Isometrically deformable cones and cylinders carrying planar curves

Georg Nawratil ${ }^{1,2}$
${ }^{1}$ Institute of Discrete Mathematics and Geometry, TU Wien www.dmg.tuwien.ac.at/nawratil/
${ }^{2}$ Center for Geometry and Computational Design, TU Wien

Zipper T-Tubes

Zipper T-Tubes

Consist of two T-tubes which can be glued together along the zip row such that the resulting structure is still rigid-foldable.

Zipper T-Tubes

Consist of two T-tubes which can be glued together along the zip row such that the resulting structure is still rigid-foldable. Moreover, the base planes of the two involved T-tubes are not parallel/identical.

Zipper T-Tubes

Consist of two T-tubes which can be glued together along the zip row such that the resulting structure is still rigid-foldable. Moreover, the base planes of the two involved T-tubes are not parallel/identical.

Therefore the zip row has the property that two planar polylines remain planar during its isometric deformation.

Zipper T-Tubes

Consist of two T-tubes which can be glued together along the zip row such that the resulting structure is still rigid-foldable. Moreover, the base planes of the two involved T-tubes are not parallel/identical.

Therefore the zip row has the property that two planar polylines remain planar during its isometric deformation.

The profile curve of the zip row has to be a straight line-segment according to [4].

Zipper T-Tubes

Consist of two T-tubes which can be glued together along the zip row such that the resulting structure is still rigid-foldable. Moreover, the base planes of the two involved T-tubes are not parallel/identical.

Therefore the zip row has the property that two planar polylines remain planar during its isometric deformation.

The profile curve of the zip row has to be a straight line-segment according to [4].
Due to a result of Sauer and Graf $[5,6]$ the zip row can be assumed to be cylindrical or conical.

Construction of Zipper T-Tubes

Reduction to the following geometric/kinematic problem:

Determine all discrete/smooth cones Λ and cylinders Γ in \mathbb{R}^{3} allowing a 1-parametric isometric deformation ι in a way that at least two planar curves a and b exist on Λ and Γ, respectively, which remain planar under ι. Moreover, we assume that the two carrier planes α and β of a and b, respectively, are not parallel.

IFToMM World Congress, Nov 7th 2023, Research funded by

If a solution to this problem exists then

1. planes parallel to α (resp. β) also carry curves of Λ and Γ, respectively, which remain planar during ι.

IFToMM World Congress, Nov 7th 2023, Research funded by

If a solution to this problem exists then

1. planes parallel to α (resp. β) also carry curves of Λ and Γ, respectively, which remain planar during ι.

This holds true, as the intersection curve of a parallel plane to α (resp. β) results from a (resp. b) by a

- central scaling with center in the vertex V of Λ,
- translation along the ruling direction of Γ.

IFToMM World Congress, Nov 7th 2023, Research funded by

If a solution to this problem exists then

2. all planes of the pencil \mathcal{P} of planes spanned by α and β intersect Λ and Γ in curves c, which remain planar during ι.

IFToMM World Congress, Nov 7th 2023, Research funded by

If a solution to this problem exists then

2. all planes of the pencil \mathcal{P} of planes spanned by α and β intersect Λ and Γ in curves c, which remain planar during ι.

This holds true, as we can assign an arbitrary value to the cross-ratio (a, b, c, V), which is evaluated along every ruling.

IFToMM World Congress, Nov 7th 2023, Research funded by

If a solution to this problem exists then

2. all planes of the pencil \mathcal{P} of planes spanned by α and β intersect Λ and Γ in curves c, which remain planar during ι.

This holds true, as we can assign an arbitrary value to the cross-ratio (a, b, c, V), which is evaluated along every ruling. Due to the linearity of this construction the obtained curve c is again planar and its carrier plane $\gamma \in \mathcal{P}$.

If a solution to this problem exists then

2. all planes of the pencil \mathcal{P} of planes spanned by α and β intersect Λ and Γ in curves c, which remain planar during ι.

This holds true, as we can assign an arbitrary value to the cross-ratio (a, b, c, V), which is evaluated along every ruling. Due to the linearity of this construction the obtained curve c is again planar and its carrier plane $\gamma \in \mathcal{P}$.

Corollary for cylindrical case:

If a solution to this problem exists then

2. all planes of the pencil \mathcal{P} of planes spanned by α and β intersect Λ and Γ in curves c, which remain planar during ι.

This holds true, as we can assign an arbitrary value to the cross-ratio (a, b, c, V), which is evaluated along every ruling. Due to the linearity of this construction the obtained curve c is again planar and its carrier plane $\gamma \in \mathcal{P}$.

Corollary for cylindrical case:
β can be assumed to be orthogonal to the ruling direction.

If a solution to this problem exists then

2. all planes of the pencil \mathcal{P} of planes spanned by α and β intersect Λ and Γ in curves c, which remain planar during ι.

This holds true, as we can assign an arbitrary value to the cross-ratio (a, b, c, V), which is evaluated along every ruling. Due to the linearity of this construction the obtained curve c is again planar and its carrier plane $\gamma \in \mathcal{P}$.

Corollary for cylindrical case:
β can be assumed to be orthogonal to the ruling direction.
$\Rightarrow \mathrm{b}$ remains planar under all ι keeping Γ a cylinder through V.

If a solution to this problem exists then

2. all planes of the pencil \mathcal{P} of planes spanned by α and β intersect Λ and Γ in curves c, which remain planar during ι.

This holds true, as we can assign an arbitrary value to the cross-ratio (a, b, c, V), which is evaluated along every ruling. Due to the linearity of this construction the obtained curve c is again planar and its carrier plane $\gamma \in \mathcal{P}$.

Corollary for cylindrical case:
β can be assumed to be orthogonal to the ruling direction.
\Rightarrow b remains planar under all ι keeping Γ a cylinder through V. \Rightarrow Relaxed problem: ι only has to keep the curve a planar.

If a solution to this problem exists then

2. all planes of the pencil \mathcal{P} of planes spanned by α and β intersect Λ and Γ in curves c, which remain planar during ι.

This holds true, as we can assign an arbitrary value to the cross-ratio (a, b, c, V), which is evaluated along every ruling. Due to the linearity of this construction the obtained curve c is again planar and its carrier plane $\gamma \in \mathcal{P}$.

Solution for cylindrical case:

There is no condition to the shape of Γ. Only the intersection line of α and β has to be orthogonal to the rulings of Γ. This holds for the smooth and discrete case (cf. [9]).

Discrete Conical Case

It is sufficient to consider three adjacent faces f_{1}, f_{2}, f_{3}.

Discrete Conical Case

It is sufficient to consider three adjacent faces f_{1}, f_{2}, f_{3}.
There exists an 1-parametric rigid-folding ι along the edges r_{1} and r_{2} (with fold angles δ_{1} and δ_{2}) in a way that a_{1}, a_{2}, a_{3} are coplanar.

Discrete Conical Case

It is sufficient to consider three adjacent faces f_{1}, f_{2}, f_{3}.
There exists an 1-parametric rigid-folding ι along the edges r_{1} and r_{2} (with fold angles δ_{1} and δ_{2}) in a way that a_{1}, a_{2}, a_{3} are coplanar.

Aim: Figure out the necessary and sufficient geometric conditions such that b_{1}, b_{2}, b_{3} also remain coplanar under ι.

Discrete Conical Case

Discrete Conical Case

We consider f_{2} as fixed and locate it in the $x y$-plane of the reference frame such that V equals the origin and r_{1} coincides with the x-axis.

The direction A_{i} of the edges a_{i} can be parametrized by:
$A_{3}=\left(\cos \left(\mu+\sigma_{3}\right), \sin \left(\mu+\sigma_{3}\right), 0\right)^{T}, \quad A_{j}:=\left(\cos \sigma_{j}, \sin \sigma_{j}, 0\right)^{T}, \quad j=1,2$.

Discrete Conical Case

We consider f_{2} as fixed and locate it in the $x y$-plane of the reference frame such that V equals the origin and r_{1} coincides with the x-axis.

The direction A_{i} of the edges a_{i} can be parametrized by:
$A_{3}=\left(\cos \left(\mu+\sigma_{3}\right), \sin \left(\mu+\sigma_{3}\right), 0\right)^{T}, \quad A_{j}:=\left(\cos \sigma_{j}, \sin \sigma_{j}, 0\right)^{T}, \quad j=1,2$.
We rotate A_{1} by the angle δ_{1} about the r_{1}-axis $\Rightarrow A_{1}^{*}=\mathbf{R}_{1} A_{1}$ with

$$
\mathbf{R}_{1}:=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \delta_{1} & -\sin \delta_{1} \\
0 & \sin \delta_{1} & \cos \delta_{1}
\end{array}\right) .
$$

Discrete Conical Case

We consider f_{2} as fixed and locate it in the $x y$-plane of the reference frame such that V equals the origin and r_{1} coincides with the x-axis.

The direction A_{i} of the edges a_{i} can be parametrized by:
$A_{3}=\left(\cos \left(\mu+\sigma_{3}\right), \sin \left(\mu+\sigma_{3}\right), 0\right)^{T}, \quad A_{j}:=\left(\cos \sigma_{j}, \sin \sigma_{j}, 0\right)^{T}, \quad j=1,2$.
We rotate A_{3} by the angle δ_{2} about the r_{2}-axis $\Rightarrow A_{3}^{*}=\mathbf{R}_{2} A_{3}$ with

$$
\mathbf{R}_{2}:=\left(\begin{array}{ccc}
\sin \mu^{2} \cos \delta_{2}+\cos \mu^{2} & \cos \mu \sin \mu\left(1-\cos \delta_{2}\right) & \sin \mu \sin \delta_{2} \\
\cos \mu \sin \mu\left(1-\cos \delta_{2}\right) & \cos \mu^{2} \cos \delta_{2}+\sin \mu^{2} & -\cos \mu \sin \delta_{2} \\
-\sin \mu \sin \delta_{2} & \cos \mu \sin \delta_{2} & \cos \delta_{2}
\end{array}\right)
$$

Discrete Conical Case

The coplanarity of a_{1}, a_{2}, a_{3} can be expressed by $D_{1}=0$ with

$$
D_{1}:=\operatorname{det}\left(A_{1}^{*}, A_{2}, A_{3}^{*}\right) .
$$

Discrete Conical Case

The coplanarity of a_{1}, a_{2}, a_{3} can be expressed by $D_{1}=0$ with

$$
D_{1}:=\operatorname{det}\left(A_{1}^{*}, A_{2}, A_{3}^{*}\right) .
$$

Exactly the same procedure can be done with respect to the directions B_{i} of the edges b_{i}, which are given by:
$B_{3}:=\left(\cos \left(\mu+\tau_{3}\right), \sin \left(\mu+\tau_{3}\right), 0\right)^{T}, \quad B_{j}:=\left(\cos \tau_{j}, \sin \tau_{j}, 0\right)^{T}, \quad j=1,2$.

Discrete Conical Case

The coplanarity of a_{1}, a_{2}, a_{3} can be expressed by $D_{1}=0$ with

$$
D_{1}:=\operatorname{det}\left(A_{1}^{*}, A_{2}, A_{3}^{*}\right)
$$

Exactly the same procedure can be done with respect to the directions B_{i} of the edges b_{i}, which are given by:

$$
B_{3}:=\left(\cos \left(\mu+\tau_{3}\right), \sin \left(\mu+\tau_{3}\right), 0\right)^{T}, \quad B_{j}:=\left(\cos \tau_{j}, \sin \tau_{j}, 0\right)^{T}, \quad j=1,2
$$

The coplanarity of b_{1}, b_{2}, b_{3} equals the condition $D_{2}=0$ with

$$
D_{2}=\operatorname{det}\left(B_{1}^{*}, B_{2}, B_{3}^{*}\right) \quad \text { and } \quad B_{1}^{*}:=\mathbf{R}_{1} B_{1}, \quad B_{3}^{*}:=\mathbf{R}_{2} B_{3} .
$$

Discrete Conical Case

In order to convert the conditions $D_{1}=0$ and $D_{2}=0$ into algebraic ones, we use the halfangle substitution; i.e.

$$
\begin{array}{ll}
d_{i}:=\tan \frac{\delta_{i}}{2}, & s_{i}:=\tan \frac{\sigma_{i}}{2} \\
m:=\tan \frac{\mu}{2}, & t_{i}:=\tan \frac{\tau_{i}}{2}
\end{array}
$$

Discrete Conical Case

In order to convert the conditions $D_{1}=0$ and $D_{2}=0$ into algebraic ones, we use the halfangle substitution; i.e.

$$
\begin{array}{ll}
d_{i}:=\tan \frac{\delta_{i}}{2}, & s_{i}:=\tan \frac{\sigma_{i}}{2} \\
m:=\tan \frac{\mu}{2}, & t_{i}:=\tan \frac{\tau_{i}}{2}
\end{array}
$$

From $D_{1}=0$ and $D_{2}=0$ we eliminate d_{1} by means of resultant \Rightarrow

$$
E_{4} d_{2}^{4}+E_{2} d_{2}^{2}+E_{0}=0
$$

where E_{0}, E_{2}, E_{4} are functions in m, s_{j}, t_{j} with $j=1,2,3$.

Discrete Conical Case

In order to convert the conditions $D_{1}=0$ and $D_{2}=0$ into algebraic ones, we use the halfangle substitution; i.e.

$$
\begin{array}{ll}
d_{i}:=\tan \frac{\delta_{i}}{2}, & s_{i}:=\tan \frac{\sigma_{i}}{2}, \\
m:=\tan \frac{\mu}{2}, & t_{i}:=\tan \frac{\tau_{i}}{2}
\end{array}
$$

From $D_{1}=0$ and $D_{2}=0$ we eliminate d_{1} by means of resultant \Rightarrow

$$
E_{4} d_{2}^{4}+E_{2} d_{2}^{2}+E_{0}=0
$$

where E_{0}, E_{2}, E_{4} are functions in m, s_{j}, t_{j} with $j=1,2,3$.
This condition has to hold for all $d_{2} \in \mathbb{R} \Rightarrow E_{0}=E_{2}=E_{4}=0$. There exists a closed form solution (for details see the paper).

Discrete Conical Case

Using the closed form solution one can easily check by direct computations (e.g. with Maple) that the following theorem holds true:

Discrete Conical Case

Using the closed form solution one can easily check by direct computations (e.g. with Maple) that the following theorem holds true:

Solution for the discrete conical case:

The cone Λ equals one cap of a Bricard octahedron of the planesymmetric type. Moreover, the planes α and β have to be orthogonal to the plane of symmetry ω of this cone.

Non-translational Zipper T-Tube

Based on this result we were able to give the first example of a nontranslational zipper T-tube [4].

Smooth Conical Case

We presented an approach based on Euclidean differential geometry of curves and cones (cf. [10]).

Smooth Conical Case

We presented an approach based on Euclidean differential geometry of curves and cones (cf. [10]).

We were able to solve the resulting system of partial differential equations symbolically up to a final ordinary differential equation.

Smooth Conical Case

We presented an approach based on Euclidean differential geometry of curves and cones (cf. [10]).

We were able to solve the resulting system of partial differential equations symbolically up to a final ordinary differential equation.

Its solution remains an open problem.

Smooth Conical Case

We presented an approach based on Euclidean differential geometry of curves and cones (cf. [10]).

We were able to solve the resulting system of partial differential equations symbolically up to a final ordinary differential equation.

Its solution remains an open problem.

Conjecture:

There exists no non-trivial solution.

References and Acknowledgment

References

All references refer to the list of publications given in the presented paper: Nawratil, G.: Isometrically deformable cones and cylinders carrying planar curves. Advances in Mechanism and Machine Science: Proc. of 16th IFToMM World Congress (M. Okada ed.), Springer.

Acknowledgment

This research is supported by grant F77 (SFB "Advanced Computational Design", subproject SP7) of the Austrian Science Fund FWF.

References and Acknowledgment

References

All references refer to the list of publications given in the presented paper: Nawratil, G.: Isometrically deformable cones and cylinders carrying planar curves. Advances in Mechanism and Machine Science: Proc. of 16th IFToMM World Congress (M. Okada ed.), Springer.

Acknowledgment

This research is supported by grant F77 (SFB "Advanced Computational Design", subproject SP7) of the Austrian Science Fund FWF.

Thank you for your attention!

