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Abstract Singular postures of Stewart Gough Platforms must be avoided because
close to singularities they lose controllable degrees of freedom. Hence
there is an interest in a distance measure between the instantaneous
configuration and the nearest singularity. This article presents such a
measure, which is invariant under Euclidean motions and similarities,
which has a geometric meaning and can be computed in real-time. This
measure ranging between 0 and 1 can serve as a performance index.
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1. Introduction
In this article we define a new measure, which allows to compare

different postures of different nonredundant Stewart Gough Platforms
(SGPs). Such a measure should assign to each configuration K a scalar
D(K) obeying the following six properties:

1. D(K) ≥ 0 for all K of the configuration space,
2. D(K) = 0 if and only if K is singular,
3. D(K) is invariant under Euclidean motions,
4. D(K) is invariant under similarities,
5. D(K) has a geometric meaning,
6. D(K) is computable in real-time.

K is singular if and only if the six legs belong to a linear line complex
(see Merlet, 1992) or, analytically seen, the determinant of the Jacobian

J T =

⎛
⎝l̂1 ‖l1‖−1 ... l̂6 ‖l6‖−1

l1 ‖l1‖−1 ... l6 ‖l6‖−1

⎞
⎠ with

li = Pi − Bi and

l̂i = Bi× li = Pi× li
(1)

vanishes, where Bi resp. Pi are the coordinates of the base resp. platform
anchor points with respect to any fixed reference frame Σ0 with origin
O. Therefore the ith row of J equals the normalized Plücker coordinates
of the carrier line Li of the ith leg oriented in the direction BiPi. We’ll
assume for the rest of this article that Bi �= Pi for i = 1, .., 6.



Kinematic meaning of the Jacobian. The velocity vector v(Pi)
of Pi with respect to the instantaneous screw q := (q, q̂) of the platform
Σ against Σ0 can be decomposed in a component vL(Pi) along the ith

leg Li and in a component v⊥(Pi) orthogonal to it (see Fig. 1), thus

v(Pi) = q̂ + (q× Pi) = vL(Pi) + v⊥(Pi) (2)

with ‖vL(Pi)‖ =
li
‖li‖v(Pi) =

l̂i
‖li‖q +

li
‖li‖ q̂ =: di. (3)

Therefore the Jacobian J is the matrix of the linear mapping

ι : q �→ d = J q with d = (d1, .., d6)T . (4)

ι has at least a one-dimensional kernel kerι, if K is singular. Let k ∈ kerι

and k �= o. Then also µk with µ ∈ R lies in kerι. Therefore we can say,
that v(Pi) can be arbitrarily large for constant translatory velocities in
the six prismatic legs. The sole exeption is the case where Pi lies on the
instantaneous screw axis (isa) and k is an instantaneous rotation.

Review. In the following we analyze some of the in our opinion most
important indices in view of the initially stated six properties.

The manipulabilitiy introduced by Yoshikawa, 1985 is not invariant
under similarities, because for SGPs it equals |det(J )|. So Lee et al.,
1998 used |det(J )|·|det(J )|−1

m as index, where |det(J )|m denotes the
maximum of |det(J )| over the SGP ’s configuration space. But the com-
putation of |det(J )|m is a nonlinear task and was only done for planar
SGPs with very special geometries. Only for these SGPs |det(J )|m can
be interpreted geometrically as the volume of the framework.

Pottmann et al., 1998 introduced the concept of the best fitting linear
line complex c. The suggested index equals the square root of the mi-
nimum of

∑
d2

i with respect to c under the side condition cc = 1. The
index is not invariant under similarities on the one hand and it is not
defined for instantaneous translations c. In order to close this gap, the
authors proposed to minimize a further function, which yields a second
value. But how should these two values be combined to a single number?

The rigidity rate introduced by Lang et al., 2001 is based on the idea,
that a SGP at any position K permits a one-parametric self-motion
within the group of Euclidean similarities G7. The angle ϕ ∈ [0, π/2]
between the tangent of the self-motion in K and the subgroup of Eucli-
dean displacements serves as an index. But the choice of the invariant
symmetric bilinear form in the tangent space of G7, which is necassary
in order to define a measure in the sense of non-Euclidean geometry, is
arbitrary. Although ϕ fulfills all six stated properties, its applicability is
limited. This becomes manifest in the remark at the end of Section 5.



2. Preliminary considerations
Now we take a closer look at the reciprocal of the condition number

(cdn−1) introduced by Salisbury and Craig, 1982, because it will be
the starting point of our considerations. cdn−1 equals the ratio of the
minimum λ̂− and the maximum λ̂+ of the quadratic objective function

ζ̂(q) : qTI6 q = ω2 +
[
ω̂2 + ω2Op

2
]

(5)

with p denoting the isa, ω the angular velocity and ω̂ the translatory
velocity of the screw q, under the quadratic side condition

ν(q) : dTd = qTN q = 1 with N = J TJ . (6)

Due to the linearity of ι in (4) the screw µq corresponds to the µ-
fold translatory velocity di in the six prismatic legs, and therefore the
side condition ν(q) is well defined. The weak point of this index is the
objective function for the following reasons. First, it is not invariant
under translations, because ζ̂(q) depends on the choice of O. In practice
O is not selected arbitrarily, but placed in the tool center point. But
the real problem, which causes the variance of cdn−1 under similarities,
occurs from the dimensional inhomogenity of ζ̂(q). To overcome this
deficiency, different concepts (e.g. characteristic length) were introduced,
but they still weight the ratio of length and angle in a more or less
arbitrary way. The inhomogenity and the lacking invariance of ζ̂(q) do
not allow a geometric interpretetion of the cdn−1 and they question its
adequacy as a performance index for SGPs.

The conslusion of this considerations is, that we have to look for a new
objective function ζ(q) which meets our initially stated demands. But
we want to add a further argument, which has the following motivation:
The cdn−1 as well as the manipulability are also used to optimize the
design of SGPs. But these two indices do not depend on the choice of
Bi and Pi on Li as long as Bi �= Pi. Thus we require:

7. D(K) depends on the geometry of the SGP, not
only on the carrier lines L1,...,L6 of the six legs.

Pottmann et al., 1998 also presented a modified version of his method,
namely the line segment method, which statisfies the 7th demand but
does not eliminate the other weak points. The rigidity rate is indepen-
dent of the choice of the base anchor points and so it only takes the
geometry of the platform into consideration. This raises the following
problem: If we change the viewpoint and consider Σ as the unmoved
base and Σ0 as platform, we get another index for the same SGP con-
figuration. So the instantaneous rigidity of the SGP depends on the
viewpoint which is dissatisfying.



2.1 Uncontrollable postures of SGPs
In practice configurations must be avoided, where minor variations

of the leg lengths have uncontrollable large effects on the instantaneous
displacement of the platform Σ. But how should the quantity of effects
be measured in relation to the variation of the leg lengths? The boarder
case of this uncontrollability is, if there exists an infinitesimal motion of
Σ while all actuators are locked. In such a singular position the velocities
of the platform points can be arbitrarily large, and therefore the posture
is uncontrollable. The question is, which measurable parameter of the
SGP indicates the circumstance of uncontrollability in a natural way
and has a geometric meaning for the manipulator.

3. Idea and definition of the control number ctn

Let’s assume there is instantaneously a minor variation of the six leg
lenghts and the SGP is not singular. So there exists a unique screw q
which describes the motion of Σ against Σ0 according to (4). To meet
our 7th property, we consider the velocity v(Pi) of Pi with respect to
q. We are not interested in the instantaneous displacements of Pi in
direction of the leg, because the leg length is an active joint which can
be controlled totally. Therefore only the component v⊥(Pi) can be an
indicator of uncontrollability. But v⊥(Pi) is no mechanical parameter
of a SGP and therefore we look at the angular velociety ωBi of the ith

passive base joint. ωBi is defined as (see Fig. 1)

ωBi :=
‖v⊥(Pi)‖

‖li‖ ⇒ ω 2
Bi

=
‖v⊥(Pi)‖2

‖li‖2
=

‖v(Pi)‖2 − d2
i

‖li‖2
(7)

according to (2) and (3) and so it is proportio-
nal to ‖v⊥(Pi)‖. But there also exists angular
velocities ωPi in the passive platform joints,
which are defined analogously. The sole exep-
tion is that we regard the inverse motion of q.
So we have to substitute Bi for Pi and −q for
q in (2), (3) and (7). Obviously ω 2

Bi
and ω 2

Pi

are quadratic forms with the coordinates of q
as unkowns. Therefore we can rewrite them as

ω 2
Bi

= qTWBiq and ω 2
Pi

= qTWPiq, (8)

where WBi and WPi are symmetric 6× 6 ma-
trices.

v
L
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i
)
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Figure 1. Defining ωBi



Now we define the new objective function ζ(q) as

ζ(q) =
6∑

i=1

ω 2
Bi

+ ω 2
Pi

= qTZ q with Z =
6∑

i=1

WBi + WPi . (9)

Definition 1. The control number of a SGP configuration K is defined
as

ctn(K) := +
√

λ−/λ+ with ctn(K) ∈ [0, 1] , (10)

where λ− resp. λ+ is the minimum resp. maximum of the objective func-
tion ζ(q) in (9) under the side condition ν(q) in (6). ctn(K) = 0 cha-
racterizes a singular configuration and a value of 1 an optimal one.

4. Computation and well-definedness of ctn

We solve the optimization problem in order to compute λ− resp. λ+

by introducing a Lagrange multiplier λ. Then the approach simplifies in
consideration of ∇ζ = 2Z q and ∇ν = 2N q, to the general eigenvalue
problem (Z−λN )q = o. This system of linear equations has a nontrivi-
al solution, if and only if |Z −λN| = 0. The degree of the characteristic
polynomial in λ corresponds with rank(J ) because of N = J TJ . Every
general eigenvalue λi is linked with an general eigenvector ei. The smal-
lest λ− and the largest λ+ are the wanted extreme magnitudes because
of

Z ei = λi N ei and eT
i N ei = 1 ⇒ ζ(ei) = λi. (11)

Theorem 1. λ− and λ+ of Def. 1 are the extreme general eingenvalues
of Z with respect to N . All roots λi of the characteristic polynomial
|Z − λN| = 0 are positive if and only if rank(J ) = 6.

Proof: According to Hestenes, 1975 all λi’s are real. Due to (11) all λi’s
are nonnegative. If q is no translation, then all angular velocities in the
passive joints would vanish if and only if the 12 anchor point lie on the
isa. But such a configuration yields rank(J ) = 1. In the case of a pure
translation, there would be no angular velocities in the passive joints if
and only if the legs are parallel to the direction of the translation. But
such a configuration yields rank(J ) ≤ 3. �
Theorem 2. The number of roots λi of the characteristic polynomial
|Z − λN| = 0 dropping to infinity equals the defect(J ).

Proof: All screws ±µq ∈ kerι with µ ∈ R cause arbitrarily large velocities
v(Pi) = v⊥(Pi) resp. v(Bi) = v⊥(Bi) and therefore arbitrarily large ωBi

resp. ωPi . The proof follows by carring out limµ→∞ and (11). �

Due to Theorem 1 and 2 the control number is well defined. Therefore
all initially stated seven properties are obviously fulfilled.



Remark. It does not make sense to define ζ(q) only as
∑

ω 2
Bi

(resp.∑
ω 2
Pi

) for following reasons: First, the index would not fulfill our 7th

demand for the same reason as the rigidity rate. Second, the index would
not fulfill our 2nd demand, because there exist nonsingular SGP confi-
gurations, where the Li’s are the path tangents of Pi (resp. Bi) with
regard to q. Consequently we get ζ(q) = 0 and the index would equal 0.

4.1 Instantaneous motion near singularities
According to Wolf and Shoham, 2003 the closest path normal complex

of a helical motion (rotations and translations included) to L1, ..,L6,
described by its axis and pitch, provides additional information on the
SGP ’s instantaneous motion and understanding of the type of singularity
when the SGP is at, or in the neighborhood of, a singular configuration.
Since the ctn is a performance index as well as a distance measure, a
small ctn indicates the closeness to a singularity. Due to Theorem 2 and
the continuity of the polynomial functions |Z − λN| = 0, which arise if
we move towards a singular position, we can say that the closest linear
complex to L1, ..,L6 equals the path normal complex of e

+
according

to (11). Therefore this method additionally brings about a kind of best
approximating linear line complex in the neighbourhood of singularities,
and the calculation needs no case analysis like Pottmann’s method.

5. Final example
We consider a two parametric set SK of configurations K, given by

Bi = (cos αi, sin αi,−h)T and Pi = (cos βi, sin βi, h)T with

α1 = β2 − π

3
= −α α3 = β4 − π

3
=

2π

3
− α α5 = β4 − π

3
=

4π

3
− α

α2 = β1 +
π

3
= α α4 = β3 +

π

3
=

2π

3
+ α α6 = β5 +

π

3
=

4π

3
+ α

where α ∈ [0, π
6 ] denotes the design parameter and h ∈ R

+ the posture
parameter of the SGP. All K ∈ SK with α �= π

6 and h /∈ {0,∞} are
nonsingular. We study this example, because such manipulators are very
relevant in practice as flight simulators. The matrix Z − λN can be
manipulated by elementary row and column operations to the diagonal
matrix diag(∆1, ..,∆6). Therefore the eigenvalues λi can be computed
explicitly using ∆i = 0, whereas λ1 = λ2 and λ4 = λ5. K+ given by

h+ = γ

4
≈ 0.4, α+ = − arctan

„√
5γ −√

15

5

«
≈ 4◦, γ =

q
2
√

5 − 2 (12)

has the maximal ctn of all K ∈ SK (see Fig. 2 and 3 ). For K+ determined

by λ1,2 = λ4,5 and λ3 = λ6 we get ctn(K+) =
q

2
√

5 − 4 ≈ 0.687.



Figure 2. Axonometry of K+
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Figure 3. Contours of ctn(SK)

The SGP with α+ also makes sense from the practical point of view,
because contrary to the often propagandized 3-3 octahedral manipula-
tor (α = 0) no anchor points coincide. But coinciding anchor points are
hard to manufacture. Therefore we take a closer look to this SGP. Fig. 5
illustrates the graph of ctn depending on h. Fig. 4 shows the contour
lines of ctn when the platform is translated away from the central loca-
tion parallel to the base plane. The difference between two neighbouring
contour lines is 0.05, where the highest has the value of 0.65. Fig. 6, 7
and 8 illustrates the graphs of ctn dependig on the angle of the rotation
of Σ about an axis parallel to x, z or y, respectively, through (0, 0, h+).

Remark. The rigidity rate of all nonsingular configurations of this set
SK is constant at the maximal value of π/2. Only in singular positions
it drops to zero. So if we approach a singularity of SK the value of the
rigidity rate is constant π/2. Therefore this index is not recommendable
for comparing different postures of different SGPs.

6. Conclusion
The presented index, called control number (ctn), allows to compare

different postures of different SGPs, because it obeys the initially stated
seven conditions. Therefore ctn can serve as a performance index as well
as a distance measure to the closest singularity. This concept can also
be modified for redundant SGPs and 3 dof RPR manipulators.

An article about optimal configurations K with ctn(K) = 1 is in pre-
paration. It can be proved, that such configurations do exist. New per-
formance indices for 6R robots have been presented in Nawratil, 2006.
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Figure 4. Translation of Σ in z = h+
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Figure 6. Rotation about a x-parallel
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Figure 7. Rotation about a z-parallel
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Figure 8. Rotation about a y-parallel
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