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We transfer the basic idea of bonds, introduced by Haged ma -
Schicho and Sclicker for overconstrained closed chains = ms
with rotational joints, to the theory of self-motions of phel

manipulators of Stewart Gough type. Moreover we present
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ma
some basic facts and results on bonds and demonstrate the
potential of this theory on the basis of several examples. As
a by-product we give a geometric characterization of all SG v
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platforms with a pure translational self-motion and of all

spherical3-dof RPR manipulators with self-motions. )
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1 Introduction Fig. 1. A SG manipulator with planar platform and planar base
The theory of bonds was introduced by Hegediis, Schi = ¢i =0fori =1,...,6) is called planar SG manipulator.
cho and Schrocker in [1} as a new means for the analy-
sis of overconstrained closed linkages with revolute p{Rt
joints)_ In the f0||owing we give 0n|y a very tight Summaryequa|s the exceptional number 0. Therefore bonds are the
of this theory in order to sketch its basic idea: points on the complex configuration curve at some degen-
A dual unit-quaterniorh := (ep,e1,€,€3, fo, f1, f2, f3)  €rate infinity, which contain a lot of information regarding
describes a rotation in the Euclidean 3-spacé, i 0 holds the geometry of the overconstrained closed chain. For more
ande; = & = e3 = 0 does not hold. Thent —h yields a details we refer to [1].
1-parametric rotation around a fixed axigitht = (t: 0:0:

0:0:0:0:0 andt € R. Remark 1. For a better understanding of the concept of
Now we consider a composition of consecutive rot20nds we offer the following well known analogy: To a curve
tions, which can be written as: k in Euclidean 3-space, we associate the points of k at infin-
ity. These ideal points correspond with the bonds. If this se
(t;—hy)o(ty—hy)o...o(t,—hy), 1) is a singlgton, th(_an the curve is_a line in direction of theaide
point. If it consists of two points located on the absolute

whereo denotes the product of dual quaternions. If there®N'C: then the curve is circular, and so on. M

exists a seK := {(ty,...,tn)} of dimension one in a way that
Eq. (1) yields an element &\ {0} then thenrotational axes 11  Stewart Gough manipulator

ay,..-,an associated withy, ..., h, form a closedR linkage The geometry of a Stewart Gough (SG) platformis given
with one degree of freedom. _ by the six base anchor poinMd; with coordinatesMl; :=
Now the set Qf bor_1ds is defme_d as those elements %’Bi’Q)T with respect to the fixed system and by the six
the so-called configuration curie which imply that Eq. (1) platform anchor points; with coordinatesn; := (a, bi7ci)T
with respect to the moving system (foe 1,...,6). Each
pair (M;, m;) of corresponding anchor points is connected by
ODedicated to my newborn daughter and her mother on the arcasi g SPS-leg, where only the prismatic joint (P) is active aed th
her birth. _ , _ spherical joints (S) are passive (cf. Fig. 1).
2Recently an extended version of this paper was publlshe@Z{]}f . If the geometry of the manipulator is given as well as
Fore; = e, = e3 = 0 the rotation degenerates into a translation. This ) ) . T
case is excluded. the six leg lengths, the SG platform is generically rigid.t Bu



under particular conditions the manipulator can performifthe normalizing conditioMN = 1 is fulfilled. All points of

d-parametric motiond > 0), which is called self-motion. the complex extension d#’, which cannot fulfill this nor-

Note that such motions are also solutions to the still uresblvmalizing condition, are located on the so-called excejation

problem posed by the French Academy of Science for tlygiadricN = 0. It can easily be seen by differentiation that a

Prix Vaillant of the year 1904, which is also known as Borgboint of the exceptional quadric is singular, if and onlytif i

Bricard problem (cf. [3-5]) and reads as follows: belongs taE. ThereforeN = 0 is a cone with vertek.
"Determine and study all displacements of a rigid body By using the Study parametrization of Euclidean dis-

in which distinct points of the body move on spherical pathsplacements the condition that the point is located on a
Itis already known that manipulators, which are singulaaphere centered iM; with radiusR; is a quadratic homo-

in every possible configuration, possess self-motionséh eageneous equation according to Husty [13]. This so-called

pose (overC). These so-called architecturally singular SGphere conditiod\; has the following form:

platforms are well studied and classified (for the planaecas

we _refer to [6-9] and for th_e non-planar case see [10, _11])/\i : (a1-2+ bi2+Ci2+Ai2+ Bi2+Ci2— R,-Z)N

Until now only few self-motions of non-architecturally sin

gular SG platforms are known as their computation is a very —2(aiA 4 biBi + GCi)e§ — 2(aiA — biB — ¢iCi)ef

complicated task. To the best knowledge of the author, a +2(ayA — biBi + GiCi)&3 + 2(aiAi + biBi — ¢iC) &3

complete and detailed review of these self-motions wasgive

(

in [12] +4(ciBi — biCi)ever — 4(GA — aiCi)ees

In Section 2 we transfer the basic idea of bonds to par- +4(biA — aBj)eoes — 4(biA +&iBi)ere;
allel manipulators of SG type and explain how these bonds —4(GA + aiCi)eres — 4(CiBj + biCi)exes
can be computed. In Section 3 we present some basic facts, 4 4(a; — A)(epf1 — e fo) + 4(bi — Bi) (o f2 — exfo)
results and examples on bonds of SG platforms with self- A~ B A B
motions. Moreover we characterize all SG platforms with +4(Gi—G)(eofs —esfo) + 4@+ A)(Esfa — & f3)
pure translational self-motions, as these self-motioasat +4(bi+Bi)(erfs —esfy) +4(ci +Ci)(e2f1 —er f2)
covered by the theory of bonds. In the Sections 4 and 5 we +4(f§+ f12+ f22+ fg) -0

demonstrate the potential of bond theory on the basis of two 2)
interesting tasks. Finally we close the paper with conolusi

and an outlook to future research. . . . .
Now the solution of the direct kinematics ov&rcan be

written as the algebraic variety of the ideal.¥ spanned by
2 Bondsof parallel manipulatorsof SG type W.A1,...,Ng,N = 1. In generaV consists of a discrete set

We start with the direct kinematic problem of paralleP! POINts with a maximum of 40 elements. _
manipulators of SG type. Due to the result of Husty [13], it . After the removal of then-th leg we end up with a
is advantageous to work with Study parameters, which argd€99ed manipulator, which has at least a 1-parametric
nothing else than homogenized dual unit-quaternions; i $£!-motion (overC). lts solution for the direct kinemat-
(ep:€1:e:6:fo: fi:fr: f3). Note that the first four ics is given by the algebraic variety, pf the_ |d.eal f.n
homogeneous coordinatés : e; : & : e3) are the so-called spanned by, Ai,Aj, Ak, A, Am, N = 1 with pairwise dis-
Euler parameters. tinct i, j,k,I,mn e {1,...,6}. Note that.#, is a subideal
Now all real points of the 7-dimensional Study parame . ) . )
eter spaceP’, which are located on the so-called Stud)( In the following we give a rough idea of bonds of 5-

legged manipulators: We consider the algebraic motion of

quadricW : zﬁzoa fi = 0, correspond to an Euclidean dis : > ) ’
placement with exception of the 3-dimensional subsgiacet® Mechanism, which are the points on the Study quadric
that the constraints define; i.e. the common points of the six

of W given byey = e = e = e3 = 0, as its points can- ' .
not fulfill the conditionN £ 0 with N = €2+ & + & + 2. Auadrics¥, Ai, Aj, A, Ay, Am. Now the points of the alge-
The translation vector := (ty,t,,t;)7 and the rotation ma- braic motion withN # 0 equal the kinematic image of the

trix R := (r;;) of the corresponding Euclidean displacemelﬂlgebraic va_lrietwn_. But we can also consider the _points of
Rx + t are given by: the algebraic motion, which belong to the exceptional cone

N = 0. An exact definition of these so-called bonds is given

within the next section.
t1 =2(epf1 —erfo+exfz —esfy),

t=2&f—efo+eshi—efs), 2.1 Direct kinematics of 5-legged manipulators
ts=2(eofs —&sfo+erfa—efa), Based on the algorithm of Husty [13] for solving the
direct kinematics of SG manipulators we sketch the general
and procedure for computing the forward kinematics of 5-legged
parallel manipulators of SG type. In the following we also
&+el—e5— € 2(e1e—epe3)  2(e183+ €pey) use the equation; ;, which denotes the differendg — A;
R= ( 2(e16+ege3) €—€3+65— €5 2(ee3—epe) ) , of two sphere constraints. Note thaf; is only linear in
23— &) 2(ee3teper) E—€-+6)  fo,... fa



The five linear equationsW,Aj;,Axi, A, Ami in to non-translational motioAdor the following definition of
fo,..., f3 only have a solution, if the determinant of the augbonds, which is similar to Definition 2 of [1]:
mented coefficient matrix (5 5 matrix) of this linear system
with respect offy, ..., f3 equals zero. From this determinan
we can factor oulN and we remain with a polynomid,
of degree four in the Euler parameters. Thiscan also be
seen as a quartic surfadg in the Euler parameter spabé, %n:=ZarClo(Vy) N {(eo:...: fa) & P? |
which is a projective 3-space. WAL A AN Am N = 0}

{)efinition 1. For a 5-legged parallel manipulator of SG
ype the set?, of bonds is defined as:

Remark 2. Due to e.gAx = Ajj — Ay andAyj = —Ajk,
the ideal 7 := {W,Aj;, A, i, Ami} is also spanned by
W Ak, Ak, A k. Dmk. Now R is the algebraic variety of
the elimination-ideal of # with respect to d,..., f3. As the
elimination of §,..., f3 is done linearly, k does not depend
on the choice of € {1,...,6}\ {n}. ©

Moreover we can also solve the subse}, of equa-
tions W,A;i, Ay, A with pairwise distincti, j,k,I,m €
{1,...,6}\ {n} for fo,..., f3 and plug the obtained solutions
into A\j. The numerator of the resulting expression is a pol
nomial Gy, of degree eight in the Euler parameters, whic
can also be seen as an octic surfggn the Euler parame-
ter spaceé>.

with pairwise distinct jj,k,I,mn e {1,...,6}. Vg de-
notes the variety yafter the removal of all components,
which correspond to pure translational motions. Moreover
ZarClo(Vyy) is the Zariski closure of ¥ i.e. the zero locus
of all algebraic equations that also vanish og.V

Therefore the set of bondg, are the exceptional points
(N = 0) of the algebraic motion, which are limits of non-
translational motions. Due to this definition.&,, the set of
bonds can easily be computed by interseckpgvith N =0,
vhich can generally be done as follows:

We eliminate an Euler parametey by computing the
resultantU,, := RegFy,N,es) of Fy, and N with respect to
es. Beside this polynomial, we can also calculate the re-
Remark 3. Gp, is the algebraic variety of the elimination-sultantsLy := RegGy,N,es) with x € {i,j,k|,m}. We
ideal of W, Ai,Aj, Ak, A with respect to ..., f3. As the eliminate a further Euler parametarby computingh :=
elimination of §,..., f3 is again done linearly, G does not ResUn,Lx,&). Then the greatest common diviS8CD, of
depend on the choice o&i{1,...,6}\ {n,m}. o these five equationaf, W;, W, W, W, corresponds with the

. . intersection points oK, andN = 0. Therefore each solution

All points of I'm with N 7 0 andQm # 0 can be extended ¢ 5op implies a bond, which can be computed stepwise
to solut|o_ns Qf the cﬁrect kinematics of the 4-legged Manipyy 12 ck-substitution (cf. Example 1).
lator, which is obtained from the 5-legged one by removmgy
themth leg. Note thaQy, = 0 is a quadric in the Euler pa-
rameter space3, which equals the set of orientations, wher@-2 Bonds of SG platforms
the denominator of th&’s vanishes. Based on Definition 1, we can give the definition of

We denote the set of common points of the quatjc Ponds for a SG platform as follows:

and the five octic§;, I'j, M, ', 'm by Kn. If a pointQ of Kn - pefinition 2. For a SG manipulator the se# of bonds is
is located on all five quadrid®i = Qj = Qx=Q =Qm=0,  defined as? :=NE_, %, where%, denotes the set of bonds

then the back-substitutionin all solutions figr . . ., f3 yields ¢ the5-legged manipulator after removal of the n-th leg.
a contradiction (division by zero). But this already implie

for the orientation determined Iy that the rank of the coef-  Due to Definition 2, the se¥ equals the common points
ficient matrix of the linear systeM, A i, Ak, A i, Omi is less  Of Ki,...,Ke andN = 0. Therefore these points correspond
than 4. Therefore this system lets at least one of the Study gacommon factors o6CD;, ..., GCDg. Note that it is suffi-
rametersf, ..., f3 undetermined. As a consequence the onfjient to compute the common factors@E€D andGCD; for
remaining equation (any sphere condition of the involveel fi 7 | as all six legs of the manipulator are already involved.
|egs) can be solved for this Study parameter_ Hence the p(ﬁ‘“t the Computation of bonds can further be Slmpllfled due
Q corresponds with multiple solutions of the direct kinemat® the following consideration:
ics (which have the same orientation). Therefore each point The common points oK, ...,Kg are contained within
of K,, can be extended to at least one solution of the forwafde Six quartic surface®s,...,Ps. Their corresponding
kinematics problem (ovet). Summed up we can state thagguationd, ..., Fs can be generated within the ideal
the points oK, with N # 0 are the projection o¥, into the
Euler parameter spad®, which is induced by the elimina- S = { W0, D¢ D i, B, B } ()
tion of fp,..., fs.

Clearly the kernel of this projection equals the group ofith pairwise distinct, j,k,I,m,n € {1,...,6}.
translational motions. As a consequence a componevy, of We denote the set of common points®f, ..., ®g by
which corresponds to a pure translational motion @/ére. Kp. Note that the algebraic degree I is lower than the
e = Agi whereg; are constantg C for i =0,...,3 with
93+ 92+ g3+ 093 #0andA € C\ {0}), is projected to a sin-
gle pointO of the Euler parameter spaB&. As the intersec- 3Note that this is an analogy to the theory of bonds of overzaimed
tion of O andN = 0 equalsz, we have to restrict ourselvesclosed chains (cf. footnote 2).



degree ofKy,...,Kg, as it is determined by the intersection  We close this section with the following definition:

of only quartic surfaces. In the general case, the common = ) ] .

points 0fKo andN = 0 can be computed as follows: Definition 3. A bond is called singular, if it belongs to the
We eliminate an Euler parametey by computing the Vertex E of the exceptional cone=NO.

resultanty; := RegF,N,es). Then we eliminate a further

Euler parameteg by calculating j := RegU;,Uj, &) for ] ] ]

pairwise distinct, j € {1,...,6}. Now the greatest common3 SC manipulatorswith self-motions

divisor GCDy of these equationd/ j corresponds with the In this section we discuss the use of bonds for the theory
intersection points dko andN = 0. ' of self-motions of SG manipulators.
Due to the lower algebraic degree®€Dy, we recom- We assume that a given SG manipulator hasi-a

mend to compute? by using the common factors GCDy dimensior_wal se!f-motion, Whigh is not pure tran;lational.
andGCD, for an arbitraryi € {1,...,6}. This is already suf- AS 2 d-dimensional self-motion corresponds with ca
ficient, as again all six legs of the manipulator are involvedimensional solution of the direct kinematics problem, the
Finally it should be noted that in the general case there doga/€n quadric¥,AAy,..., A have to have a-dimensional

not exist a common factor @&CDy andGCD;: i.e. Z — @ set of points in common= algebraic motion). But not all
holds (cf. Example 4). ' bonds of the bond-se® have to be implied by the self-

motion. This necessitates the following definition:
Remark 4. There are two special cases, where the given )
algorithm has to be modified as the linear system for the sB&finition 4. A bond, which does not belong to a d-
lution of f, ..., f3 is always linear dependent. According todimensional (d> 0) algebraic motionZ N = 0 of the ma-

page 513 of [14], these cases are as follows: nipulator, is called pseudo-bond.
1. the platform and the base are planar and the anchor In order to improve the understanding of bonds and
points are related within an affinity, pseudo-bonds we give the following two examples with re-
2. the platform and the base are congruent. spect to the analogy of Remark 1:

An algorithm for these cases is given within Example 5. e Assume thaks,...,k, are conic sections located in pair-
wise distinct carrier planes, which have a lliiecommon.
The theory of bonds is based on the following funda- Moreoverks, ..., k, are reducible, where eakhsplits into
mental theorem: the linesl andl; with | # |; for i = 1,...,n. The common
component represents the self-motion and its ideal point
is the corresponding bond.
e Assume thaks,... k, are circles of arbitrary radius lo-
Proof: We considerK, in the Euler parameter spa¥. cated in pairwise distinct carrier planes, which are par-
Beside the geometry of the corresponding 5-legged ma-allel to each other. Nevertheless these circles do not
nipulator, K, depends on the leg length$, R;, R, R, Rm have a component in common, they have the same two
with pairwise distinct, j,k,I,me {1,...,6}\ {n}. But the ideal points. Therefore these cyclic points correspond to
intersection points oK, and N = 0 are independent of pseudo-bonds.

these leg lengths as theses variables do not appear within , )

the polynomialsL;,Lj,Ly,L;,LmUn. The reason for this Remark 5. In this context it should be noted that one can
is that the coeffici’enés (;f t’he ieg lengths within the equzg-et rid of pseudo-bonds by using the following alternative
tions Gy, G;, Gy, G|, Gm, Fn, contain the factoN. As a con- definition of bonds for SG platforms (without the detour

sequence the Euler parameters of the bonds do not depHHSUQhS'legged manipulators; cf. Definition 2):

Theorem 1. The set# of bonds depends on the geometry
of the SG manipulator and not on the leg lengths.R , Rs.

onR, R}, R, R, Rm.
After back-substitution of the obtained Euler parame- B :=ZarCloV*) N {(ey:...: f3) € |:>7|
ters intoAi, Aj, A, A1, Am, these sphere conditions are also W, A1, A2, Az, Ag, As, As,N = O}

independent of the leg lengths, as the Euler parameters ful-
fill N =0 (cf. Eq. (2)). Therefore the remaining Study
parameters, which are computed from these equations, #feere V denotes the variety V after the removal of all com-
also independent of the leg lengths. Therefafedepends ponents, which correspond to pure translational motiors.
on the geometry of the 5-legged manipulator and not on

R.Ri.R.R.Ry. Based on this result the proof for the gen- The restriction of the bond theory to non-translational
erl’;tl gasé isvclo;sed by Definition 2 P 9 self-motions does not cause any problems as all SG plat-

. . .fprms, which possess pure translational self-motions, can
A similar argumentation also holds for the two speC|aeasil be characterized as follows:
cases given in Remark 4. O y '

Due to this theorem, we can choose arbitrary values ff€0rem 2. A SG platform possesses a pure translational
R (i = 1,...,6) for the computation of the bonds. This propSelf-motion, if and only if the platform can be rotated about

. -
erty can be used to simplify the sphere constrafatef Eq.  the centeim; = M; into a pose, where the vectal4m; for
(2) by settingR? = a? + b? + ¢ + A? + B? + C?. i = 2,...,6 fulfill the condition rkMzmp, ..., Mgme) < 1.



Proof: Based om\; of Eq. (2) we prove this theorem ana-in direction of P (cf. footnote 4). Clearly we only get a 2-
lytically. Without loss of generality (w.l.0.g.) we can fike parametric translational self-motion, K is not defined as
orientation of the platform byey, e1,e>,€3) = (1,0,0,0). A Mymy = ... — Meme — o0 holds (& the platform and the
the group of translations is 3-dimensional, we are lookingase are congruent). This completes the discussion of SG
for conditions, which imply at least a 1-dimensional vayietplatforms with pure translational self-motions.
of the ideal spanned BY, A1,/ As.

W.l.0.g. we can choose a fixed frame in a way tht Remark 6. This also verifies that translational self-motions
coincides with the origin\, is located on its-axis, andviz ~ correspond with components af {£f. Definition 1). o
lies within thexy-plane & A1 =B1 =B, =C;=C, =C3 =
0). For the moving frame we can only assume w.l.0.g. thaty Basic facts, results and examples
my coincides with its origin{- a; = by = ¢; = 0). We want to start this section with a first example; namely

Then we can solve the system of equati#hfz 1,431,  the Schonflies Borel Bricard motion.
which is linear info, ..., f3, for:

1. fo, fz, f3 if D, 75 0 holds Witth = C2b3 — B3 — C3b2,

2. fo,f1, f3 if Dy # 0 holds with D, := cpaz — CoA3 —
Caaz + CaAy,

3. fo, f1, fo if D3 # 0 holds with D3 := byAz — braz —
b3As + bzay, — Bzay + B3Ao,

Example 1. For the study of this self-motion we can as-
sume w.l.0.g. that the platform and the base are both planar
(cf. [15]); i.e. g =Ci=0fori=1,...,6. If the base an-
chor points and the corresponding platform anchor points
are coupled by an inversion with respect to the unit circle;

ie.
and plug them intd\;. We denote the resulting expressions
by ©1, ©, andOs, respectively. In order to get a self-motion, 2 2 22
©; has to be fulfilled independently df. Therefore the co- A =a/(@ +bf), Bi=bi/(a +b),
efficient=; of 2 of ©;, which only depends on the geometry
of the manipulator and not dr;, Ry, Rz, has to vanish. then there exists &-parametric self-motion with

We can solve=;, which is quadratic inap, for this
variable if Ty # 0 holds withT; := (b3 — Bg)? +c3. Now
it can easily be seen (e.g. by using the simplify command
within Maple) that the obtained value fag in dependency
of by, cp,a3,b3,C3,A2,A3,B3 € R cannot be a real number.It can easily be verified that this self-motion is given by:
This already yields the contradiction.

Analogously this can be done fap with respect td,,
if T, # 0 holds withT, := (ag — Ag)? + ¢4, and for=3 with (0:0:0:+en\/€5—f5/fa: F/€5—5:0:0:f3).
respect tacy, if Tz # 0 holds with Tz := (ag — Ag)? + (b3 —

2
Bs)”. As it is well known [4] that all points of the platform move

Therefore we always end up with a contradiction as Ion(gn s : :
pherical path, we can choose any six platform anchor
asDy # 07T, or Dy 0 T, or D3 7 0 # Ts holds. Now points. We use the following ones:
it can easily be checked thB; = D, = D3 = 0 equals the

condition that the vectorl,m, andMsmg are linearly de- - T T
pendertt; i.e. rk(Mams, Msms) = 1. In this case, the coef- M1~ (17,-11)7, mz=(0,1)", ms=(2,1)",
ficient matrix of the linear syste¥,A; 1,A31 has rank 2. my = (3, 5)T, ms = (-7, 13)T, me = (1, O)T.
Then one of the radiRy, Ry, Rz can be determined in a way
that the augmented coefficient matrix also has rank 2. T
already yields the 1-parametric translational self-nmatio
Now it is not difficult to verify that all other combi-
natorial cases; =Y, = Z3 =0 for X,Y,Z € {D,T} and
(X,Y,Z) # (D,D,D) also implyD; = D, =D3=0. There- 1. & = esl, where | denotes the complex unit: Now the
fore these cases are only special cases of the already dis- stepwise back-substitution can be done as follows. We

RY = (af+bf+1)%/ (a7 +bf).

hﬁ'nen we run the algorithm given in Section 2. We compute
GCDy and GCDO and their greatest common divisor, which
equals @ + 5. Therefore we have to distinguish two cases:

cussed one, which also include the case thiat, and set @ = &3l in the already computeddand U. Then we
—>M3m3 equal the zero-vectar. compute their common solution, which yields-=e0.
Similar considerations for the idea, A1, Ai,Aj for We proceed by pluggingye= el and & = 0 into the
pairwise distincti,j € {2,...,6} imply the condition already computed and fr as well as N. The common
rk(m Moma) < 1 . solution of these equations is trivially given by-e 0.

Now we can computep,ff, fa from e.g.W,Az6,A36
Finally it should be noted that all 1-parametric self-  which yields § = fsl and f, = f, = 0. AsA1 6,046,056

motions are circular translations, which can easily be seen are fulfilled identically, we only remain withg = 463,
by considering a normal projection of the SG manipulator \hich implies g = 0. This yields the first bond.
2. @ = —e3l: Analogous computations yield the conju-
gated bond.
“We denote the ideal point of this direction By



As the set of bonds only consists of one element up to conjt - Mg
gation of coordinates; i.e.
emy Mgy
#:={(0:0:0:0:1:0:0:1},
*m; Ms
the set#Z does not contain a pseudo-bond. Moreover as the _
bond has the expected dimension d, it corresponds to a ms = Mg my M1 =My Ms
point on the Study quadri¢’. Note that this point is located
Ir_] the linear SUbSpa_Ce_ _E P, and therefore the bond is a Fig. 2. Sketch of the platform (left) and the base (right) of the planar
singular one (cf. Definition 3). o

SG manipulator of Example 3, where M1 = M5 and ms = mg hold.
Clearly the complex algebraic variet¢ can be used

to classify all already known SG platforms with NONyye get et -parametric bonds, where the ratio:w can be
translational self-motions with respect to algebraic prtips  goan a5 projective parameter with, v) # (0,0). For u= 0

of their bond-set. Note that these algebraic properties (eWe get the singular points of these tdaparametric bonds.
algebraic multiplicities of bonds) have to be invarianthwit

X For each p there exist two rotational self-motions
respect to changes of the reference frames in the platfo[gbually or oppositely oriented x-axes), which shows thet t
and the base, respectively. In this context the well-kno

_ nds have to b&-dimensional. Therefore the first bond cor-
fact should be noted that the quadyie= 0 and the linear sub- responds to th&-dimensional set of rotational self-motions,

spaceE possess this invariance property (otherwise the Pl%here the x-axes have the same orientation. For the second
sented bond theory and the notion of singular bonds wou'%nd they have opposite orientation

be senseless). This invariance property also holds foathe f

lowing theorem, which follows immediately by intersecting ~ This example shows very well the property formulated

the sphere constrainy of Eq. (2) withE: in Theorem 1, namely that bonds are independent of the leg

: . . lengthsRy, ..., Rs. Due to this property, bonds can not only

2 9 9

'][gleofrgzm ?2‘ —AO singular bond fulfills the conditiongf+ e \iseq for the above mentioned classification of known SG
il 1g=0 manipulators with self-motions, but they are also suitad fo

Remark 7. It is clear that non-singular bonds cannot bethe following two interesting tasks:

real as they fulflll N= 0. Due to Theorem 3 this propertyTaSk 1 Check

also holds for singular bonds. o

<

if a given SG platform is free of non-
translational self-motions.

In the following we investigate a trivial self-motion, Task 2. Determine the geometry of SG platforms with non-
which is very interesting from the viewpoint of bond theory. translational self-motions.

Example 2. We assume thatl,,...,M4 are located on a Before we discuss these tasks in the next two sections,
line g. Then there exists a trivial self-motion, rifs and we want to study a further very informative example from the
me are located ong as well, as in this case the platformviewpoint of bond theory, which is strongly connected with
can rotate aroundgs. This pure rotational self-motion is also the previous example.

known as butterfly self-motion (cf. [12]). W.l.0.g. we can a
sume thafg is the x-axis of the fixed framex( By = ... =
B4 =C; = ... =C4 = 0) and thatms andmg are located on
the x-axis of the moving frames( bs = bg = ¢5s = cg = 0).

SExample 3. The geometry of the planar SG manipulator,
which is displayed in Fig. 2, is given by:

Moreover we can assume that the origin of the moving frame M1=(0,0)", M2 =(0,0)", M3 =(3,0)7,
equals the poinf2p,0,0) of the fixed axis. We are still left Ms=(0,2)7, Ms=(-1,1)7, Mg = (2,3)7,
with two possibilities, namely if the x-axes of the fixed and T T T
moving frame have the same orientation or the opposite one. M = (3,3)%, mz = (3,2) ms=(0,3)’,
Now this choice fixes the values of the radi(B), . .., Rs(p) my = (4, O)T, ms = (0, O)T, me = (0, O)T.

in dependency of p. Then the Study parametrization of the
rotation for equally oriented x-axes can for example bewrit  An analogous computation as done for Example 1 yields

ten as: the following set of bonds up to conjugation of coordinates:
(€:€1:0:0:—ep:epp:0:0). #:={(0:0:u:ul:0:0:v:vl),
By computing the bonds analogously to Example 1 we end (ul.: N 0 O_:VI_: V:_O :_O)’ (5)
up with the following set of bonds up to conjugation of coor- (0:ul:0:u:0:vIii0:v),
dinates: (u:0:ul:0:v:0:vl:0)}.
#:={(ul:u:0:0:vl:v:0:0), (4) DuetoExample 2, we can already give a geometric interpre-

(0:0:u:ul:0:0:v:v)}. tation of these bonds. The first and second bond contain the



with special geometries, the solution of the set of equation

my MG . . .
is still not trivial at all.
ms3 With the bond theory task 1 simplifies considerably, as
ma the following theorem holds due to the definition of bonds:
Ms
my m m M Ms Ma M Theorem 4. A SG platform is free of non-translational self-
o o° e e e motions if# = @ holds.

As due to Theorem 1 the computation@fis indepen-
Fig. 3. Sketch of the platform (left) and the base (right) of a pla- dent of all leg lengths, we get the paradoxical situation tha

nar SG manipulator with pairwise distinct anchor points, where B; = task 1 can be solved ind?pendentlﬂf' -, Re. Inthis con-
a = Ofori =1,...,4and As = Ag = bs = bg = O hold. text, we study the following examples:

Example 4. We consider a SG platform with generic ge-

information that the manipulator possesses rotational-se®Mety; i.e. the coordinate vectols; andm (i = 1,...,6)

motions around the x-axis of the fixed frame. These motio?lfsthe anchor pointsV; f'md Mi, respectively,_are gener-
have the property that the pointss — mg and my are lo- ated randomly. By a straightforward computation according
cated on the x-axis of the fixed frame to the procedure of Section 2 it can easily be checked that

6 oz _ ;
An analogous interpretation can be given for the bonddi=1%i = @ holds. Moreover due to Theorem 2 a generic

three and four, as they also correspond to rotational seI1S-r(]3 pI:\tform IS 3'59 free of pure Itrans(ljatlonal self-motions
motions around the y-axis of the fixed frame. In this cas erefore a generic SG manipulator does not possess any

the pointsms = mg andmg3 are located on the y-axis of theself—motmns. M
fixed frame. In the following we discuss one of the two special cases
Beside these butterfly self-motions, the manipulator j§entioned in Remark 4.
known to have also a spherical self-motioivif = M, coin-
cides withms = mg. Therefore this spherical self-motion isExample 5. The planar platform and planar base of the SG
also encoded withir (cf. the later given Remark 9), whichmanipulator are related by an affinity. Moreover we assume
demonstrates that the set of bonds is more than the sum ottat the affinity is regular, as otherwise we end up with atriv
single bonds. o Ial case of an architecturally singular manipulator, whigh
not of interest in this context. It was proven in [16] by ge-
This example also shows that for a serious classificati@netric considerations that these so-called planar affiée S
of SG manipulators with non-translational self-motions thmanipulators only possess translatory self-motions, éfth
consideration of algebraic multiplicities of bonds is e&&#, are not architecturally singular; i.e. the anchor pointsear
as there exist manipulators with the same #edf bonds not located on a conic section. In the following we want to
given in Eq. (5), which only possess the butterfly motiongerify this result by means of bond theory.
but no spherical self-motion. As example we can consider pue to a well known result (cf. [16—18]), we can use any
the planar manipulator given in Fig. 3. six platform and base anchor points related by the affinity as

For the sake of length and simplicity we ignore the corong as they are not located on a conic section. We choose
cept of algebraic multiplicities within this introducti@rti-  the following six platform anchor points:

cle of bonds and postpone it to a follow-up paper.

4 study of task 1 my=(21)7,  ms=(02)7, me=(3-2".
For the explanation given in the following two para-
graphs we restrict ourself to 1-dimensional self-motidous, W.L.0.g. we can assume tHdt is located in the origin of the

it should be noted that analogous considerations can be dgggd frame andv, on its x-axis. This already implies that

for higher-dimensional ones as well. _ the affinity is of the fornM; = Am; for i = 1,...,6, where
The classical approach for the explicit solution of thighe2 x 2 transformation matri is given by:

problem is as follows: By eliminating the Study parameters

according to the algorithm of Husty [13] we end up with a

homogeneous polynomi#l of degree 40 in two Euler pa- A= (al az)

rameters, which additionally dependsien...,Rs. A nec- 0 as

essary condition for a 1-parametric self-motion is tHatan-

ishes independently of these two Euler parameters. This imith detA) = aya3 # 0. As for this SG manipulator any four

plies a set of conditions for the unknowRs, ..., Rs, which equations of the se#; of Eq. (3) are linearly dependent, the

can only be solved, if there exists a 1-parametric self-omoti algorithm of Section 2 fails. In this case we use the follgwin
The problem with this method is thet cannot be com- modified one:

puted in dependency &, . ..,Rg in the general case due to Now we can solv& Aj i, Ay; for three of the four fs.

its complexity. Moreover, if this is possible for manipudes  The remaining jfcan be computed fromy;, but this is not of



interest. If we plug the obtained expression for the thi&e f ulators is determined by the following set of equations:
into A j,Amj, we get homogeneous quadratic equations in
the Euler parameters. Therefore they represent two quadric

in the Euler parameter space®P Moreover we denote the A21:=T+RN=0,

intersection curve of these quadrics byK Now the inter- D31 =T+ RN =0,
section of Ky with N = 0 can be computed as follows: Dgpi=rio— RN =0,

We eliminate an Euler parameteg by computing the D5y =t1+tp+RsN+ B(rip+r22) =0,
resultant Re@), j,N, es) and RefAn;, N, &s). Then we elimi- De1 =T +Eo+ RN — (f11+r12) = 0,

nate a further Euler parameteg &y computing the resultant

Ji.m of the obtained two expressions with respectto e

If we start with another system of linear equations anith
proceed analogously, then we end up with another curve. In
this way we can generate the following six curves: 1:=2(epfy —e1fp— e fz+e3fp),

2:=2(epfy+e1fz—exfg—esfy).

— =+

Kik: Kir, Kim K, Kem, Kim
Moreover 3 € R\ {0} is the parameter of the projectiv-
ity k. The remaining missing conditiof; can be com-
Therefore the bonds of tielegged manipulator correspond pyted according to Eq. (2) fan; = (—B,0,0)T andMy =
with the greatest common divisor GG bf (0,—1,0)T, respectively.
For the given set of equations we run the procedure of
Section 2, which finally yields the following $ef bonds up

Jike i Jime ki Jkm Ime to conjugation of coordinates:
Finally the bonds of the planar affine SG manipulator are im- #B:={0:0:0:0:1:1:1:-1),
plied by the greatest common divisor of GCD.,GCDs. In (0:0:0:0:0:1:-1:1),
our case this yieldsr; a3, which cannot vanish without con- (0:0:0:0:pl:pu:1:1)
tradiction. ThereforeZ = @ holds, which proves again that (O L,
planar affine SG manipulators can only have translational (0:0:0:0:pl:1:p:—),
self-motions, if they are not architecturally singular. (0:0:0:0:vl:1:—v:l),
For the sake of completeness it should be noted that (0:0:0:0:vl:v:—1:-1)},

these manipulators only have translational self-motidhs,

and only if the singular valueg eind 9 of Awith0< s < s _ _
fulfill the relation § < 1 < s,. For more details see [16].c  With = \/24-_1 andv:=+v2-1 Due to the above cited
result, the six singular bonds are either pseudo-bondsey th

) belong to complex self-motions of the manipulator. ¢
Remark 8. For the second special case of Remark 4, where

the platform and the base are congruent, the:gesf bonds Until now it is an open problem how to identify bonds of
can be computed as in Example 5. © real self-motions only from properties of the bond-set. The
answering of this question is dedicated to future research.

Note that due to the possibility of pseudo-bonds and
bonds of complex self-motions we cannot replace "if” by "if
and only if” in Theorem 4. In order to point this out moreb  Study of task 2
clearly, we study the self-motional behavior of a superéet o In this section we show that the bond theory can also
planar affine SG platforms. be used to design parallel manipulators with self-motions.
In this context we provide a simple proof for the following
] . o theorem on the spherical analogs of SG manipulators (i.e.
Example 6. We investigate so-called planar projective SGpnerical three degrees of freedom (dof) mechanisms, where

platforms; i.e. corresponding anchor points of the planaghe piatform is connected via three RPR-legs with the base),
platform and planar base are coupled by a non-singular proghich was presented in [16]:

jectivity k: mj — M; fori =1,... 6. Moreover due to Ex-

ample 5 we can assume thais no affinity. The author has Theorem 5. Given is a sphericaB-dof RPR manipulator,

proven within the publications [16, 19, 20] that these maniﬂNhere the base anchor poimgo’ 5’ M% and p|atform an-

ulators are free of self-motions (ov&), if they are notarchi- chor pointsm$, m3, m3 are located on great circles (cf. Fig.

tecturally singular; i.e. if the anchor points are not loeat 4, |eff). This manipulator has a self-motion, if and only if

on a conic section. two platform anchor points or two base anchor points coin-
According to [19] the direct kinematics of these manipeide (assumed that antipodal points are identified).



to conjugation of coordinates:

PBy:={(gl : —02:1:1:0:0:0:0),
(1:1:02: -0 :0:0:0:0), 5
(Q2:1:—Ql:1:0:0:0:0, ©
(1:Q21:1:-Q2:0:0:0:0}.

A necessary condition for a self-motion of the spherical 3-
dof RPR manipulator is that the se#,, %, and %3 have
a common bond, which is equivalent with the statement that

Fig. 4. Left: Spherical 3-dof RPR manipulator. Right: W.l.0.g. we
o o P
can assume that m; and mg coincide (after a perhaps necessary GCD;y, GCD, andGCD;s have a common factor.

exchange of the platform and the base and reindexing of anchor
points). In the configuration, where m{ = m3 coincides with M3,
the platform has a trivial rotational self-motion.

Itis well known thatGCD; andGCD; only have a com-
mon factor, if the resultarig ; of these two expressions with
respect to one of the two remaining Euler parameters van-
ishes. Therefore we have to compute the greatest common

Proof: W.1.0.g. we can assume that the radius of the spgeredivisor of P12, P 3 andP, 3, which factors into:

equals one and that this unit-sphere is centered in thenorigi

pf the fixed frame. Mpreoverwe can assume w.I.o.g. M?t (q% _ 1)(q§ _ 1)(Q§ _ 1)(Q§ —1)

is located on the-axis of the fixed frame and th&i3, M5

belongs to thexy-plane of the fixed frame. (42— 98) (Q2 — Q) (1 + A20s) (1 + Q2Qs)
W.l.o.g. we can assume for the platform thaf is lo-

cated on thg-axis of the moving frame and that},m3 be- beside the remaining Euler parameter. But by setting this

longs to thexy-plane of the moving frame. By using theEuler parameter equal zero, the stepwise back-substitutio

half-angle substitution we can set: yieldsey = e = e, = e3 = 0; a contradiction. Moreover it
can easily be checked that the vanishing of any factor of Eq.

(7) implies the coincidence of two platform anchor points

()

T
M$ =(1,0,0)7, M{ = (ﬁ%z, ;gi,o) , or base anchor points, if we identify antipodal points. This
2' : T condition is already sufficient, as such manipulators atwvay
m3 = (0,1, O)T, m? = (%2, 12+_q‘;2,0) , have a pure rotational self-motion (cf. Fig. 4, right). O
| |

Remark 9. We consider the spherical coupler motion,

with g, Qi € R for i = 2,3. Now we can compute the threewhich results from the removal of the third leg. If we set

leg constrainté\y, A, andAz according to Eq. (2) under con-92 = Q2 = 0, it can easily be seen that this motion is equiva-
sideration off = f1 = f = f3 = 0 (cf. [21]). lent with the spherical motion of the SG manipulator of Ex-

In general this 3-legged manipulator has no sel@mple 3. For(u,v) = (1,0) the set of Eq. (5) equalszs
motions. Therefore we consider the motion of the mani@®f EQ- (6). This demonstrates that the spherical self-motio
ulator after the removal of thigh leg. Note that this yields ©f the SG manipulator is indeed encoded within thezget

a spherical 4-bar mechanism, which trivially has only non- It the following we show that by means of bond theory

translational self-motions={ spherical coupler motions). even a stronger statement can be proven in a very elegant
Now the set#; of bonds of this spherical 4-bar mechanisrgvay

consists of the common points&f, /Ay andN = 0 with pair-
wise distinctj,k,| € {1,2,3}. These points can be computedrheorem 6. Theorem 5 also holds if the anchor points are
as follows: not assumed to be located on great circles.
We eliminate an Euler parametgrby computingS; := ) ) )
Re$A, N, 6s), S 1= RegAl, N, &) andSs := ResA, A, ). Proof:_ Flrst_ of all we have_ to generalize the coordinates of
Then we can eliminate a further Euler parametday calcu- the third pair of anchor points as follows:
lating ResS;, S, &), ResS;,S3,6) andResSy, S3,6). The
greatest common divis@CD; of the obtained three expres- o 2(1-@)  (1-QQ1-Q@) 20, \ !
sions corresponds with the solution of our problem. The - ((1+Q§)(1+Q§)’ (1+Q3)(1+Q3)° 1+Q§> ’
set of bqnds can again be compu_ted by a stepwise back- o _ ((1-B)1-a) 2051} 2q, '
substitution. E.g. we get the following séf3 of bonds up ((1+q§)(1+q£)’ (1+ad)(1+ad)’ 1+q§>

M

wo

3

3=

In this case we do not proceed like in the proof of Theorem
5, as we want to present another way of arguing:
51t is worth noting that# does not depend on the paramegemwhich As the spherical 3-dof RPR manipulator can only have a
determines the geometry of the planar projective SG plati@f. [19,20]).  self-motion, if its set of bonds is not empty, at least onedbon



of &3 of Eq. (6) has to fulfill the leg constraimtz. If we following set of necessary and sufficient equations (cf. Eq.
plug the first bond of43 into A3, the numerator factors into: (30) of [18]):

[04(03 — d2) — (1+ 0203)1][0a(1 + G203) + (02 — Ga)!] (®) (S1,%,9,%4,55) (A1, A2, A3, A0, 25) T =55
[Qa(Qs— 1) + (Qs+ 1)1[Qa(Qs+ 1) + (Qz — )I].

with s := (1,a,bi, A, B, aA, aBi, biA, biB;)T. This system
The vanishing of the real and imaginary part of any famnly has a solution, if the rank of thex95 coefficient matrix
tor already implies the coincidence of two anchor points, M := (s1, %, 3,4, S5) equals the rank of the augmented co-
we takeq;, Qi € R for i = 2,3,4 into account. This can be efficient matrixM ;. := (s1,%,S3,%,S5,5). We distinguish
checked analogously for the remaining bonds4at the following two cases:

Clearly the coincidence of two anchor points is again
sufficient for the existence of a rotational self-motion. (cf(&) rk(M) < 5: Now the 5-legged manipulator is a so-called
Fig. 4, right), which proves the theorem. 0 degenerated one (cf. [23]), which is only possible if a
minimum of four anchor points is collinear [24]. More-

Remark 10. It remains as an exercise for the reader to ver- ~ OVer it was shown by the author [24] that in this case at
ify in an analogous way that plan&dof RPR manipulators least a 1-dimensional solution (M) = rk(M ) exists
only have non-translational self-motions, if two platfoam- with respect to the unknowrg, bs, As, B.
chor points or two base anchor points coincide. Moreover {P) k(M) = 5: The solution of the problenk(M) =
is a simple task to figure out that the platform and the base of k(M) =5 is more complicated, as special cases have

planar3-dof RPR manipulators with translatory self-motions {0 be studied. But for the general case there exist an
have to be congruent. o unique solution. For a complete and detailed discussion

please see [24].

If we want to design SG platforms with non- ) , , ) i
translational self-motions, we can also make use of the nd£& Sixth point pair(ms, Me) with rk(M) = rk(M.,.) exists,
essary condition that these manipulators have to poss¥dich therefore is a solution to Duprocg's problem, then the
bonds. This is demonstrated on the basis of the followif§SUting SG platform is always architecturally singutze;
problem, which is connected with the one discussed by DERUSEK(M-.) < 6 holds (cf. Remark 1 of [8]).
porcq in [22]: As a consequence we can also give the missing geomet-

We start with a 5-legged manipulator with planar p|at[ic/kinematic r.easoning for Lemma 2 of [6], which was only
form and planar base. Every manipulator of this type has Rfoven analytically. This lemma reads as follows:
least a 1-parametric self-motion. Now we are interested in a ) _
sixth point pair(mg, Mg) located in the planar platform angLemma 1 Let a planar SG mgnlpulator W_'th ho four an-
planar base in a way that the resulting planar SG platform h%gor po!nts (?oII|near be archﬁectu_rally smgula_r. Then
the same set of bonds, which correspond to self-motions G§ collinearity of mi,mj, my implies the collinearity
the given 5-legged manipulator. This is a necessary camditi®’, Mi:Mm:Mn and vice versa with pairwise distinct
for the SG platform in order to possess the same self-motidné kl,mne{l,...,6}.

as thDe 5-Ieggﬁd rgar;_pu_lator.l 42 thi Proof: As no four anchor points are collinear, the manipula-
ue to the Definitions 1 and 2, this necessary copg, g, rk(M.) = 5. Moreover the removal of any leg

dition is trivially fulfilled if Ag is contained within the (W.l.0.g. we can assume that this is the leg with index 6)
ideal spanned by, ..., As, W asV = Vg holds. Moreover o 14c5 5-legged manipulator wittk(M) = 5. For this 5-

this already implies that both manipulators have the sa ged manipulator we can assume w..0.g. (after a possible

self—mot_lons. As all involved equations are homogeneo %cessary renumbering of indices and exchange of platform
qguadratic in the Study parameters, there has to exist coe kg base) thatl;, My, M3 are located on a ling. Moreover

cientsAy, .., Ag with we can choose coordinate systems in the base in a way that
g equals thex-axis of the fixed frame and that; andms are
5 located on the-axis of the moving frame.
Zl)‘i/\i +A6¥ — N =0. Clearly the 5-legged manipulator has two 1-parametric
= sets of butterfly motions around the lige This can also
be verified by computingds, which contains the two bonds
As this equation has to be fulfilled independently of thef Eqg. (4). Now the sphere constraifg of the sixth leg
Study parameters, all coefficients of these parameters héas to contain these bonds as well. By plugging both bonds
to vanish. As the monomialg f; for i =0,...,3 are only into Eq. (2) we get-4bgBgu?. This confirms the trivial fact
contained inW, this already implies\s = 0. Now we have that we can only attach a sixth leg without disturbing these
an analogous problem to the one of [18], where the equatiostational self-motions, ifng or Mg is located on the-axis.
58 1 AiAi — A7 = 0 was studied. Therefore we can proceetihe condition that no four anchor points are allowed to be
similar to the cited paper. By doing this we end up with theollinear implies the collinearity ahg, ms, ms. O



6 Conclusion and futurework
In this paper we transfered the basic idea of bonds for

overconstrained closed chains with rotational joints,he t
theory of self-motions of SG platforms. Clearly this contcep
is not limited to SG platforms, but it can also be adopted for

other parallel manipulators as well [e.g. spherical 3-deRR

manipulators (cf. Theorems 5 and 6) or planar 3-dof RPR
manipulators (cf. Remark 10)].

We presented some basic facts and results on bonds ardd] Nawratil, G., 2008,0On the degenerated cases of ar-
demonstrated the potential of this theory on the basis 6f sev
eral examples. Moreover we showed (cf. Example 3) that for

a further deeper study of bonds, their algebraic multipési
have to be considered as well. Based on this concept we want

to read off more information from the bond-set; e.g. ifa bond

belongs to a real self-motion (cf. Example 6) and the degree
of this self-motion.
Beside this, it is also planned to use the theory of bonds

for the determination of necessary conditions for the de-
sign of non-architecturally singular SG platforms withfsel [10] Karger, A., 2008, "Architecturally singular non-
motions. This theory even raise the hope of giving a com-
plete solution to the Borel Bricard problem in the future.

is obvious that they are also connected with the manipula-
tors direct kinematic problem. Therefore this theory caoal
be of interest for the determination of the maximal number

of solutions for the forward kinematics of manipulatorstwit [12] Nawratil,

special geometries (e.g. coincidence of anchor pointg.[25]

[5] Husty, M., 2000,’E. Borel’'s and R. Bricard’s Papers

on Displacements with Spherical Paths and their Rel-
evance to Self-Motions of Parallel Manipulatorght.
Symp. on History of Machines and Mechanisms (M.
Ceccarelli ed.), Kluwer, pp. 163-172.

[6] Karger, A., 2003,"Architecture singular planar par-

allel manipulators”, Mechanism and Machine Theory
38(11) 1149-1164.

chitecturally singular planar parallel manipulators”
Journal for Geometry and Graphit®(2) 141-149.

[8] Roschel, O., and Mick, S., 1998 haracterisation of

architecturally shaky platforms”Advances in Robot
Kinematics: Analysis and Control (J. Lenarcic, M.L.
Husty eds.), Kluwer, pp. 465-474.

[9] Wohlhart, K., 20107From higher degrees of shakiness

to mobility”, Mechanism and Machine Theo#A(3)
467-476.

planar parallel manipulators; Mechanism and Ma-
chine Theory43(3) 335—-346.

Due to the computation of bonds given in Section 2, it11] Nawratil, G., 2009, A new approach to the classifi-

cation of architecturally singular parallel manipula-
tors”, Computational Kinematics (A. Kecskemethy, A.
Muller eds.), Springer, pp. 349-358.

G., 2012,"Review and recent results on
Stewart Gough platforms with self-motion®pplied
Mechanics and MateriatE52 151-160.
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