,, Iy for fy,..., f3 and plug the
obtained expressions in the remaining two equations.! This yields in general two
homogeneous polynomials €[40] and IT[96] in the Euler parameters of degree 2
and 4, respectively. The number in the square brackets gives the number of terms.

Finally, we compute the resultant of Q and II with respect to one of the
Euler parameters. Here we choose® ep. This yields a homogeneous polynomial
I'[117652] of degree 8 in ey, e, e3. In the following we denote the coefficients of
e’i 7e£,e§ of I' by Ijx. We get a set & of 24 equations I;j; = 0 in the 14 unknowns
az,by,a3,b3,As,Bs,X2,X3,x5,L1,L2,L3,84,hs. ,

Moreover, it should be noted that we denote the coefficients of eje], ek, e} of Q
and IT by €;;; and IT; 1, respectively.

1 For eges — e1e3 # 0 this can be done w.l.0.g., as this factor belongs to the denominator of f;.
2 Therefore we are looking for a common factor of Q and IT, which depends on eg.
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4 The basic result

An important step in direction of a complete classification of type II DM self-
motions is done by the basic result given in Theorem 2. As preparatory work for
the formulation of this theorem we have to define the following two special cases:
It can easily be seen, that 2 does not depend on e and e3 (upper signs) or e; and e,
(lower signs) if the following three equations are fulfilled:

Li(X2—X3)—Lr+L3 =0, )
ar(X2 — X3) £ X3(Xaby — X3b3) £by Fb3 =0, 2
a3(22—Y3)iY2(Y2b2—Y3b3)ﬂ:bz$b3 =0. (3)

Theorem 2. With exception of the above mentioned two special cases, the corre-
sponding manipulator uy, ... Ug of a planar SG platform (fulfilling Assumptions 1,
2 and Lemma 1) with a type II DM self-motion, has to have further 3 collinear an-
chor points in the base or in the platform beside the points U;,U,,Us and ug, us, ug.

The proof is done by contradiction, i.e. we stop the case study if 3 anchor points
beside Uy, Uy, U3 and ug4, us, ug are collinear or if we get one of the 2 special cases.

Proof for the general case Q00013000 # 0

We assume ;00 T3000 # 0, as only those solutions of & correspond to type II self-
motions, which do not cause a vanishing of the coefficient of the highest power of
eo in 2 and I1, respectively.

T30 can only vanish without contradiction (w.c.) for L; = g4 or if F = X»(L; —
az) —X3(Ly —a3) — Ly + L3 + by — b3 is fulfilled identically. We distinguish 3 parts:

Part [A] Assuming L # g4: Now F = 0 has to hold. W.l.0.g. we express L; from
F = 0. Then I39 = 0 implies ay = a3 — X,by + X3b3. Now Iy cannot vanish w.c..

Part [B] L; = g4 and F = 0: We express L; from F = 0. W.l.o.g. we can compute
hs from the only non-contradicting factor of I5y,. Now I530 can vanish w.c. for:

1. Ly = X3(Ly — b2) /X2 + X3(as — a3) + b3: W.lo.g. we can express As from the
only non-contradicting factor of I15;. Again we distinguish two cases:

a. Xoby — X3b3 +ar —az # 0: Now I35y has only one non-contradicting fac-
tor, which can be solved for L, w.l.o.g.. Then we can solve the only non-
contradicting factor of I314 for X5 w.l.o.g.. Now the resultant of the only non-
contradicting factors of I506 and I54o with respect to Bs cannot vanish w.c..

b. a3 = Xby — X3b3 +as: Then I 14 = 0 implies Ly = 2X3b, + Xoas + by.

i. X3(X2b2 —X3b3) +ax(X3 —X2) +%2(b3 — by) # 0: Under this assump-
tion we can express Bs from the only non-contradicting factor of I245.
Then I3,4 can only vanish w.c. for X; = —Xs5 with i = 2 or i = 3. As
for Xsb; +X ;b; = 0 with i # j and i, j € {2,3} the expression Ipgy can-
not vanish w.c., we can assume Xsb; + X ;b; # 0. Under this assumption
we can compute ap from Ipgp = 0 w.l.o.g.. Then the linear-combination
TIoas — oo — Io2 equals b33 (X j +Xs)* (b2 — b3), a contradiction.
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ii. X3(X2by—X3b3)+ax(X3—X2) +X2(b3 —by) = 0: W.Lo.g. we can solve
this equation for ay. Then I34> can only vanish w.c. for X; = —X5 and
Iogo = 0 implies X j = Xs with i # j and i, j € {2,3}. Now X%FZO(, —I{e
equals b,»b%BSXg(bg — b3), a contradiction.

2. ap = X3b3 —Xoby +a3 and X2X3(ax —a3) +Xo2(b3 — L3) — X3(by — L) #0: In
this case I149 = O already yields the contradiction.

Part [C] Assuming F # 0: Now L; = g4 has to hold. Then Iygy factors into
G[8]H[18]?. We distinguish 3 cases:

1. G[8] =0: W.lo.g. we can express L; from G[8] = 0. Now Ii7p can only vanish
w.c. for (X363 —Xaby —az +a3)V|[18] =0:

a. ap = X3b3 — X»b> +az: We can solve the only non-contradicting factor of
Iy for hs. Now we can express L3 from the only non-contradicting factor of
I¢02. Moreover, we can compute As from the only non-contradicting factor of
I560. Then we can solve the only non-contradicting factor of I, for L.

i. xs(bg —b3) +2)C5(X2b2 —X3b2) +a3(X3 —Xz) +X2(X2b2 —X3b3) #0:
Now we can compute Bs from the only non-contradicting factor of I'jp4
w.l.o.g.. We distinguish two cases:

* X,b3 — X3by # 0: Under this assumption we can express a3 from the
only non-contradicting factor of Ipy¢. Then I3 cannot vanish w.c..

x X2 = X3b,/b3: Now [ = 0 implies by = —bs. Finally I39s = 0 yields
the contradiction.

ii. fg(bz —b3) +2f5(Y2b2 —Y3b3) —|—a3(73 —Yz) —I—Yz()?zbz —Y3b3) =0:
W.l.o.g. we can solve this equation for a3. Then I5og can only vanish w.c.
for the following two cases:

* X3 = —%s5: Now Ijo4 = O implies b, = —b3 and from I3, = 0 we get
Bs = —b3. Then Ii49 — 242 = 0 yields the contradiction.
*x Xp = —Xs5: I304 = 0 implies b, = —b3 and I3, cannot vanish w.c..

b. V[18] =0, X3b3 — X2b2 — az + a3 # 0: W.Lo.g. we can solve this equation for
As. We can solve the only non-contradicting factor of Igyg for hs. Then we
can express L3 from the only non-contradicting factor of I'gg,. Moreover, we
can solve the only non-contradicting factor of Iys, for L;.

1. xs(b3 bz) +Xs5 (Clz —az+X3b3 — ngz) +Xoa; — X3a3 = 0: Under this
assumption we can solve Ijo4 = O for Bs. Then Iy = 0 implies a, =
X3a3by/(X2b3) and Ige = 0 yields the contradiction.

ii. X%(b3 —by) +X5(ar —az + X3b3 — Xobs) + X2a2 — X3a3 = 0:

* ay —Xsby # 0: In this case we can express X, from the above equation.
Now I3g¢ = 0 implies a3z = Xsbz. From I, = 0 we get ay = —X3b>
and I3y = 0 yields Bs = b3. Then I149 — 24> cannot vanish w.c..

* ap = Xsbhy: Now I = 0 implies b3 = X3a3/(X2%s) and from I3 =0
we get X3 = —Xs. Then T4 — I342 = 0 yields the contradiction.

2. H[18] =0, G[8] # 0 and X,a; — X3a3 # 0: Under this assumption we can com-
pute A5 from H[18] = 0. Then we can express Bs from the only non-contradicting
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factor of Igp. Moreover, from the only non-contradicting factor of Iy, we can
compute L;. Then we consider the only non-contradicting factor 7[14] of I3¢0.

a. fg(bz —Db3) + X5 ()?31)3 —Xoby —a» +a3) +Xoar — X303 # 0: Under this as-
sumption we can express As from I{14] = 0.

I

ii.

az — Xsbs #~ 0: Under this assumption we can express L3 from the only

non-contradicting factor of Igsy. Then Iyq = O implies ar = X2by —

X3b3 + a3. Then the resultant of I394 and I3, with respect to X5 can

only vanish w.c. for J[12](X2b3 — a3)(X3by + X3b3 — X2by —az) = 0:

*x J[12] = 0: W.l.o.g. we can solve this equation for a3. Then Ijo4 = 0
implies X3 = X5. Now I cannot vanish w.c..

* a3 = X3by +X3b3 — Xoby: Then g4 cannot vanish w.c..

* a3z = X,b3: Now Ig4 = 0 implies X3 = X5 and I3 cannot vanish w.c..

az = X5b3: From Ig6p = 0 we get L; = 0. Then I104 = O implies a; =

Xoby — X3by +X5b,. Now I4o5 cannot vanish w.c..

b. fg(bl— b3) + X5 (Y3b3 —Xoby —an +a3) +Xoar —Xza3 =0:

I

il.

X3 # X5: Under this assumption we can express a3z from the above

equation. Then I = 0 implies X, = ¥;5. Now we can solve the only

non-contradicting factor of I'jg4 for A5 w.l.o.g.. Then Iy¢ = O implies

ay = X3b,. Now the difference of the only non-contradicting factors of

I6> and I177 can only vanish w.c. for:

* X3 = 1/X5: Then we can solve Igs, = O for L3 w.l.o.g.. Finally Ipasa =0
yields the contradiction.

x Ly = 4byb3(Xs — X3)/(by — b3): Now Iy cannot vanish w.c..

X3 = Xs: The equation of item b can only vanish w.c. for a; = Xs5b. Then

we can express As w.l.0.g. from the only non-contradicting factor of I104.

Now Ip¢ = 0 implies a3 = X»b3. Then the difference of the only non-

contradicting factors of Ipg> and I1p2 can only vanish w.c. for:

* X, = 1/Xs: Now we can solve Iy = 0 for L3 w.l.o.g.. Then Iy =0
implies by = —b3. Finally Ijp¢ = O yields the contradiction.

x Ly = 4byb3(X2 —Xs5)/(by — b3): Now s cannot vanish w.c..

3. H[18] =0, G[8] # 0 and a; = X3a3/X,: Now H = 0 implies A5 = —X3a3/Xs.
W.l.o.g. we can express ks from the only non-contradicting factor of I4;9. More-
over, the only non-contradicting factor of I'gy, can be solved w.l.0.g. for L,. Then
we consider the only non-contradicting factor E[12] of I3¢0.

a.

Y2f5 (b3 — bz) —Yz (Y3b3 —Yzbz) —asz (Yz —Y3) = 0: Under this assumption
we can solve E[12] = 0 for Bs. Then Iys, = 0 implies a3 = Xsb3. Now we
can express X5 w.l.o.g. from the only non-contradicting factor of I'jp4. Then
I26 = 0 implies X3 = 0. Finally I944 = 0 yields the contradiction.
. XoXs5(b3 —by) —X2(X3b3 —X2by) —az (X2 — X3) = 0: W.l.o.g. we can express
a3 from this equation. Then E can only vanish w.c. for:

i.

X3 = X5: Now Iy = 0 already yields the contradiction.

ii. X, =¥s5: Now Ijs, = O implies Bs = —b3. Then we can solve the only

non-contradicting factor of I'jp4 for X5. Ip¢ = O yields the contradiction.
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Proof for the special case Q5000I13000 = 0

If we set ¢; equal to zero for any i € {0,...,3}, then Q and IT have to be fulfilled
identically. It can be seen immediately that the conditions implied by £2 = 0 already
yield a contradiction. Therefore we can assume egejezes = 0 w.l.o.g. for this section
of the proof.

Part [A] 22000 = 0, 210003000 7# 0: From Q5900 = 0 we can express L; w.l.o.g..
Moreover, we can compute e from 2 = 0 and plug the resulting expression into IT
which yields in the numerator a homogeneous polynomial I"[10058] of degree 7 in
e1,e2,e3. From I799 = 0 we can compute g4. Then I'519 = 0 yields the contradiction.

Part [B] .Qz()()() = H3000 = 0, .Q]()()()Hzoo() 75 0: Again We express L1 from .onoo =0.
It can be seen immediately from Q2 = 0 that all coefficients of I13p99 = O with respect
to the remaining Study parameters have to vanish in order to get no contradiction.
Therefore we can compute g4 and hs from I'lz1990 = 0 and I'I3p;0 = O, respectively. We
solve Q = 0 for ¢( and plug it into IT which yields in the numerator a homogeneous
polynomial I'[1666] of degree 5 in ey, ez, e3.

W.lLo.g. we can compute L3 from I599 = 0. Then we can solve the only non-
contradicting factor of I for L,. Moreover, the only non-contradicting factor of
I35 can be solved for As. Now I3p2 = 0 has only one non-contradicting factor which
can be solved for Xs. Then the difference of the only non-contradicting factors of
I330 and o4 can only vanish w.c. for ay = X3a3bs/(X2b3).

L ng%(yzBS —a3) +X3a3 (Yzbg — Bsas) # 0: Now we can express by from the
only non-contradicting factor of I339. Then I14 cannot vanish w.c..
2. X2b3(XaBs — a3) + Xsas (Xab — Bsas) = 0:

a. azBs — Yzbg = 0: Under this assumption we can compute X3 from the above
equation. Now I3309 = 0 implies a3 = X,Bs. Then I{4 cannot vanish w.c..

b az3=X zb% /Bs: Now the equation of item 2 can only vanish w.c. for Bs = +-b3.
In both cases I3, = 0 yields the contradiction.

Part [C] .Qz()oo = H300() = H2000 = 0, .Q]()()()Hlo()() 75 0: Again W€ express L1 from
Q000 = 0. It can be seen immediately from 2 = 0 that all coefficients of [Ty =
0 (for i = 2,3) with respect to the remaining Study parameters have to vanish in
order to get no contradiction. Therefore we compute g4 and A5 from Ilz1990 = 0 and
IT3p19 = 0, respectively. Moreover, we can solve IT19; = 0 and ITyg;; = 0 for L3 and
L, w.l.o.g.. We solve Q2 = 0 for e and plug it into IT which yields in the numerator
a homogeneous polynomial I'[191] of degree 5 in ey, ez, 3.

Now I110 = 0 implies b, = —Bs. Then we can solve the only non-contradicting
factor of I3, for A5 w.l.o.g.. Now I739 = 0 implies a; = —BsX5. Then we can solve
the only non-contradicting factor of I3, for a3 w.l.o.g.. We get X3 = —X5 from

Iips = 0. Finally I3, = 0 yields the contradiction.

Part [D] IT3000 = 0, Q2000000 # O: It can be seen immediately from Q = 0 that
all coefficients of Ilppp = O with respect to the remaining Study parameters have
to vanish in order to get no contradiction. Therefore we can express L; and hs5 from
IT3100 = 0 and IT310 = 0, respectively. Then we compute the resultant of Q[40]
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and IT[44] with respect to ey which yields a homogeneous polynomial I"[15153] of
degree 8 in ey, es,e3. Ipgo can only vanish w.c. in the following 2 cases:

1. Ly = g4(X2 —X3) + L3 +X2a — X3a3 — by + bs: Then we can solve I = 0 for
L3 w.l.o.g.. Now I can only vanish w.c. in the following 2 cases:

a. Bs = —by: Due to I'170 = 0 we have to distinguish again 2 cases:
1. ap = —AsX5 /Yz: Then 449 can only vanish w.c. for:

*x X5 = Xs5: Then Ijs, = 0 implies g4 = 0 and from I = 0 we get As =
—Xs5by. Now I34p = O implies b3 = X3a;3 /X% Finally I15> = 0 yields
the contradiction.

* As = —Xs5by: Again Iygp = 0 implies g4 = 0. Moreover, we get bz =
X3a3/(X2%s) from Iy = 0 and X3 = —Xs5 from I = 0. Finally
Ii»> = 0 yields the contradiction.

* by = by — X3a3 — AsXs: Again Ipgr = 0 yields g4 = 0. Then Iy = 0
implies X, = —Xs5. We can express b3 from the only non-contradicting
factor of I350 = 0. Then Iog can only vanish w.c. for ST = 0 with

S = Asxs(X2 + 1) + X3a3(32 — 1) — 2%sa3,

. S . )
T :A5x5(X3 — 1) +X3613(X3 + 1) —2X3As5.
o) S = 0: As for X5 = +i the equation S = 0 cannot vanish w.c. we can
assume w.l.o.g. 1 —|—X§ # 0. Now we can express As from S = 0. Then
I324 = 0 implies X3 = 1/Xs. Finally I34p = 0 yields the contradiction.
B)T =0,xs (Yg —1)—2X3 # 0: Under this assumption we can express
As from T = 0. Then I34 = 0 implies X3 = 1 /5. Now I34, = 0 yields
the contradiction.

Y) T =0, %5(X3 — 1) — 2X3 = 0: W.Lo.g. we can express Xs from the
last equation. Then 7 = 0 implies az = 0. Now I»4 cannot vanish w.c..
ii. ap = a3 +X3b3 —Xby, Xoap +Asxs # 0: Then I3 cannot vanish w.c..

b. by = Xsa; — X3a3 + b3, Bs # —b: Now I530 cannot vanish w.c..

2. ap = —Asfs/YZ, g4(Y2 —Y3) —Ly+L3+Xsa) —Xza3 — by + b3 #0: Wlo.g.
we can express b, from the only non-contradicting factor of I549. Then T340 can
only vanish w.c. for:

a. X, = Xs5: Then Iy = O implies an expression for L3. Now I3p4 can only
vanish w.c in the following 2 cases:
i. a3 = X3b3 + Bs¥xs — As: We distinguish again 2 cases:

* X3Bs +Xsb3 # 0: Under this assumption we can compute As from the
only non-contradicting factor of I5o. Then we can solve the only non-
contradicting factor of Ig; for g4 w.l.o.g.. Now I34o = 0 implies X3 =
—Xs and T3> = 0 yields the contradiction.

x X3 = —Xs5b3/Bs: Now I3 = 0 implies Bs = b3 and from Ijs = 0 we
get an expression for g4. Then we get A5 = X5b3 from I = 0 and
Ii», = 0 yields the contradiction.
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ii. Ly =Xs5(As5+g4)— Bs, X3b3 + Bsxs —As — a3 2 0: Then I3y, = 0 can be
solved w.l.o.g. for g4. From the only non-contradicting factor of I314 we
can express a3 w.l.o.g.. We distinguish 2 cases:

* X3Bs5+Xs5b3 # 0: Under this assumption we can solve I34p = 0 for As.
Then I30¢ = 0 implies X3 = 0. Finally Iy, = O yields the contradiction.
*x X3 = —Xs5b3/Bs: Now 34, = 0 cannot vanish w.c..
b. As = X,Bs, X5 # Xs5: W.Lo.g. we can solve Iy = 0 for L. Then Igs, can
only vanish w.c. for:
i. g4 =0: Then I3, = 0 implies a3 = b3(X — X3 +Xs). Now I35, = 0 yields
X3 = Xs. Finally Ip4 cannot vanish w.c..

ii. Bs = —X3a3/(X2Xs), g4 # 0: Now the only non-contradicting factor of

I44 can be solved for b3. Then I6 = 0 yields the contradiction.

Part [E] ITz000 = Iooo = 0, Q2000111000 # O: It can be seen immediately from
Q = 0 that all coefficients of ITjpoo = 0 (for i = 2,3) with respect to the remaining
Study parameters have to vanish in order to get no contradiction. Therefore we can
express Ly and hs from Ilz100 = 0 and Iz = 0, respectively. Moreover, we can
compute L, and g4 from Ij0; = 0 and Iy = 0, respectively. Then we solve
IT = 0 for ¢y and plug it into £ which yields in the numerator a homogeneous
polynomial I"[2408] of degree 8 in ey, ez, e3.

Now Igo, can only vanish w.c. for Bs = b>. Then we can solve the only non-
contradicting factor of Iy for L. Then I339 = O implies ay = X3b3 — X2by +as.
Finally I149 cannot vanish w.c..

Part [F] Q5000 = 21000 = 0: W.l.o.g. we can express L; and a; from €090 = 0 and
Q1001 = 0, respectively. As g2 cannot vanish w.c. we proceed as follows:

1. ITyoo3z # 0: Now we compute the resultant of © and IT with respect to e3 which
yields a homogeneous polynomial I"[87839] of degree 8 in e, ey, ez. In the fol-
lowing we denote the coefficients of e’i,eé,eé of I' by I;jx. Now Iggo equals
(ba — b3)CJ4)D[10].

a. C[4] =0: W.Lo.g. we can express a3 from C = 0. Moreover, we can solve the
only non-contradicting factor of Igyy for As w.l.0.g.. Then we can compute L,
from the only non-contradicting factor of I179. Now I;96 = 0 implies g4 = 0
and from Ij04 = 0 we get hs = Bs — b3 — L3. Moreover, we can express L3
from the only non-contradicting factor of Iye>. Then Iy = 0 implies X3 = 0
and finally Igp9 = O yields the contradiction.

b. D[10] =0, C[4] # 0: W.Lo.g. we can solve D = 0 for L,. Then I3ps = 0 im-
plies g4 = 0. Now we can solve the only non-contradicting factor of Ipyg
for hs. Then IZo4 = O implies L3 = —b3 — X3a3. W.l.o.g. we can solve the
only non-contradicting factor of Igy, for az. Now Ipsq = 0 yields As = BsXs.
The difference of the only non-contradicting factors of I5¢y and Ipe, implies
X> = —X3. Then 3¢y can only vanish w.c. for:

i. X3 =Xs: Igpo = 0 implies Bs = b3 and I34, = 0 yields the contradiction.
ii. X3 = —¥5: Then I = 0 already yields the contradiction.
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2. ITypp3z = 0, ITyooz # O: It can be seen immediately from Q = 0 that all coefficients
of ITypoz = O with respect to the remaining Study parameters have to vanish in
order to get no contradiction. Therefore we can express h5 and L, from Iyjo3 =0
and ITyo;3 = 0, respectively. Now we compute the resultant of 2 and IT with
respect to e3 which yields a homogeneous polynomial I'[7821] of degree 8 in
eo,e1,e2. In the following we denote the coefficients of e/, e, el of I" by I}j.
W.l.o.g. we can solve the only non-contradicting factor of Igyg for a3. Moreover,
we can compute b, from the only non-contradicting factor of I'g>¢ w.l.o.g.. Then
I306 = 0 implies g4 = 0. Now I, = 0 yields As = BsX,. Then we solve the only
non-contradicting factor of I ¢ for Ls.

a. X3Bs5 — X2b3 # 0: Under this assumption we can express ¥5 from the only
non-contradicting factor of Iygy. Then I3p4 = O implies X, = —X3. Finally
I>47 = 0 yields the contradiction.

b. b3 = X3Bs5/X»: Then Ijs; = 0 implies X, = —X3. From I354 = 0 we get
X3 = —Xs. Finally I34; = 0 yields the contradiction.

3. Ilyooz = ooz = 0, Iypo1 # O: It can be seen immediately from Q = O that all
coefficients of Ilypo; = 0 (for i = 2, 3) with respect to the remaining Study param-
eters have to vanish in order to get no contradiction. Therefore we can express /5
and L, from Ily193 = 0 and Ilyp13 = 0, respectively. Moreover, we can compute
g4 and L3 from I1j19p = 0 and 112 = 0, respectively. Then we solve IT for e3
and plug it into £ which yields in the numerator a homogeneous polynomial
I'[1766] of degree 8 in eg, e, ez. In the following we denote the coefficients of
e’i,eé,eé of I by Ij.

W.l.o.g. we can solve the only non-contradicting factor of Igyg for a3. Moreover,
we can compute b, from the only non-contradicting factor of I'pg w.l.0.g.. Now
I306 = 0 yields A5 = BsX. Finally Iy, = O yields the contradiction.

4. ITyoo3 = ooz = Iyoor = 0, ITyzpp # O: It can be seen immediately from Q =0

that all coefficients of Ilypy; = O (for i = 1,2,3) with respect to the remaining
Study parameters have to vanish in order to get no contradiction. Therefore we
can express hs and Ly from Ilyj03 = 0 and I1yo13 = O, respectively. Moreover, we
can compute g4 and L3 from ITj19p = 0 and IIjo12 = 0, respectively. Ilyjo; =0
implies Bs = by. From Iyy;1 = 0 we get A5 = a3 +X5by — X3b3. Now Iy can
only vanish w.c. for X, = Xs.
As Qprg0 cannot vanish w.c. and due to our assumption ITyzg9 7 0 we can com-
pute the resultant of Q and IT with respect to e; which yields a homogeneous
polynomial I"[1013] of degree 6 in e, 2, e3. Now the coefficient of $ of I can-
not vanish w.c..

5. Iyoo3 = ooz = ooo1 = Ioz00 = 0: Now we proceed analogously to the first and
second paragraph of the last case but with the extra condition ITyzpo = 0 which
implies a3 = X3b3. Now Iy and £2¢200 cannot vanish w.c. and therefore we can
compute the resultant of €2 and IT with respect to e¢; which yields a homogeneous
polynomial I"[87] of degree 6 in eq, €2, e3. Again the coefficient of eg of I' cannot
vanish w.c..
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Part [G] I13000 = ITxgp9 = I11000 = O: In contrast to ITjpo9 = 0, it can be seen im-
mediately from Q = 0 that all coefficients of ITjpoo = O (for i = 2,3) with respect
to the remaining Study parameters have to vanish in order to get no contradiction.
Therefore we can solve Ilz3109 = O for L, ITz919 = O for hs, Il 1o = 0 for L, and
H2011 =0 for 84 WlOg

Part [G1] II;pp0 = O does not vanish identically for all e;,e;,e3: If the coefficient
Z of e% of ITjgoo vanishes, then Iljpoo = O only depends on eq,e; and this already
yields together with £2 = O the contradiction. Therefore we can assume w.l.0.g.
Z # 0. Now we have to distinguish the following cases:

1. Qooo2IIpo03 # 0: We can compute the resultant of ITjggg and Q resp. IT with re-
spect to ez w.l.o.g. which yields R and Ry, respectively. Now Rg and Ry have
to vanish independently of e, e;, ey, whereby Ryy spits up into e, P[8]Q[38]%. Tt
can easily be seen that the coefficients of the quadratic homogeneous polynomial
P = 0 in the unknowns ey, e, cannot vanish w.c.. Therefore we set Q = 0 which
is a quartic polynomial in ey, e,. We denote the coefficients of ¢/ e of 0 by Q;;.
Now Q4 can only vanish w.c. for:

a. by = —Bs: Q40 = 0 implies an expression for a; and Q3; cannot vanish w.c..
b. As = a> + BsX5 — X2b»: Then Qg can vanish w.c. for:
i. by = Bs: Then Q31 = 0 implies an expression for a,. Finally Q3 cannot
vanish w.c..

ii. a, =X,by: Now Q31 can only vanish w.c. for ¥s = +X,. As for ¥s = —X»
the expression Oy, cannot vanish w.c. we set X5 = X,. Then Q is fulfilled
identically. Now it is not difficult to verify that the coefficients of Rg
cannot vanish w.c. (proof is left to the reader).

2. IIyppz =0, Qppo2 # 0: W.Lo.g. we can compute Bs from ITyjo3 = 0.

a. X» # ¥5: Under this assumption we can express by from Iy 3 = 0. Now it
can easily be seen that Ilyogy cannot vanish w.c.. Therefore we can compute
the resultant of ITjogp and € resp. I with respect to e3 w.l.o.g. which yields
Rgo and Rypy, respectively. Then Ry splits up and can only vanish w.c. for
P[6] = 0 or Q[14]. It can easily be seen that the coefficients of the quadratic
homogeneous polynomial P = 0 in the unknowns ej,e, cannot vanish w.c..
Therefore we set Q = 0 which is also a quadratic polynomial in the unknowns
e1,e>. We denote the coefficients of e’ieé of O by Q;;. Now Qp, = 0 implies
As = —X»as /Xs. Then we get Xs = —1/X, from Q1 = 0. Then Q is fulfilled
identically. Now ITjpoo = O cannot vanish w.c..

b. X, = Xs: In this case ITy3 can only vanish w.c. for:

i. As = ay: Now Iljggp is a factor of Il. Therefore we can only compute
the resultant of ITjggp and 2 with respect to e3 w.l.o.g. which yields a
homogeneous polynomial R [674] of degree 6 in eg, e1, 2. It is again not
difficult to verify that the coefficients of Rg cannot vanish w.c. (proof is
left to the reader).

ii. X5 = +i, A5 # ap: Now it can easily be seen that ITyy, cannot vanish
w.c.. Therefore we can compute the resultant of ITjpoo and Q2 resp. I1
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with respect to e3 w.l.o.g. which yields Rg and Ryy, respectively. Then
Ry splits up and can only vanish w.c. for P[5] = 0. It can easily be seen
that the coefficients of the linear homogeneous polynomial P = 0 in the
unknowns ey, e, cannot vanish w.c..

3. Qpp02 =0, Qooo1 Ipooz # 0: W.1l.0.g. we can express L3 from 2ggg2 = 0. Now the
remaining discussion of this case can exactly be done as in item 1 of part [G1].

4. Qoo = Looo1 = 0, Iyooz # 0: W.l.o.g. we can express L3 from Qo2 = 0 and
ap from Q;00; = 0. Then we compute the resultant of ITjgg9 and I1 with respect
to ez w.l.o.g. which yields Ryy. Now Ry splits up and can only vanish w.c. for
P[11] =0or Q[49] = 0.

a.

b.

P[11] = 0: Now the coefficients of this equation can only vanish w.c. for:
by=—Bs, As=X»Bs, a3=Bs(X>—¥s)+X3b3.

But then ITjggo equals e 16%35 (X, —Xs) which yields the contradiction.
0[49] = 0: This is a quartic polynomial in the unknowns e, e;. We denote the
coefficients of e’i eé of Q by Q;;. Then Qo4 can only vanish w.c. for:
i. b = —Bs5: Q40 = 0 implies an expression for az. Q31 cannot vanish w.c..
ii. A5 = a3+ BsX5 — X3b3: Then Qo can vanish w.c. for:
* by = Bs: Then Q3; = 0 implies an expression for a3. Finally Q3 cannot
vanish w.c..
x a3 = X3b3: Now Q3] can only vanish w.c. for X5 = £X». As for x5 =
—X the expression Q, cannot vanish w.c. we set X5 = X5. Then Q is
fulfilled identically. As now the coefficient of the highest exponent of
ey in I1jpoo and 2 = 0 cannot vanish w.c. we can compute the resultant
of ITjpp0 = 0 and Q with respect to e, w.l.o.g. which yields R [87].
Now it is not difficult to verify that the coefficients of R cannot vanish
w.c. (proof is left to the reader).

5. .Qo()()z = H0003 = O, .Q()Q()] 75 0: We can express L3 from .Q()ooz =0and H0103 =0
implies by = X5As5 + Bs —Xas.

a.

X, # X5: Under this assumption we can express Bs from IToy13 = 0. As Iy
cannot vanish w.c. we can compute the resultant of I1jpgy and I1 with respect
to e3, which yields Rry. Now Ry splits up and can only vanish w.c. for P[6] =0
or Q[14] = 0. As it can easily be seen, that the coefficients of P[6] = 0 cannot
vanish w.c., we set Q[14] equal to zero, which is a quadratic polynomial in
the unknowns ej,e;. We denote the coefficients of e"leé of O by Q;;. Then
Qo2 = 0 implies a; = —¥545/X,. Now Q11 = 0 can only vanish w.c. for:

i. X» = —Xs: Then Q» can only vanish for x5 = £1. In both cases ITjggp = 0

yields the contradiction.
. X5 = —I/Yz, X, +X5 # 0: Again, ITjgop = O yields the contradiction.

. X7 = Xs: Now Ilyp13 can only vanish w.c. for:

i. ap = As: Now Il is a factor of II. Therefore we compute the resul-
tant of ITjpp0 and £ with respect to e3, which yields Rg [244]. Moreover,



Basic result on type II DM self-motions of planar Stewart Gough platforms 13

Rgo = 01is a homogeneous equation of degree 5 in eq, e, e>. Now it is not
difficult to verify that the coefficients of Rg cannot vanish w.c. (proof is
left to the reader).

il. x5 = =%i, ap # As: In this case we can compute the resultant of Q and the
only non-contradicting factor of Iljgog with respect to e3, which yields
R [207]. Moreover, R = 0 is a homogeneous equation of degree 4 in
eo,e1,er. Then the coefficient of e% of Rq yields the contradiction.

6. .Q()()()z = .Q()()()l = H()()()3 = 0: We can express L3 from .Q()()()z =0 and H()()m =
0 implies ay = a3 + X2by — X3b3. Moreover we get a3 = AsX3b3 — X585 from
Iyo13 = 0.

a. X, # X5: Under this assumption we can express As from Ilyjo3 = 0. As Iy
cannot vanish w.c. we can compute the resultant of IIjpoo and IT with respect
to e3, which yields Rrr. Now Ryy splits up and can only vanish w.c. for P[6] =0
or Q[14] = 0. As it can easily be seen, that the coefficients of P[6] = 0 cannot
vanish w.c., we set Q[14] equal to zero, which is a quadratic polynomial in
the unknowns ej,e;. We denote the coefficients of e{e? of Q by Q;;. Then
0> = 0 implies Bs = —by. Now Qg = 0 can only vanish w.c. for:

i. X2 = —Xs: Then Qy; = 0 yields the contradiction.
ii. X5 = —1/X>2, X2 +X5 # 0: Now ITjp00 = 0 yields the contradiction.

b. X5 = X5: Now Ily03 can only vanish w.c. for:

i. by = Bs: Now I is a factor of I1. Moreover, 9y cannot vanish w.c..

* As 7 0: Under this assumption we can compute the resultant of ITjyg
and Q with respect to e, which yields Rq [792]. The coefficient of ¢§
of R cannot vanish w.c..

* As = 0: Now the coefficient of e% of ITjppp cannot vanish w.c., and
therefore we can compute the resultant of ITjggp and £2 with respect
to e, which yields R [80]. Then the coefficient of eg of R yields the
contradiction.

ii. X; = +i, by # Bs: We distinguish two cases:

* 2As + byi F Bsi # 0: Under this assumption the highest exponent of
ey in IT and ITjgoo cannot vanish w.c.. Therefore we can compute the
resultant of the only non-contradicting factors of IIjpoo and IT with
respect to ep, which yields Rpy. It can immediately be seen, that Rpy
cannot vanish w.c..

* As = (£BsiF byi)/2: Now I 0o can only vanish w.c. fore; = :Fegi/ez.
Then it can immediately be seen, that IT = 0 yields the contradiction.

Part [G2] IIjpp0 = O vanishes identically for all e;,es,e3: Now ITj2;0 = 0 implies
bz = —BS and from H1012 =0we getay = —Asfs/YQ. Then HUQQ =0and H1102 =
0 can only vanish w.c. for X, = ¥5. Now we distinguish the following cases:

1. Qo0 # 0: As Iy cannot vanish w.c. and due to our assumption Qg9 # 0
we can compute the resultant of © and IT with respect to e; which yields a
homogeneous polynomial I"[3200] of degree 6 in e, e, e3. In the following we
denote the coefficients of e}, e3,e& of I' by I} .
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W.l.o.g. we can solve Iggy = O for L3. Then I393 = 0 implies a3 = X3b3 + BsXs —
As. Now Igo6 can only vanish w.c. for X5 (AsBs — X3Bsbs — B2Xs) + Asxsbz = 0.
Now we have to distinguish again two cases:

a. X3Bs+Xs5b3 # 0: Under this assumption we can compute A5 from N = 0.
i. X3-2X §f5 —Xs5 # 0: Now we can solve the only non-contradicting factor
of Ipo4 = 0 for b3. Then 4y = 0 yields the contradiction.
ii. X3— 2Y§X5 — X5 = 0: W.lo.g. we can solve this expression for ¥s. Now
I o4 = 0 yields the contradiction.
b. X3 = —¥5b3/Bs: Now N = 0 implies Bs = b3. Then {4 can only vanish w.c.
for b3 = —As(1+ 2%%) /%s. Finally Ipgo = O yields the contradiction.

2. Qoo =0, Qo100 # 0: W.l.o.g. we can express Lz from Qgp00 = 0. Then we solve
Q for e and plug it into IT which yields in the numerator a homogeneous poly-
nomial I'[621] of degree 6 in ey, ez, e3. Then the coefficient of eg of I' already
yields the contradiction.

3. Qoo = o100 = 0, ITyozp # 0: W.L.o.g. we can express Lz from Qg0 = 0 and
as from Qy119 = 0. Now it can easily be seen that (¢ cannot vanish w.c.. Due
to this fact an the assumption ITyppo # 0 we can compute the resultant of Q and
IT with respect to e, which yields a homogeneous polynomial I"[838] of degree
6 1in eg, e1,e3. Again we get the contradiction from the coefficient of eg of I'.

4. Qoo = L0100 = Iyozo = 0: W.Lo.g. we can express L3 from Qoo = 0 and a3

from Qg0 = 0. Now Iyp39 = 0 implies A5 = BsXs.
Now it can easily be seen that £y as well as ITyppo cannot vanish w.c.. There-
fore we can compute the resultant of Q2 and IT with respect to e, w.l.0.g. which
yields a homogeneous polynomial I"[100] of degree 4 in e, 1, e3. Finally we get
the contradiction from the coefficient of eg of I'.

Due to the structure® of Q it can easily be seen, that Q and IT can only have a com-
mon factor, which does not depend on eq (cf. footnote 2) if £2 = 0 has this property
too. As this case was already treated in part [F] we remain with the discussion of
those cases excluded by the assumption ege; — eje3 7 0 (cf. footnote 1).

Proof for the case e¢pe; —eje3 =0

We split up this section of the proof into three parts.

Part [A] As eg = ) = e» = e3 = 0 does not correspond with an Euclidean motion,
we start by discussing the following 4 cases:

ep=e1=e2=0, eg=e1=e3=0, eg=ex=e3=0, e =er=e3=0.

We only discuss the case eg = ¢; = ep = 0 in more detail because the other 3 cases
can be done analogously. Now ¥ = 0 implies f3 = 0. Then £; = 0 yields an ex-
pression for f, and from ; = 0 we get an expression for f;. This cannot yield a
2-parametric self-motion as only the homogeneous parameters e3 and fj are free.

30 )21-3:0 cie,»2 +caepe3 +csejex where ¢, . . ., cs only depend on the geometry of the SG platform.
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Part [B] In this part we discuss the following four special cases:

1. eg = e; =0: Due to part [A] we can assume w.1.0.g. eze3 # 0. We can compute f7
w.lo.g. from ¥ = 0. Then ©; implies f3 = —Ljep/2. Then Il can only vanish
w.c. for g4 = —L;. Moreover, we can express f; from Ils w.l.o.g.. Finally the
coefficients of e; fjy of €2, and 3 cannot vanish w.c..

2. ey = e3 = 0: This case can be done analogously to the last one.

3. eg = e3 = 0: Due to part [A] we can assume eje; # 0. We can compute f] from

¥ = 0. Then we can express fjy from Ily = 0. Moreover, we can compute f3 from
Ils = 0. Now 1, £, and 23 have to vanish independently of the choice of the
unknowns e1, ez, fa.
The coefficient of e‘l‘ of €2, implies an expression for 4s. Then we get L, from
the coefficient of e%e% of £, and L3 from the coefficient of e‘l1 of Q3. Then the
coefficients of e‘l‘ and eg of Q imply L; = g4 = 0. Now we can compute a, from
the coefficient of ele3 of Q1. Moreover, the coefficient of eje) of Q; implies
Bs = XsAs and from the coefficient of e]e3 of 23 we get az = As(1+32) — X3b3.
Then the coefficient of e%e% of Q1 can only vanish w.c. for x5 = Fi. Then the
coefficient of e‘é of €2, implies X, = =i. Finally, the coefficient of e% of 3 yields
the contradiction.

4. e; = ey = 0: This case can be done analogously to the last one.

Part [C] Due to the discussion of the special cases in part [A] and part [B] we can
assume w.l.o.g. egejezez # 0. Therefore we can solve eger — eje3 = 0 w.l.o.g. for
e3. Moreover, we can solve ¥, Q, Iy, Il5 w.l.o.g. for fy, f1, f2, f3.

Now €, and 3 have to vanish independently of the choice of the unknowns
e, e1, e3. Therefore the coefficient of eg of €, implies L; = g4. Then the coefficient
of 6(5)63 of £, yields an expression for L,. Now we get g4 = 2a> — 2X,b, from the
coefficient of eée% of £,. Moreover, we get a, = X,b; from the coefficient of e%egt
of €2,. Finally the coefficient of eoe%eg of €2, cannot vanish w.c..

This finishes the proof of Theorem 2. O

5 Conclusion and future research

In this paper we presented the basic result (cf. Theorem 2) on type II Darboux
Mannheim (DM) self-motions of planar SG platforms. Due to Lemma 2 of [6] and
Theorem 1 we can replace the word “or” in Theorem 2 by the word “and”; i.e. with
exception of the two special cases there always exist three collinear platform points
u;, uj, uy and three collinear base points U;,U,,, U, beside the points Uy, U, U3 and
us, us,ue where (i, j, k,I,m,n) consists of all indices from 1 to 6.

The presented basic result raises the hope of giving a complete classification of
type II DM self-motions in the future, which would be an important step in solving
the famous Borel Bricard problem. On base of Theorem 2 the work towards this
goal is in progress.
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