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Chapter 1

Introduction

A polyhedron is said to be flexible if its spatial shape canhmnged continuously due to changes
of its dihedral angles only, i.e. in such a way that every fareains congruent to itself during the
flex.

All types of flexible octahedrain E2 were firstly classified by R. BICARD [3] in 1897. These
so-calledBricard octahedraare as follows:

type 1 All three pairs of opposite vertices are symmetrihwwéspect to a common line.

type 2 Two pairs of opposite vertices are symmetric witheesfm a common plane which passes
through the remaining two vertices.

type 3 For a detailed discussion of this asymmetric type viex te H. STACHEL [15]. We only
want to mention that these flexible octahedra possess twodas.

In 1978 R. WNNELLY [6] sketched a further algebraic method for the determbmedif all flexible
octahedra irE3. H. STACHEL [13] presented a new proof which uses mainly arguments from
projective geometry beside the conversdvofy’s Theoremwhich limits this approach to flexible
octahedra with finite vertices.

A. KokoTsAKls [8] discussed the flexible octahedra as special cases oft afsareshes
named after him (see Fig. 1.1a). As recognized by the authid0j, Kokotsakis’ very short and
elegant proof foBricard octahedrais also valid for type 3 in the projective extensionEf if no
two opposite vertices are ideal points.

H. STACHEL [15] also proved the existence of flexible octahedra of typeitB one vertex
at infinity and presented their construction. But up to réctrere are no proofs for Bricard’s
famous statement known to the author, which enclose thegiigg extension of? although
these flexible structures attracted many prominent mattieianrss; e.g. G.T. BNNETT [1], W.
BLASCHKE [2], O. BOTTEMA [5], H. LEBESGUE[7] and W. WUNDERLICH [17].

INo face degenerates into a line and no two neighboring fameside during the flex.
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Introduction 2

Figure 1.1: a) AKokotsakis mesls a polyhedral structure consisting ofaided central polygon
Yo € E3 surrounded by a belt of polygons in the following way: Eaatesi of %o is shared by an
adjacent polygorz;, and the relative motion between cyclically consecutivigimaor polygons is
a spherical coupler motion. Therefore each veYfexf X is the meeting point of four faces. Here
the Kokotsakismesh fom = 3 which determines an octahedron is given.

b) Composition of the two spherical four-bargA1B1l20 and l1,0A2Bol39 with spherical side
lengthsa;, Gi, v, &, 1 = 1,2 (Courtesy of H. SACHEL).

The presented habilitation thesis consisting of the threeles:

[A] NAWRATIL, G., AND STACHEL, H.: Composition of spherical four-bar-mechanismkew
Trends in Mechanisms Science (D. Pisla et al. eds.), 99-9f@énger (2010).

[B] NAWRATIL, G.: Reducible compositions of spherical four-bar linkageshvatspherical
coupler componenMechanism and Machine Theory, in press.

[C] NAWRATIL, G.: Flexible octahedra in the projective extension of the Eledin 3-space
Journal of Geometry and Graphit4(2) 147-169 (2010).

closes this gap. Our approach is based on a kinematic analfi<okotsakis meshexs the com-
position of spherical coupler motions (see Fig. 1.1b) givemd. STACHEL [16].

The author determined in [B] all cases where the relatiowéeh the input anglé; of the
arm l10A; and the output angles of 130B; is reducible and where additionally at least one of
these components produces a transmission which equalsfthaingle spherical coupler. These
so-called reducible compositions with a spherical cougdanponent can be classified into 4 types
(cf. Corollary 1 of [B]), whereby the case of the sphericaldbmechanism was discussed in more
detail under the guidané®f H. STACHEL in [A].

2The author’s contribution to [A] was Lemma 1, the proof of #eeond part of Lemma 2 and the generation of the
given example.
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Based on these studies the author of this thesis showed st atép that there only exist type
2 and type 3 octahedra with one vertex in the plane at infir(c§. [10]). In a further step the
author determined in [C] all octahedra, where at least twticas are ideal points.

Acknowledgement The research reported in [A,B,C] was supported by Grant Nf28-N13
of the Austrian Science Fund FWF within the project “Flegilolyhedra and frameworks in
different spaces”, an international cooperation betweafi-fand RFBR, the Russian Foundation
for Basic Research.

1.1 Application and future research

Analogously to [B] the author prepares a classification bfeaducible compositions of spherical
four-bar linkages without a spherical coupler componemisegl on this study and [B] one can give
a complete list of all flexible Kokotsakis meshes with a 4edidentral polygon (a so-called<33
complex or Neunflach in German)3$tachel’s conjecturbolds true that all multiply decomposable
compounds of spherical four-bars are reducible (with ettoemf the translatory type and planar-
symmetric type).

Such a listing is of great interest because A.QEENKO ET AL. [4] showed that a polyhedral
mesh with valence 4 composed of planar quadrilaterals ibftei and only if all 3x 3 complexes
are flexible. One possible application scenario is the gchiral design of flexible claddings
composed of planar quads (cf. HOPTMANN ET AL. [12]).

Moreover it would be interesting to apply the principle @risference (cf. [14]) to each item
of the resulting list of reducible compositions of sphelriair-bars in order to study their dual
extensions.

A practical application of the author’s studies can be fouritie field of robotics, because flexible
octahedra with one vertex in the plane at infinity correspaitti the non-trivial (cf. footnote 1)
self-motions of TSSM manipulators with two parallel rotaxes. Moreover the publication [10]
also closes the classification of self-motions for parati@nipulators of TSSM type and of 6-3
planar Stewart Gough platforms, respectively.

It should also be noted, that the author showed in a recerk [di, that flexible octahedra
also play a central role in the theory of self-motions of gah8tewart Gough manipulators with
planar platform and planar base.

A further application in robotics could be an open serialict@mposed of prism§lg,. ..My
where each pair of neighboring prismk,M;;1 (i =0,...,n—1) forms a flexible octahedron,
where two opposite vertices are ideal points. Such meamasnigith a constrained motion are also
worth to be studied in more detail.

Moreover, if we additionally assume thidgy = My, holds, we get a closed serial chain which
is in general rigid. It would also be interesting under whiglometric conditions such structures
are still flexible. Clearly, some aspects of this questiom @nnected with the problem oR
overconstrained linkages (e.g. the spatRlo¥erconstrained linkage is the Bennett mechanism).

3The article [10] can be regarded as the continuation of [@lene a conjecture about the solution of this problem
was formulated by the author.
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Chapter 2

Composition of spherical
four-bar-mechanisms(with H. Stachel)

Abstract We study the transmission by two consecutive four-bar hpgsawith aligned frame
links. The paper focusses on so-called “reducible” examptethe sphere where the
4-4-correspondence between the input angle of the firstfauand the output-angle
of the second one splits. Also the question is discussedhg&héfte components can
equal the transmission of a single four-bar. A new familyaafucible compositions is
the spherical analogue of compositions involved at Burersstocal mechanism.

Keywords spherical four-bar linkage, overconstrained linkage, ¢teikis mesh, Burmester’s fo-
cal mechanism, 4-4-correspondence

2.1 Introduction

Let a spherical four-bar linkage be given by the quadrahghs B, 1, (see Fig. 2.1) with the frame
link I10l20, the couple®;B; and the driving arni;pA;. We use the output angl of this linkage
as the input angle of a second coupler motion with vertigg&;B,l30. The two frame links are
assumed in aligned position as well as the driven b, of the first four-bar and the driving
armlypA; of the second one. This gives rise to the following

Questions:

() Canithappen that the relation between the input apglef the arml,0A; and the output angle
¢3 of 130B, is reducible so that the composition admits two one-paranmabtions? In this case
we call the compositiomeducible

(i) Can one of these components produce a transmissionhvdtjaals that of a single four-bar
linkage ?

A complete classification of such reducible compositiorstilsopen, but some examples are
known (see Sect. 2.3). For almost all of them exist planantaparts. We focus on a case where
the planar analogue is involved at Burmester's focal meshaf2, 5, 11, 4] (see Fig. 2.3a). It
is not possible to transfer the complete focal mechanisio tha sphere as it is essentially based

5



Composition of spherical four-bar-mechanisfnsth H. Stachel) 6

Figure 2.1: Composition of the two spherical four-bagA1B1lo0 andlopA2B:130 with spherical
side lengthsyi, B, y,6,i = 1,2

on the fact that the sum of interior angles in a planar quagleaequals 2, and this is no longer
true in spherical geometry. Nevertheless, algebraic aggisnshow that the reducibility of the
included four-bar compositions can be transferred.
Remark2.1. The problem under consideration is of importance for thesifeation of flexible
Kokotsakis meshes [7, 1, 10]. This results from the facttiespherical image of a flexible mesh
consists of two compositions of spherical four-bars stgathre transmissiog; — ¢3. All the
examples known up to recent [6, 10] are based on reducibl@asitions. o

The geometry on the unit sphe® contains some ambiguities. Therefore we introduce the
following notations and conventions:

1. Each poinAon$? has a diametrically opposed poftits antipode For any two points\, B
with B # A, A the spherical segmerdr bar ABstands for the shorter of the two connecting
arcs on the great circle spannedAwndB. We denote this great circle BB].

2. Thespherical distancéBis defined as the arc length of the segm&Bton . We require
0 < AB < mrthus including also the limiting cas@-= A andB = A.

3. Theoriented angle ABCon § is the angle of the rotation about the agiB which carries
the segmenBA into a position aligned with the segmdB€. This angle is oriented in the
mathematical sense, if looking from outside, and can be deditry— 1 < 4 ABC< 1.

2.2 Transmission by a spherical four-bar linkage

We start with the analysis of the first spherical four-bakdige with the frame linkygloo and the
couplerA;B; (Fig. 2.1). We seti; = I1pA; for the length of the driving armB; = I,9B; for the
output arm,y; := A1B1, anddy 1= l1glop. We may suppose

0<ag,Br,y,o <
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The movement of the coupler remains unchanged wheis replaced by its antipod®&; and at
the same timer; andy; are substituted byr— a; andm— yi, respectively. The same holds for the
other vertices. Whehy is replaced by its antipoday, then also the sense of orientation changes,
when the rotation of the driving bafA is inspected from outside & either atlo or atl1o.

We use a cartesian coordinate frame wlith on the positivex-axis andliglyg in the xy-
plane such thalyg has a positivey-coordinate (see Fig. 2.1). The input angle is measured
betweenlglog and the driving armpA; in mathematically positive sense. The output angle
$2 = < 110l20B1 is the oriented exterior angle at vertey. This results in the following coordi-

nates:
coy PO — SPB1 501 CP
Ap=| saicds | and By = | cBisd +sBicdicde |.
s SP1 SP1sp2
Herein s and c are abbreviations for the sine and cosineiumeespectively. In these equations

the lengthsay, 81 and &, are signed. The coordinates would also be valid for negétivgths.
The constant lengthy. of the coupler implies

ca1¢P1¢d — cary SP1 SO Co + Sa1 31 SO CP
+ 501561 CO1 C1 CPho + Sar1 SPB1 SP1SP2 = CyA.

In comparison to [3] we emphasize algebraic aspects of thismission. Hence we expregs s
and @; in terms oft; := tan(¢;/2) sincet; is aprojective coordinatef point A; on the circlea.
The same is true fdp andB; € b;. From (2.1) we obtain

2.1)

Ky (1+t2)(1—t3) + Ly(1—t)) (1 +1t3) + My (1 —t3)(1—t3)
+4soy Py tato + Ny (1+t2)(1+t2) =0,

Ki=cai1sB1sd, Mi=saispicd,

L1 =sai1cf1sd, Nip=caicBicd —cy.

This biquadratic equation describes2&2-correspondencéetween pointsA; on circle a; =
(l10; a1) andBy onby = (l20; B1). It can be abbreviated by

2.2)

Coat?t5 + Coot? + Copt? + Cratatr + Coo = 0 (2.3)
setting
Coo=—Ki+Li+M1+Ny, Cra=4s0181, Cop=Ki+Li—Mi+Ny, 2.4)
Coo=—Ki1—L1—M1+Ng, Coo=Ki—L1+M1+N; '
undercy1 # 0. Alternative expressions can be found in [10].
Remark2.2. Also at planar four-bar linkages there is a 2-2-correspoodef type (2.3). o

There are two particular cases:

Spherical isogram: Under the condition$8; = a1 and &, = y1 opposite sides of the quadran-
gle 110A1B1129 have equal lengths. In this case we hagyge= cy» = 0 in (2.3), and Eq. (2.1)
converts intos(ay — ya)ta — (s + sya)t] [s(a1 — i)tz — (son — sya)ts] (for details see [10])The



Composition of spherical four-bar-mechanisfnsth H. Stachel) 8

Figure 2.2: a) Opposite anglgs and» at the second spherical four-bagA;B>l30.
b) Composition of two orthogonal four-bar linkages with = 11o.

2-2-correspondence splits into two projectivitids — t, = S?“;lifsy‘f)tl, provideday # yi, T— W1.
Both projectivities keep, = 0 andt; = o fixed. These parameters belong to the two aligned po-
sitions of couplerd;B; and frame linkl1ol2p. In these positions a bifurcation is possible between

the two one-parameter motions of the coupler against tmeefiank.

Orthogonal case: For a given poinf; € a; the corresponding,, B1 € by are the points of inter-
section between the circlésy; y1) andby = (I20; f1) (compare Fig. 2.2a). Hence, the correspond-
ing B; andB; are located on a great circle perpendicular to the gredegitgl,o]. Under the con-

dition cosa; cosB;, = cosy; cosd, which according to [10] is equivalent to (<et§§§ 22 =0,

the diagonals of the spherical quadranigl#\;B1,0 are orthogonal (Fig. 2.2b) as each of the prod-
ucts equals the products of cosines of the four segmentsestwthdiagonals. Henc®; andB;

are always aligned withyg, but also conversely, the two poims andA; corresponding t®, are
aligned withl .

Note that the 2-2-correspondence (2.3) depends only oratlteaf the coefficientgyy : - - - :
Coo. With the aid of a CA-system we can prove:

Lemma 2.1. For any spherical four-bar linkage the coefficientg @efined by(2.4) obey

S, +16(K?+L%—2M? — 1) c}; + 256[(M? — K2)(M2 — L2) 4+ 2M?] cZ, — 4096M* = 0.
Conversely, in the complex extension any biquadratic eguadf type(2.3) defines the spheri-
cal four-bar linkage uniquely — up to replacement of veriby their antipodes. However, the
vertices need not be real.

At the end of our analysis we focus on opposite angles in thersgal quadranglé&pAzBalsp:
The diagonal;l3 divides the quadrangle into two triangles, and we inspeirtterior angleg,
atl,o andyp at B, (Fig. 2.2a). Also for non-convex quadrangles, the sphe@Gosine Theorem

1Since the vertices of the moving quadrangle can be replagéidelr antipodes without changing the motion, this
case is equivalent t8; = m— a1 andd; = 11— y; . We will not mention this in the future but only refer to an fappriate
choice of orientations’ of the hinges.
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implies

COSA2l30 = CP2CY2 + SB2SYa Clflo = CA2CO2 + SA2 SO, CP2 -
Hence there is a linear function

Ca2C% —ChpCyp | _ SU25%
By Basy

For later use it is necessary to define alscas an oriented angle, hence

cr =ko+1ocho with ko =

(2.5)

Wo = J130B2A2,  ¢2 = Jl30l20A2 under — < g, ¢ < TI.

We note that in general for givepy there are two positionB, and B, on the circleb; obeying
(2.5) (Fig. 2.2a). They are placed symmetrically with respge the diagonalulsg; the signs of
the corresponding oriented anglgs are different.

Remark2.3. Also Eq. (2.5) describes a 2-2-correspondence of type 2&yeenp, andysy, but
with ¢c;1 = 0. A parameter count reveals that this 2-2-correspondenes dot characterize the
underlying four-bar uniquely. o

2.3 Composition of two spherical four-bar linkages

Now we use the output anglly of the first four-bar linkage as input angle of a second cauple
motion with verticed,0A2Byl30 and consecutive side lengtbs, y, B2, andd, (Fig. 2.1). The two
frame links are assumed in aligned position. In the cgdgol2ol30 = 1T the lengthd; is positive,
otherwise negative. Analogously, a negatiyeexpresses the fact that the aligned HagB; and
I20A, are pointing to opposite sides. Changing the sigfi;aiheans replacing the output angle
by ¢3 — 1. The sign ofy, has no influence on the transmission.

Due to (2.3) the transmission between the anglesp, and the output angl¢s of the second
four-bar withts := tan(¢3/2) can be expressed by the two biquadratic equations

Coott3 + Coot? + Conts + Caatatz + Coo = 0,

2.6
dzztgtg + dzotg + dozt% + dyqtots +dgg = 0. (2.6)

Thedy are defined by equations analogue to Egs. (2.4) and (2.2).liwwmatet, by computing
theresultantof the two polynomials with respect tpand obtain

Coot? +Cop C%ltl Coot? + Coo 20
0 C22t{ + Co2 Caty C20tT + Coo
det 221 1 =0. 2.7
UoatZ + dao diits dozt3 + doo 0 2.7)
0 d22t§ + dyo di1t3 dogt% +doo

This biquartic equation expressed-#@-correspondencbetween point#\; andB, on the circles
a; andby, respectively (Fig. 2.1).

Up to recent, to the authors’ best knowledge the followingnegles of reducible compositions
are known. Under appropriate notation and orientationetiaes:
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b)

Figure 2.3: a) Burmester’s focal mechanism and the secomgp@oent of a four-bar composition.
b) Reducible spherical composition obeying Dixon’s angledition for (; — equally oriented

1. Isogonaltype [7, 1]: At each four-bar opposite sides are congrudetfriansmissionp; —
¢3 is the product of two projectivities and therefore again ajgutivity. Each of the 4
possibilities can be obtained by one single four-bar lirkabhis is the spherical image of
a flexible octahedron of Type 3 (see, e.g., [8]).

2. Orthogonal type [10]: We combine two orthogonal four-bars such thay theeve one diag-
onal in common (see Fig. 2.2b), i.e., under= (1 andd, = —d&, hencelzg = l1o. Then
the 4-4-correspondence betwe®nandB; is the square of a 2-2-correspondence.

3. Symmetric type [10]: We specify the second four-bar linkage as mirrbthe first one
after reflection in an angle bisector lag (see [Fig. 5b,10]). Thugs is congruent to the
angle opposite t@; in the first quadrangle. Hence the 4-4-correspondence igiigd; the
components are expressed by the linear relatiipn=c +(k; + [1.c¢1) in analogy to (2.5).

At the end we present a new family of reducible compositiongzig. 2.3a Burmester’s focal
mechanism is displayed, an overconstrained planar linksee [2, 5, 11, 4]). The full lines in
this figure show a planar composition of two four-bar linkagégth the additional property that
the transmissio; — ¢3 equals that of one single four-bar linkage with the coupler Due to
Dixon and Wunderlich this composition is characterized twygruent anglegn = < 110A1B; and
J LBoA, which is adjacent tql, = < 130B2A, .2

However, this defines only one component of the full motiothed composition. The second
component is defined by; = 4 110A1B1 = — 4 LByA; (see Fig. 2.3a). For the sake of brevity,
we call the overall condition< 110A1B; = + < LBA; Dixon’s angle conditiorand prove in the
sequel that also at the spherical analogue this definesibdeleompositions.

2This condition is invariant against exchanging the input #re output link. The compositions along the other sides
of the four-bar1oKLI3g in Fig. 2.3a obey analogous angle conditions.
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Lemma 2.2. For the composition of two spherical four-bars Dixon’s amgbndition < [10A1B1 =
+ J130B2A; is equivalent to

Sa1Sy1 1 SP1SAr 1 (CA1CYL — CP1COL) = E£SBoSYo 1 SA2 S, : (CO2C, — CB2CYo).
In terms of g and dx it is equivalent to proportional polynomials
D1 = (C1at2)? — 4(Coat3 + C20) (Cozts + Coo), D2 = (da1tz)? — 4(daat3 + doz) (daot3 + doo).-

Proof. In the notation of Fig. 2.3b Dixon’s angle condition is eqient to @y = c(1m— yr) =
—cln = —ky — ¢ by (2.5). At the first four-bar we have analogously

_coc—chico | sPish

1= .
S01Sy1 ' sy sy1

cyr=—ki—licdz, ki (2.8)
Hence, @i = —cy», for all c¢- is equivalent tk; = ko andly = I,. This gives the first statement
in Lemma 2.2. Thet results from the fact that changing the signygtas no influence on the
2-2-correspondencs, — ¢3, but replacesy, by y» — 1.

If the angle condition holds angl, = 0 or 71, the distance$,oB; andlzoA; are extremal. For
the corresponding anglds there is just one correspondiifg and oneps. Hence, when for any
t> the corresponding-values by (2.3) coincide, then also the correspontlinglues by (2.6) are
coincident. Hence, the discriminarilg andD- of the two equations in (2.6) — when solved for
to — have the same real or pairwise complex conjugate roots.

Conversely, proportional polynomiald; andD, have equal zeros. Hence the linear functions
in (2.5) and (2.8) give the same@<£for cyy = —cy, = £1. Therefore ¢ = —cyx is true in all
positions, and the composition of the two four-bars fulfifixon’s angle condition. O

The second characterization in Lemma 2.2 is also valid impthear case. So, the algebraic
essence is the same on the sphere and in the plane. Sincglartbahe reducibility is guaranteed,
the same must hold on the sphere. This can also be confirmkdheitaid of a CA-system: The
resultant splits into two biquadratic polynomials like fleé hand side in (2.3). By Lemma 2.1
each component equals the transmission by a sphericabfoubut the length of the frame link
differs from the distanck glzg because otherwise this would contradict the classificatfdiexible
octahedra. General results on conditions guaranteeihdprgebars have not yet been found. We
summarize:

Theorem 2.1. Any composition of two spherical four-bar linkages obeyibigon’s angle con-
dition Y1 = 4 110A1B1 = + I 130BoA; (see Fig. 2.3b) is reducible. Each component equals the
transmissionp; — ¢3 of a single, but not necessarily real spherical four-bakhge.

Example The dataa; = 38.00°, B; = 26.00°, y1 = 4150°, & = 5800°, a, = —40.0400,
B> =123148YF, y» = —1233729, &, = 82.0736 yield a reducible 4-4-correspondence accord-
ing to Theorem 2.1. The components define spherical fowg-béth lengthsas = 60.2053,
Bz =535319, 3 =8.6648, &3 = 14.5330 or a, = 24.7792, 34 = 157.1453, y, = 1604852,
oy = 33.808L. o
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2.4 Conclusions

We studied compositions of two spherical four-bar linkagédere the 4-4-correspondence be-
tween the input angl¢, and output angl@s is reducible. We presented a new family of reducible
compositions. However, a complete classification is spkm It should also be interesting to
apply the principle of transference (e.g., [9]) in order tiedy dual extensions of these spherical
mechanisms.
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Chapter 3

Reducible compositions of spherical
four-bar linkages with a spherical
coupler component

Abstract We use the output angle of a spherical four-bar link&@as the input angle of a
second four-bar linkag& where the two frame links are assumed in aligned position
as well as the follower o% and the input link of%. We determine all cases where
the relation between the input angle of the input linksoand the output angle of the
follower of 2 is reducible and where additionally at least one of thesepoo@nts
produces a transmission which equals that of a single syatedupler. The problem
under consideration is of importance for the classificatibfiexible 3x 3 complexes
and for the determination of all flexible octahedra in thejgrtive extension of the
Euclidean 3-space.

Keywords Spherical four-bar linkage, Kokotsakis meshes, flexibkaloedra, 3< 3 complexes

3.1 Introduction

Let a spherical four-bar linkagé” be given by the quadranglepA;1B1log (see Fig. 3.1) with the
frame link 11ol20, the couplerA;B; and the driving arniipA;. We use the output angl of this
linkage as the input angle of a second coupler mofiowith verticesl,0A:Bol3g. The two frame
links are assumed in aligned position as well as the drivemlggB; of ¥ and the driving arm
lo0A Of 9.

We want to determine all cases where the relation betweeinghe angle¢; of the arm
I10A; and the output anglées of I39B; is reducible and where additionally at least one of these
components produces a transmission which equals that ofeesipherical coupler. Therefore we
are looking for all reducible compositions with a so-caltgherical coupler component.

The problem under consideration is of importance for thaesifecation of flexible Kokot-
sakis meshes [1,2,3] with a 4-sided planar central polygdrich are compounds of:3 3 planar

13
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Figure 3.1: Composition of the two spherical four-bagA1B1l20 andlopA2B:130 with spherical
side lengthsyi, B, v, &, i = 1,2 (Courtesy of H. Stachel).

quadrangular plates with hinges between neighboring sitaféhis results from the fact that the
spherical image of a8 3 complex consists of two compositions of spherical fourstsaring the
transmissiorp, — ¢3 (see Fig. 3.1).

Moreover the author also prepares a classification of aliaibde compositions of spherical
four-bar linkagesvithouta spherical coupler component. Based on this ongoing resead the
presented article one can give a complete list of all flex8bte8 complexes iStachel’s conjecturfe
holds true that all multiply decomposable compounds of gpalefour-bars are reducible (with
exception of the translatory type and planar-symmetrietyp

Such a listing is of great interest because Bobenko et akH@jved that a polyhedral mesh
with valence 4 composed of planar quadrilaterals is flexibbnd only if all 3 x 3 complexes
are flexible. One possible application scenario is the tachiral design of flexible claddings
composed of planar quads (cf. Pottmann et al. [4]).

The reducible compositions with a spherical coupler corepbare of special interest because
based on their knowledge one can additionally determinéexilble octahedra in the projective
extension of the Euclidean 3-space. This was already dortleebguthor and a full classification
of these flexible structures was given in [5,6].

3.1.1 Transmission by a spherical four-bar linkage

We start with the analysis of the first spherical four-bakdige?” with the frame linkl19l29 and the
couplerA;B; (Fig. 3.1). We setr; := l1pA; for the spherical length= arc length) of the driving
arm, 31 := l»,oB; for the output army; ;= A1B1, andd; := l1gl20. We may suppose

0<ag,Br,y,o <TI

1Such a structure is also known as 3 complex or Neunflach in German.
2A proof for this conjecture is in preparation.
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The movement of the coupler remains unchanged wheis replaced by its antipod®&; and at
the same timer; andy; are substituted byr— a; andm— yi, respectively. The same holds for the
other vertices. Whehy is replaced by its antipoday, then also the sense of orientation changes,
when the rotation of the driving bafA is inspected from outside & either atlo or atl1o.

We use a Cartesian coordinate frame with its origin at thespdl center),o on the positive
x-axis andlyglyg in the xy-plane such thabg has a positive-coordinate (see Fig. 3.1). The input
angle@; is measured betwedmgl,o and the driving armi1pA; in mathematically positive sense.
The output anglé, = J 110l20B; is the oriented exterior angle at vertey.

As given in [3] the constant spherical lengthof the coupler implies the following equation:

sztftg + Czotf + Coz'[% + Cpatito +Cogo=0 (3.2)
with t; := tan(¢;/2),

Co2 =Ki—L1+M1+ Ny, 011248(115[317&0, Co2 = K1+L1—Mip+ Ny, (3.2)
Cro=—Ki—Li—M;+ Ny, Coo = —K1+L1+M1+Ng, .

and

Ki=ca156:18%, Li=so1cfisd, Mi=sa1sBicdh, Np=caicficdh—cy.  (3.3)
Herein s and c are abbreviations for the sine and cosineiumeespectively. In these equations
the spherical lengtha, 81 and &; are signed. For a more detailed explanation and alternative
expressions of Eqg. (3.1) see [3].

Remark3.1 Note that the 2-2-correspondence (3.1) depends only oratlweaf the coefficients
Cp2: -+ Cpo (cf. Lemma 1 of [7]). o

3.1.2 Composition of two spherical four-bar linkages

Now we use the output angll of the first four-bar linkages” as input angle of a second four-
bar linkage2 with verticesl,pA2Bol30 and consecutive spherical side lengths y», 32, andd,
(Fig. 3.1). The two frame links are assumed in aligned pmsitin the case< l1gl2olso = 17 the
spherical lengthd, is positive, otherwise negative. Analogously, a negativexpresses the fact
that the aligned baisgB;1 andl,pA; are pointing to opposite sides. Changing the sigf.aheans
replacing the output anglgs by ¢3 — 1. The sign ofy, has no influence on the transmission.

Due to (3.1) the transmission between the angle, and the output angl¢s of the second
four-bar withts := tan(¢3/2) can be expressed by the two biquadratic equations

C := Coot?t3 + Coot? + Coats + Crtatr +Coo = O,

D 1= dpot3t3 + daotZ + dosts + dratots + doo = 0.
Thedi are defined by equations analogous to Egs. (3.2) and (3.3glivimatet, by computing
theresultant(cf. [8]) of the two polynomials with respect tp and obtain

Coot? + Co2 C%ltl Coot? + Coo 20
. 0 Cootf + Co2 Ciaty Co0t{ + Coo
X :=det 221 1 =0. 3.5
doot3 + dao dyats dozt3 + doo 0 (3.5)
0 d22t§ + dyo di1t3 dogt% + doo
This biquartic equation expressed-#@-correspondencbetween point#\; andB, on the circles
a; andby, respectively (Fig. 3.1).

(3.4)
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Known examples of reducible compositions with a sphericalaupler component

Up to recent, to the author’s best knowledge the followingnegles are known. Under appropriate
notation and orientation these are:

1. Isogonaltype [1,2]: At each four-bar opposite sides are congruémtttansmission; — ¢3
is the product of two projectivities and therefore again @jgutivity. Each of the 4 possibil-
ities can be obtained by one single four-bar linkage. Thikésspherical image of a flexible
octahedron of Type 3 (see [9]).

2. Symmetric type [3]: We specify the second four-bar linkage as mirrothaf first one after
reflection in an angle bisector i (see Fig. 5b of [3]). Thu#s is congruent to the angle
opposite top; in the first quadrangle. Hence the 4-4-correspondence iited.

3. Focaltype [7]: Any composition of two spherical four-bar linka@beying the angle condition
Y1 = 4 110A1B1 = + J130B2A; (see Fig. 3b of [7]) is reducible. Each component equals the
transmissionp; — ¢3 of a single, but not necessarily real spherical four-bdege.

Computation of reducible compositions with a spherical copler component

Given are the two spherical couplegsand Z and their corresponding transmission equatiGns
andD, respectively (see Eq. (3.4)). In the following we are iagted in the conditions the;'s
andd;;’s have to fulfill such thaX of Eq. (3.5) splits up into the produ€G with:

e Symmetric reducible composition:

F = foot?ts + foct? + foots + faqtats+ foo,

(3.6)
G 1= Goat?t3 + Gooti + Goots + Guitats + oo

As at least one of the two polynomidtsandG should correspond to a spherical coup¥#érand
¢, respectively, we can stop the later done case study (s¢@1$82 and 3.3) iff1 =911 =0
holds.

e First asymmetric reducible composition:

F = fiitats+ foo,

3.7)
G:= 933tft§ + 931tft3 + 913t1t§’ + gzztftg + gzotf + 902t§ + O1at1t3 + Qoo.

As F has to correspond with a spherical coupler comporigntannot vanish. Moreover we
can stop the later done case study (see Section 3.5.1, 3$.2.5.3) ifgs3 =031 = g13=0
holds, as this yields a special case of the symmetric coriqosi

e Second asymmetric reducible composition:

F:= foot? + f1atitz + foo,

(3.8)
G = Quatat + goot?t3 + goot? + Goot3 + Gu1tats + Goo-
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AgainF has to correspond with a spherical coupler component whettig/f;1 = 0. Moreover
we can stop the later done case study (see Section 3.6 1 aB®%3.6.3) ifg13 = 0 (special case
of the symmetric composition) of,g = 0 (special case of the first asymmetric composition)
holds.

Lemma 3.1. The types of compositions given in Egs. (3.6), (3.7) and @eall possible com-
positions with a spherical coupler component.

Proof: As we can assume without loss of generality (w.l.o.g.) that# 0 holds, we can set
F := fiititzs + foo. Now G can only be of the form given in Eq. (3.7) such that the proditcts a
polynomial int; andts with the same structure asof Eq. (3.5).

Analogous considerations fér.= fzotf+ f11t1t3+ fop yields the second asymmetric reducible
composition. Choosing := f02t§+ f11tats + fpo implies the same case as the last one (only the
variablest; andts are interchanged).

Now we can assumeg = fzotf + f02t§ + fiatstzs + foo. For the same reason as above we get
G of Eqg. (3.6). But this already yields the symmetric redugibbmposition withfy, = 0. This
finishes the proof. 0

As we compute the resultant with respecttiqcf. Eq. (3.5)) the coefficient otf% in CandD
must not vanish. Therefore the two casgs= cg> = 0 anddy, = dyg = 0 are excluded. For the
discussion of thesexcluded casese refer to the Sections 3.4, 3.5.4 and 3.6.4, respectively.

In the following we denote the coefficientst@f:‘;) of Y :=FG andX byY;; andX;j, respectively.
By the comparison of these coefficients we get the followiBgefjuationsQ;; = 0 with Q;j :=
Yij — Xij and

(i,]) €{(4,4),(4,2),(4,0),(3,3),(3,1),(2,4),(2,2),(2,0),(1,3),(1,1),(0,4),(0,2),(0,0)},

which must be fulfilled. In the following we discuss the s@uatof this non-linear system of 13
equations for the above given three possible compositidsghere are only 10 (cf. Eq. (3.6) or
Eq. (3.7)) resp. 9 (cf. Eq. (3.8)) unknowifig’s andg;;’s which have to be determined, there have
to be relations between tlg’s andd;;’s to allow the solution of the whole system. The intention
of the following discussion is to determine the subvargire the space of design variables
and dij, such that there exists a decomposition of the transmidsioction where at least one
of the resulting functions should correspond to the trassion function of a spherical coupler.
Therefore we first eliminate the unknowriig andg;; in order to get the equations which only
depend on thejj’s andd;j’s. By solving the resulting equations we obtain the desreddtions
between these unknowns. In the case of the symmetric rddwmimposition this is done by the
stepwise elimination of the unknowns; andcy;. It turns out that this elimination strategy yields
the most compact formulas as it holds up the symmetries leetive2 remaining unknowns.

We show that the three polynomial systems of 13 equationdeaolved explicitly by means
of resultants. Note that this is a non-trivial task espécial the case of the symmetric reducible
composition. In the subsequent elimination process wenafge a principle which is explained
here at hand of the following simple example (cf. footnote fL6]):

Given are 3 quadratic equatio@=0i = 1,2,3 in 3 variablex,y,z and one has to calculate
the intersection points of these 3 quadrics. First we elt@im by computing the resultari;;
of Q; andQ; with respect taz. Now R;; = 0 is a quartic equation ir,y. Computing again the
resultant of e.gR;» andRy3 with respect toy yields a univariate polynomial of degree 16.
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But not all roots of this polynomial are solutions of the ns&ction problem as it can only
have 8 ovelC due toBezout's TheoremTo get rid of the 8 pseudo-solutions one can compute
more equations as actually necessary, i.e. the resulthRs andR,3 as well afR;3 andRy3 with
respect toy. Now the greatest common divisor (gcd) of these 3 polyn@raébiegree 16 yields in
general the solution-polynomial of degree 8.

The 8 pseudo-solutions stem from the geometric fact thaelih@nation of the variable is
geometrically equivalent of projecting the intersectiamve of the quadric€; = 0 andQ; =0
into the xy-parameter plane. Now 8 intersection points of the two jptej intersection curves
R12 andRy3 correspond to different points which lie above each othevreprojection ray.

3.2 Symmetric reducible composition withfyggg2 — fo2020 # O

Under this assumption we can compute and gy, from the equation€s, = 0 andQy4 = 0,
which are both linear irfo, andgypo. Moreover we can also exprefg andggg from the equations
Q20 = 0 andQg, = 0 (both linear infyg andggg) and alsof1; andg;; from the equation§sz; =0
andQi3 = 0 (both linear inf1; andgy1).

3.2.1 The cas@odo2 # 0

Under this assumption we can exprégsfrom Q40 = 0 (linear in f,0) and fo, from Qos = 0 (linear
in fg2). Now we are left with 5 equation€);; = 0 withi =0, ..., 4. In the following we denot€);
by Qi only:
Q0[18]], Q1[94], Q2[313ﬂ, Q3[94]’ Q4[181]’

where the number in the square brackets gives the numbemas t&f the numerator. Moreover it
should be noted that we can factor ayd;1 # 0 from Q1 andQs.

In the following we compute the resultant Qf andQ; with respect tago, which is denoted
by Rj. In the next step we compute the resultantRet and Rjj with respect tod;;, which is
denoted byTi;. Now it can easily be seen that the six expressions

T34, Tor, Tia, Toz, T2z, Tiz,
have the factorgg,c1 1 WAWLWEW,WEW; in common with

Wi 1= Co2C22000002 — CooC20020022, W = CooC22000022 — C20C02020002,
W5 1= doodzz — d2odo2, Wi := dooC22 — C20020, Wb := do2Co2 — Cooz2,
Ws 1= C}; — 8¢2;(CooCz2 + C20C02) + 16(CooC22 — C20C02)*.
It should be noted thatl, = 0 implies fop = 0 and that\g = 0 implies fopp, = 0. MoreoveMs = 0

implies thatZ is an orthogonal spherical four-bar mechanfsrithe conditionWs = 0 can be
rewritten in terms ofr1, 81, y1 andd; as:

Ws = 2565sin(ay)?sin(B1)?sin(y1)?sin(8y)?.

3The diagonals of the spherical quadranigig,Bslsg are orthogonal (cf. [3,7]).
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Therefore this factor cannot vanish, as at least the sideingth of one spherical bar equals O (or
m). Clearly, also the corresponding factor which is obtaibgdubstitutingei; by di; in Ws cannot
vanish without contradiction (w.c.). Therefore we can asstior the rest of this article that these
two factors are different from zero.

Lemma 3.2. Under the assumptionygoz( f20902 — fo2020) WAVWLWEWAWE £ O there does not exist
a symmetric reducible composition with a spherical couplamponent.

Proof: We factorggzci1\WAWoWsWsWeWs out from Tj; and denote the resulting polynomial by.
Now the polynomiald.34, Lo1, L14 andLgz have still the factoH := ANWsW, + c{l\/\/z with

W := C22C00 — C20C02
in common. We distinguish two cases:

I. H=0: In this case the greatest common divisorLe$ andL,3 can only vanish w.c. for
C00C02C20C2200000202002oM [14W,. AsWy = 0 implies together withd = O that\W, = 0 must
hold (a contradiction) we can assuite = 0. Then the resultant &l andH with respect to
C11 cannot vanish w.c..

Therefore we are only left with the possibility; di; = 0.

II. Forthe caséd # 0 we proceed as follows: Beside, and T4 we also compute the resultant
of Ry4 andRz4 with respect tad; 1, which is denoted by;3. The common factors 0ffz4, T14

andTy3 are given by:
C22C20022002002C1 WA VWO MBWWEWH .

Alternatively the same procedure can be done by denotingethdtant ofRy; andRy3 with
respect taly1 by T13. The common factors dfy;, Toz and T3 are given by:

C00Co2000020902C1 WA VWOV W WEWsH .

Due to | and Il there can only be a reducible compositio;ii; = 0 holds. In the following we
show that these cases also yield contradictions:

1. CpoCpo0p2dro = O: In all 4 casefRy4 = 0 yields the contradiction.
2. CooCo20z0doo = 0: In all 4 caseRy, = 0 yields the contradiction. O
We can even prove a stronger statement:

Lemma 3.3. For the case gygoz( 20002 — fo2020)WaWs # O the condition W= 0 is a necessary
condition for a symmetric reducible composition with a sjpta¢ coupler component.

Proof: Due to Lemma 3.2 we have to show tigt = 0 andW; = 0 do not yield a solution for
W, # 0. We start by a rough discussion of the cadgs= 0 andW; = 0 and then we go into detalil:
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e W, = 0: Firstly we discuss the special cas&% = 0 holds in the following 6 cases (without
contradictingVy;Ws # 0) if two variables out oi{cij Ne T } are equal to zero:

Coo=C=0, dpo=0dg2=0, (3.9

Coo=0=0, doo=0Cp2=0, doo=Co2=0, dr2=0C0=0. (3.10)
It is very easy to see that th®; cannot vanish for both cases of Eq. (3.9). For the other cases
we get:
i. Cop= dop= 0 ordpg = Co2 = 0: In both case§)y andQ; cannot vanish w.c..
ii. dp2 = Crp =0 0rdy, = cyp = 0: In both casefs andQ,4 cannot vanish w.c..

We proceed with the general case. Due to the done discuskibe epecial cases we can set
do2 := ACyC22022 anddgp := AG2C20020 With A€ R\ {0} w.l.0.g.. Now allR;j contain the factor

Ws with
\Ng = AdzzdzoC%l — djz_l =0.

For the cas&\g # O we consider the polynomiaR;, Rk, Rk. Then we compute all three
possible resultants of these polynomials (after factooingy\s) with respect tal;; and calculate
the greatest common divisgedix (for i, j,k € {0,1,3,4} andi, j,k pairwise distinct).

The polynomialgycdh14 andgcchss have the following factors in common:
(Ac2C22 — 1) (Ap2Co2 + 1)WaWg

where (Ac2C2 — 1) = 0 yieldsWs;Ws = 0, a contradiction. The vanishing of the remaining
factor AcpaCro + 1 = 0 yieldsW, = 0, a contradiction.

These are all solutions because besidey,Cr2 — 1)(AcCz2 + 1)\WsWs = O the expressions
gcth14 and gcthz4 can only vanish foicg, = ¢o = 0, a contradiction. Therefore in the case
W, = 0 one of the factor® or W must vanish.

e W5 = 0: Nowdpodoz — drodp2 = 0 must hold and? is an orthogonal coupler. For the discussion
we can setlyp := Ady anddyg := Adpy with A€ R\ {0} w.l.0.g.. After factoring outip2011WaWs
from Ry4, R34 andRy3 we can computdag, Tr4 andTi3 with

gcd(Ta3, Ti4, T3a) 1= CooC22WAWLWG.
The alternative way of computation yields
gcd(Toz, Toz, T13) := CooCo2WAWLWE.

As all possibilities ofcygcyo = 0 andcgpCor = 0 imply Wiy = 0 or W, = 0, the factoW\b must
vanish.

We proceed with the detailed discussion of the open cases:
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* W, =W5 = 0: Due toWs = 0 we setdypp := Adyz anddy := Ady, with A € R\ {0}. ThenW,

splits up intoAdy2d22Wr and thereforé\, = 0 must hold & % and 2 are orthogonal). As a
consequence we sejp := Bcyp andcyo := By with B € R\ {0}. Note that we can assume
C02C22002022 # O due to Egs. (3.9) and (3.10). Now &} with i, j € {0,1,3,4} andi # j equal

J02002022ABWAWEC1 101 1 (Bb2 + do2) WoWio
with
Wo 1= AdootooChy — BCozCoo02;,  Whg i= AWs\Ws + AdotaoCEy + BCoaCor02;.
As Bth, + dg2 = 0 yieldsWj = 0 two cases remain:

a. Wp = 0: The computation of the resultant\éf andQ; with respect tali; is denoted byJ;.
Now it can easily be seen thdy andU4 can only vanish fof Ac22002 — g20C02) F[19] = 0, U1
andUs for G[].O] =0 andU, for B(302C22(A022902 — gzocoz)H [34] =0. ASAszgoz — 020C02 =
0 yields fp2020 — f20902 = 0, a contradiction, we proceed with the c&se-G=H = 0.
We compute the resultant & andH with respect tay,g and the resultant d& andF with
respect tayy. It can easily be seen that these two resultants cannothvaris.

b. Wig = 0, Wy # O: For both possible solutions &y = 0 for c11 the resultanRR;» cannot
vanish w.c..

Wo =W = 0: In this case we havédy, := AcygCro0r, and dgg := AcyoCagdag With A € R\
{0}. Moreover, the resultant &g andQ; with respect tad;; is denoted by;. We can factor
C20020002 — 920Co0d22 out fromVp, Vo andV, because its vanishing yieldg,go0 — 20002 =0, a
contradiction. In the following we denote the resultantjoéindV; with respect tayyg by R;.
We computePy 3, Pog andPy;. ThenPy3 can only vanish w.c. for @22C00 + C20C02) — €2, Now
the two resultants of this factor witkz andPy;, respectively, with respect @ cannot vanish
w.c.. This finishes the proof of Lemma 3.3. O

The case, = 0, W;Ws # 0

Special cases: W; = 0 holds only in the following 8 cases (without contradictg\s £ 0) if
two variables out of the sétcij , i } are equal to zero:

i. Coop = 0o =0 0rcyy=dy, =0: Now Q3 =0 andQ4 = 0 are fulfilled identically. Then the

resultant ofRy, andRy, with respect tal;; cannot vanish w.c..

ii. Cpop= dgo= 0 orcoy = dyg=0: Now Qp = 0 andQ1 = 0 are fulfilled identically. Then the

resultant ofRy3 andRy4 with respect tal;; cannot vanish w.c..

We remain with the following 4 cases:

In

Coo=Cp2=0, Copp=0Cp=0, dyg=022=0, dpo=0r=0. (3.11)

all 4 cases the conditions are already sufficient for ac#uxdiel composition. In each case we

end up with one homogeneous quadratic equatiapdngoz:
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1. Coo = Co2 = 0: The equation equal$gz0Co2doz + Go2C20020)? — 920002020002C3 ;.
2. Co2 = Co = 0: The equation equal$gzoCoodzz + Go2C22000)% — 920d02000022C3 ;.

3. doo = d22 =0: The equation equal$920002d02 + gozczodzo)z — gzogozczoCozdfl.

4. cop = Cyo = 0: The equation equal§gzoCootz2 + Go2C22000) — 920902C00C2207;

The general case: Due to the discussed special cases we cadgset= ACyoCrotr2 anddyg :=
ACo2C22000 With A € R\ {0} w.l.0.g.. Then the equatioR;3 = 0 is fulfilled identically. Moreover
R34 = 0 impliesRy4 = 0. The factors oRz4 are:

C20902AVWAWEW1 1 Wi WA 3
with
W1 := 4doot22(Ac00C22 — 1) (AC20Co2 — 1) + AdootaaChy — A2y, Wiz = d3; + AdgodanCs,
Wi3 1= 4AWZdF; + 4doodz2(APCooC22C20C02 — 1)°CTy — (AcooCz2 + 1) (AczoCoz + 1)¢105s.
Therefore one of the factoW®; W W3 must vanish.

Wi =0: The computation of the resultant Wh1 and Q; with respect tady; is denoted byd;.
Now it can easily be seen thidy andU, can only vanish fofdygCz2002 — 920C00022)F [32] = 0, U
andUs for G[20] = 0 andU; for (dooC22002 — 920C00d22)H [70] = 0. As dooC22902 — 920C00d22 = 0
yields fo2020 — 20002 = 0, a contradiction, we proceed with the cdse- G=H = 0.

We compute the resulta®=g of F andG with respect tayo, and analogously the resultants
Rry andRgH. ThenReg can only vanish w.c. foM;M, = 0 with

M; = 2(A020002 - 1) (ACZZCOO_ 1) +A(€lv
M3 := 4(Aca2C00 — LWs — (AC2aC00 + 1)C2;.

e M; = 0: We compute the resultant M, and Rry resp.Rgy with respect tocy1. Then the
greatest common divisor of the resulting expressions canwamish w.c. forAcoCo2 +1 =0
(which impliesW, = 0). W.l.o.g. we can solve this equation far Then for both solutions of
M1 = 0 for c1; the resulting expression &f cannot vanish w.c..

e M, = 0: Analogous considerations as for the clge= 0 yield the following necessary condi-
tions: W (AcoCoz2 + 1) (A?CooC20C02C22 — 1) = 0 whereA?cogC0Co2C22 — 1 = 0 impliesWs = 0.
Together withM, = 0 this yieldsW, = AcyoCoz + 1 = 0 or Wy = A2Co0Ca0C02C22 — 1 = 0. The
latter can be seen by computing the resultam\aafnCogCo2C22 — 1 = 0 andM, with respect to
A. Therefore only two cases remain:

* Wy = AcCoz + 1 = 0: AsWs = 0 holds we can satyp := Bcyz, and cyg := Bcyo with B €
R\ {0} w.l.o.g.. Moreover we can expredsrom AcoCoz + 1 = 0. ThenH can only vanish
W.C. forci1 — 16BcyoC2 = 0. For both solutions with respect ¢g; the polynomialF cannot
vanish w.c..

* Wy = A2Cq0Co0C02C22 — 1 = 0: We set agaiigg := By, andcyg := Boyy with Be R \ {0}. For
both solutions 0fA%CopCaaCo2C22 — 1 = O with respect toA none of the resultant®-g, Ren
andRgH can vanish w.c..
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Wio =0,Wi; #0: W.l.o.g. we can expregsfromWi, = 0. The onlyR;;’s which are not fulfilled
areRy with i € {0,1,3,4}. It can easily be seen that these 4 expressions can onlyhvargsfor
czocozdfl— doodzchl = 0. For both solutions of this equation with respectlig the equations
Q1 = 0 andQ3z = 0 can only vanish w.c. fo\;, = 0. Therefore we saiyg := B¢y andcyp := Bo
with B € R \ {O}. Now the resultant 0§, andQp (or Q4) with respect tayo cannot vanish w.c..

Wiz =0, WiWip # 0: - Assuming(AcooCzz + 1) (ACoCoz+ 1)¢2, — 4AW? =4 0 we can compute;
from W3 = 0. For both possible solutions the ori®y’s which are not fulfilled are agaiRy; with
i €{0,1,3,4}. It can easily be shown that these 4 expressions cannotwvargs

Now we set(AGyoCaz + 1) (ACoCoz + 1)¢2; — 4AW? = 0: Assuming(AcooCaz + 1) (ACCoz +
1) # 0 we can solve the condition fari. For both solutiondV;3 cannot vanish w.c.. Both
remaining special casé8cyoCz2 + 1) (Ac0Co2+ 1) = 0 imply W, = 0 and therefore we sego :=
B2 and ¢y := Boyp with B € R\ {0}. Now W3 = 0 is already fulfilled identically. For both
special cases the resultaig andRy4 cannot vanish w.c..
We sum up the results of this case study in the following taeor

Theorem 3.1. For the case 8h002( f20902 — fo2020) # O there only exists a symmetric reducible
composition with a spherical coupler component if and ohthheé spherical couple® or Z is a
spherical isogram.

Proof: Due to the case study of Subsection 3.2.1 we have to showhibat $special cases of Eq.
(3.11) imply spherical isograms.

1. cgp = C2 = 0: It was already shown in [3] th&bg = cp2 = 0 is equivalent with the conditions
B1=a;andd; = i, i.e.% is a spherical isogram.

2. Cpo = Co2 = 0: Substituting of the angle expressions yields:

Co2+ C20 = 2C€0S(01+ B1) COS(d1) —2€0S(Y1), Co2— Coo= 2Sin(ar1+ B1)Sin(dr).

Under consideration of & a1, 81, y1,01 < 1T we get the following solution3; = m— a; and

& = m— \. The couplers of item 1 and item 2 have the same movement degaiget item
2 by replacinglyg of item 1 by its antipodd,. Clearly, the same holds for the coupler

Therefore all four special cases correspond wifiherical isograms

Now it remains to show thaM;Ws = 0 only yields contradictions if we assume that none of
the couplers is a spherical isogram. W.l.o.g. we\W§gt= 0. It is an easy task to show that no
reducible composition exists (the proof is left to the reaftar the four special cases

doo=0Cp0=0, doo=020=0, Cop=0Cp=0, Cpp=0dxyp=0.

Here we only discuss the general case: W.l.o.g. we canlgget= Ac and dyg := Acye with
A € R\ {0} and assumelyoCood20C22 # 0. Now the greatest common divisor ®f4, T14 and
T13 can only vanish w.c. fodyyCpo — Crod22 = 0. Therefore we can set w.l.0.dg, := Bdh, and
C20 := By with B € R\ {0}. Moreover we can assuntl; # 0 because otherwig@, = 0 yields
the contradiction. After factoring out all factors @f, Q3 and Q4 which cannot vanish w.c. we
computeRs4 andRy4. Finally the resultant of these two expressions with resfmec; ; yields the
contradiction. O
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Clearly, due to the symmetry of the equations also the faligitheorem holds:

Theorem 3.2. For the case 4 fo2(f20002 — fo2020) # O there only exists a symmetric reducible
composition with a spherical coupler component if and ohthheé spherical couple® or Z is a
spherical isogram.

3.2.2 The cas@yogo2 =0

Due to Theorems 3.1 and 3.2 we only have to discuss thosefoasesich g,0go2 = 0, foofo2 =0
and fopgo2 — fo2020 # 0 hold. There are only the following two symmetric caskgs:= goo = 0 or
fo0 = go2 = 0. W.l.0.g. we sefgr = gop = 0. ThenQso andQp4 can only vanish foW, =Ws = 0.

Special cases: First of all we discuss the special cases, where we disthgfiour groups:
1. ¥ andZ are spherical isograms:

oo = dz2 = Coz = C20 =0, Coo = C22 = do2 = 020 = 0.
2. ¥ is a spherical isogram ar@ not:

Coo = C22 = o2 = C20 =0, Coz = C20 = oo = Coo = 0.
3. Zis a spherical isogram ar# not:

doo = Oro = Coo=do2 =0, dg2 = dog = Cop = dgo = 0.
4. ¥ and 2 are no spherical isograms:
doo = C20 =do2 = Coo =0, doo=0r0=Co2="Coo=0, Cp2=Coo=Cdo2=0r2=0.

It can easily be verified that all 9 special cases yield a egiittion. The proof is left to the reader.
In the next step we check the semispétialses:
1. doo = Ay, d2o = Acx with A€ R\ {0} andcypcz # 0:

a. Coo = Co2 = 0: In this casd)y; splits up into two factors. In both cases we can comggge
w.l.0.g.. ThenQs3 can only vanish w.c. focyodg, — droCr0 = 0 which yields together with
Q44 = 0 the contradiction.

b. dyg> = dyo = 0: Analogous considerations as in the last case also yielddhtradiction.
C. Coo = do2 = O: In this caséQyo = 0 andQa4 = 0 imply dp2 = o2 = 0. ThenQ22 = 0 yields
the contradiction.

d. dy» = cg2 = 0: Analogous considerations as in the last case also yielddhtradiction.
2. o= Bcop, d02 =Bay with B € R\{O} andCoocoz 7& 0:

a. dgo = Cp0 =0 0rcy2 = dyp = 0: Analogous considerations as in the semispecial caseeltt yi
the contradiction.
b. dpo = dop =0 orcy» = cyp = 0: Analogous considerations as in the semispecial caseslth yi
the contradiction.

4The term semispecial is used for those cases yieling W = 0, where only two variables out of the {ejj . dij }
are equal to zero.
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The general case: Finally we can discuss the general case. Due to the discspsmibl cases
we can setlyg = AG, tho = ACpz, d2 = By, do2 = Boyo for A;B € R\ {0}. As forW; = 0 the
expressionQpo cannot vanish w.c. we can computg from Qgo = 0 w.l.0.g.. Then the resultant
of Q11 andQy, with respect tal;; already yields the contradiction.

We sum up the results of this subsection in the following theo

Theorem 3.3. For the case ghgo2 = 0, foofo2 = 0 and Hogo2 — fo2020 # O there does not exist a
symmetric reducible composition with a spherical coupmmponent.

3.3 Symmetric reducible composition withfyogo2 — fo2020 = 0

3.3.1 Very special case ofy0go2 — fo2020 = 0

This case is very special as the equatieggo, — fo2020 = 0 is trivially fulfilled for fyg = fgo =
020 = go2 = 0. In this case the equatiofy = 0, Q31 = 0, Q13 = 0 andQg4 = 0 imply:

dooCo2 =0, Coota2 =0, dooCor =0, droCr = 0.

Now we have to discuss all possible non-contradicting coatbrial cases which can again be
grouped into four classes:

1. € andZ are spherical isograms:
doo = U2 = Coz = C20 =0, Coo = Cp2 = Co2 = U0 = 0.

We only discuss the first case (for the second case we referatogy). As at leasfi; or gi1
must be different from zero we can assurie # O w.l.o.g.. Then we can expregs, from
Q33=0 andgoo from Q11 =0.

a. doz # 0: We can computéy; from Qg4 = 0 w.l.0.g.. NowQqg splits up into:

(Cood20 f22 — fooC22002) [C11011C00020002C22 + 911(002C22 foo + Coodoo f22) ]

The first factor can always be solved flgp. Then only one equatio@,, = 0 remains which
can be solved fog;; w.l.0.g..

For the second factor the same procedure also holds if wenaggy # 0. Forgy; = 0 the
second factor can only vanish w.c. f@p = 0. Then the remaining equati@y, = 0 can be
solved forfgo w.l.0.g..

b. dp2 = 0: Now Qa4 can only vanish forfa,g;1 = 0.

i. For f, = 0 we can solveQ,, = 0 for g;1 and one equation remains whexg = 0
factors out. Foryg # 0 the remaining factor can be solved fiag w.l.0.g..

ii. For gi11 =0 we are left withQ,, = 0 andQyy = 0. Both equations are fulfilled for
Coo = 0. Forcpg # 0 we can solv&)yg = 0 for fop andQy2 = 0 for foo w.l.0.g..
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2. % is a spherical isogram ar@ not:
Coo = C22 = Up2 = C20 =0, Co2 = C20 = Ogo = Coo = 0.

In the following we only discuss the first case in detail (foe second case we refer to analogy).
Due to item 1 we can assume w.l.oagd2o # 0. ThenQyo = 0 impliesdygg = 0. As at least
f11 or g11 must be different from zero we can assume w.l.o.g. fhatZ 0 holds. Under this
assumption we can expregs from Qz3 = 0 andggg from Q11 = 0. Now Qgp andQ44 can only
vanish w.c. forfog = f22 = 0 but thenQ,, = 0 yields the contradiction.

3. Zis a spherical isogram ar# not:
doo = a2 =C20=0do2 =0, do2 = dz0= Coo= oo = 0.
Analogously considerations as in item 2 yield the contréafic
4. ¥ and 2 are no spherical isograms:
doo = C20=0doz = Coo =0, doo=0z0=Co2=Coo=0, Co2=Coo=Coz2=02=0.

We start by discussing the cadg = c0 = dg2 = Coo = 0: Due to the above discussed cases we
can assumeg,Cy2dogdzo # 0. As at leastf; or g1; must be different from zero we can assume
f11 # 0 w.l.o.g.. Then we can expregs, from Qs3 = 0 andgpp from Q11 = 0. Now Qpo and
Q44 can only vanish w.c. fofgg = f22 = 0 but thenQ»2 = 0 yields the contradiction.

In the remaining two cases we get the contradiction much masger, becaus®,g and Q42,
respectively, cannot vanish w.c..

We sum up the results of this subsection in the following teeo

Theorem 3.4. For any symmetric reducible composition with a sphericalger component and
020 = 9oz = f20 = fo2 = O the couplersé” and Z are spherical isograms.

In the following we formulate the main theorem for the symmeateducible composition:

Theorem 3.5. If a symmetric reducible composition with a spherical cenglomponent is given,
then it is one of the following cases or a special case of thiespectively:

1. One spherical coupler is a spherical isogram,

2. the spherical couplers are forming a spherical focal nagdbm which is analytically given by:
Co0C20 = Adooto2,  C22C02 = Ad22z0, With A € R\ {0}

; (3.12)
and G, — 4(CooCzz + C20C02) = A [d%; — 4(doodz2 + daodo?)],

3. both spherical couplers are orthogonal witfpe= Cop = dpg = do2 = 0 resp. @o = drg = Coo =
Co0=0.

Proof: The Theorems 3.1 and 3.2 yield item 1 of Theorem 3.5. Moredtheorem 3.4 implies a
special case of item 1. Now the discussion of the speciakc#ise general case and the excluded
case is missing. It turns out that the corresponding caskestonly yield solutions which are one
of the three cases of Theorem 3.5 or special cases of thepeateely. The detailed discussion
of cases is performed in Subsection 3.3.2 and 3.3.3 ando&e&#. Moreover it should be noted
that Eq. (3.12) is the algebraic characterization offtual type of Subsection 3.1.2.
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3.3.2 Special cases dbpgo2 — fo2020 =0

Due to the last subsection we can discuss the following fpacial cases

foo=f2=0, fao=020=0, foo=002=0, Go=002=0,

under the assumption, that not all elementd &, 20,002,920} are equal to zero. Due to the
symmetry of the conditions only 2 of these 4 cases must beisisd (for the other cases we can
refer to analogy).

The casefyg= fgo =0

For the discussion we can assume w.l.0.g. that# O holds. Under this assumption we can
computef,, from Qg = 0, fog from Qo0 = 0 and fy; from Q31 = 0. ThenQ4o andQu4 can only
vanish forW; =Ws = 0.

Special cases: We start again with the discussion of the special cases:

1. ¥ andZ are spherical isograms:

doo = d22 = Cp2 = C20 = 0, Coo = C22 = Ug2 = o = 0.
These two cases yield easy contradictions a$;jallanish.

2. ¥ is a spherical isogram an@ not: The cas&y, = Cyo = dgg = Cop = O yields an easy con-
tradiction as allfj; vanish. For the remaining casgy = Co» = dg2 = C0 = O there exists
the following reducible composition which is a special cabé&em 1 of Theorem 3.5: Now
f11 = f2p = 0 holds. W.1.0.g. we can assurdgdgg # 0 because otherwisky = 0 holds. Now
the remaining three equatio@, = 0, Q11 = 0 andQgo = 0 can be solved w.l.0.g. f@y,, 911
andggo, respectively.

3. Z is a spherical isogram arié not: The caselpg = dy» = Cx9 = dp2 = 0 yields an easy con-
tradiction as allfi; vanish. For the remaining casig, = dyxg = Coo = doo = O there exists a
analogous reducible composition as in the last case.

4. ¢ andZ are no spherical isograms: The calgg= Cyp = dp2 = Coo = 0 yields an easy contra-
diction as allfj; vanish. Two cases remain:

doo = d2o = Co2 = Coo =0, Co2 = Cpg = Up2 = tp = 0.

We start discussing the first case: Néw = foo = 0 holds. W.l.0.g. we can assurogcyg # 0
because otherwis&, = 0 holds. TherQ,, = 0 impliesggp = 0. Now the remaining three
equationgs4 = 0, Q33 = 0 andQ,4 = 0 can be solved w.l.0.g. fapy, g11 andgoy, respectively.
This yields a special spherical focal mechanism (item 2 afofam 3.5).

For the second case we det = fo, = 0. W.1.0.g. we can assuntlggdyg # 0 because otherwise
foo = 0 holds. TherQ», = 0 impliesgy, = 0. Now the remaining three equatio@s; = 0,
Qo2 = 0 andQpo = 0 can be solved w.l.o.g. fagi1, go2 andgoo, respectively. This yields a
special spherical focal mechanism (item 2 of Theorem 3.5).
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Semispecial cases: In the next step we check the semispecial cases (cf. footf)ote

1. doo= A, dao = Aco with A€ R\ {0} andcyecy2 # 0: The following 4 cases are again special
spherical focal mechanisms (item 2 of Theorem 3.5):

a. cop = Co2 = 0: It can easily be verified that there only exists a reduatoi@position if and
only if dpp = d22 = 0 holds.

b. dg> = dpo = 0O: It can easily be verified that there only exists a redudibl@position if and
only if cog = o2 = 0 holds.

C. Coo = do2 = O: It can easily be verified that there only exists a redudiiol@position if and
only if AdxpC2, — cop02; = 0 holds.

d. dyo = cg2 = 0O: It can easily be verified that there only exists a reduatioleposition if and
only if Adg2c2; — Cood?; = 0 holds.

2. doo = By, doo = Begg with B € R\{O} andcyoCo2 75 0:

a. doo = C20 = 0: We get a contradiction as dil vanish.
b. ¢ = dyo = 0: We get a contradiction as | vanish.

C. dpo = dyp = O: In this casefgg = f11 = 0 holds. W.l.0.g. we can assurmgcCy2 # 0 because
otherwisef,, = 0 holds and alffij would vanish. The®;3 cannot vanish w.c..

d. ¢co2 = ¢ = 0: In this casef,, = f11 = 0 holds. W.l.o.g. we can assurdgydyo # 0 because
otherwisefoo = 0 holds and alffij would vanish. Ther®Q,3 cannot vanish w.c..

The general case: Finally we can discuss the general case. Due to the discspsmibl cases
we can setlyo = AGo, dao = AC, o2 = Bz, do2 = Bago for A,B € R\ {0}. Now we can express
Joz2 from Q13 =0, g22 from Q44 = 0, goo from Quo = 0, g11 from Q33 = 0 and one equation remains:
ABCZ, —d?, = 0. This case yields also a special spherical focal mechatitem 2 of Theorem
3.5).

The casefp, =gg2 =0

W.l.0.g. we can assumeogyo # 0 because otherwise we would get a special casgyef fg, =0
or of its symmetric casgyo = go2 = 0. Therefore we can computie, from Qo = 0, fgp from
Q20 =0, f1; from Q31 = 0 and fyo from Q40 = 0 w.l.0.g.. Nowfy can only vanish foW,; = 0.
MoreoverQ;3 andQp4 can only vanish w.c. focgedo2 = 0 andcgodg, = 0. We get the following
combinatorial cases:

Co=C2=0, Copo=002=0, dop=0Co2=0, dro=0p2=0.

Coo="Co2=0=Cp#0: Now Q4 can only vanish w.c. fod,»dy, = O:

1. dyp = 0= dyg # 0: Due toQgp = 0 we have to distinguish two cases:

a. goo = 0: Due toQ11 = 0 we have to distinguish further two cases:
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doo = 0: Assuming 250020011 + C11011020 # O we can expresgpy, from Q33 = 0. Then
one equation remains:

do2C31 950 + C20011C11011020 + C50971020 = O.

This yields a spherical focal mechanism whérdas additionally a spherical isogram
(items 1 and 2 of Theorem 3.5).

For 2co0020011 + C11d11020 = O we can expresgs1 from this equation w.l.o.g.. Then
Q33 = 0 cannot vanish w.c..

ii. g11 =0, dpo # 0: Now we can computgy, from Q2 = 0 w.l.o.g.. Then the remaining

two equations can only vanish w.c. fogo = 0 (¢ is a spherical isogram; item 1 of
Theorem 3.5) ody, = 0, which yields a special spherical focal mechanism (iteni 2 o
Theorem 3.5).

b. goo # O: In this case we solve the remaining factoQgb for goo. This can be done w.l.0.g..
Moreover we can computg;; from Q13 = 0 andgy, from Q22 = 0 w.l.o.g.. Then the
remaining two equations can only vanish w.c. égs = 0 (¢ is a spherical isogram; item
1 of Theorem 3.5) ody, = 0, which yields a special spherical focal mechanism (itenh 2 o
Theorem 3.5).

2. do2 = 0, d22 # 0: Due toQpo = 0 we have to distinguish two cases:

a. goo = 0: Due toQ11 = 0 we have to distinguish further two cases:

doo = 0: Assuming 20020911+ C11011020 # O we can expressys from Qsz = 0. Now

it can easily be seen that the remaining two equati@ps= 0 andQ,, = 0 cannot
vanish w.c..

For 2cp0020011 + C11011020 = O we can expresgs; from this equation w.l.o.g.. Then
Q33 = 0 cannot vanish w.c..

ii. dop=0,dgo# 0: Assuming 22dppg11+ C11011020 7# O we can expresgy, from Qzz =

0. Then one equation remains:

022C31050 + C22011C110k 1020 + €5,034 000 = O.

This yields a spherical focal mechanism whérds additionally a spherical isogram
(items 1 and 2 of Theorem 3.5).

For 2cpo0po011 + C11011020 = O we can expresgs; from this equation w.l.o.g.. Then
Q», = 0 yields the contradiction.

011 = 0, dpod2p # O: Now we can computgy, from Q22 = 0 w.l.0.g.. Then the remain-
ing two equations cannot vanish w.c..

b. goo # O: In this case we solve the remaining factoQgf for goo. This can be done w.l.0.g..
Moreover we can computg 1 from Q11 = 0 andgy, from Q22 = 0 w.l.0.g.. TherQ,, cannot
vanish w.c..

dyp =dg2=0= dyp# 0: For this case we refer to analogy. It can be done similariyhéolast

case if the variables are substituted as follows:

Coo <> do2, Co2 = oo, Cpp<= oo, Cp2¢= o, C11+> di1.
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Coo = do2 = 0:  In the following we distinguish two cases:

1. AssuminggzoC110i1(dooCz2 + C20020) + 2(dooC22 — C20020)?011 # O We can expresgoo from
Q11 = 0 andgy, from Qz3 = 0. Then we compute the resultaig of Q; andQj; with respect
to gi1 fori, j € {0,2,4} andi # j. The greatest common divisor of these three resultants can
only vanish w.c. for:

a. ¢z = 0: Now % is a spherical isogram (item 1 of Theorem 3.5). It can easlgéden that
the remaining two equatior3po = 0 andQ,, = 0 can only vanish w.c. for:

091020C20 + 9300%1Co2 + G11C11020011020 = O.

b. dyo =0, ¢co2 # 0: Now Z is a spherical isogram (item 1 of Theorem 3.5). It can easly b
seen that the remaining two equatidpg, = 0 andQ,, = 0 can only vanish w.c. for:

2 2 2 2
050C11d22 4+ 971C52000 + 911C22011C11020 = O.

C. 4d22C02(d00C22— Czodzo) + d22d200%1 — Cozd%lczz =0, C22d20 7& 0: We distinguish again three
cases:

i. Assumingd,2Co2 # O we can compute,g from this equation. Now it can easily be
seen that the remaining 3 equations can only vanish w.c. émadgeneous quadratic
equation ingyo andgs (with 10 terms) is fulfilled. This equation can be solved avd.
for g11. This yields a special spherical focal mechanism (item 2rlefofem 3.5).

ii. dop=0: Then the equation can only vanish fgp = 0. Now the remaining equations
can only vanish w.c. if a homogeneous linear equatiogpgrandg; 1 (with 5 terms) is
fulfilled. This equation can be solved w.l.0.g. fgr;. This yields a special spherical
focal mechanism (item 2 of Theorem 3.5).

iii. cpz =0, dyo # 0: Then the equation cannot vanish w.c..

Now we assume that the greatest common divisor of the ressiRa,, Ros, Ro4 is different
from zero. Moreover we can setgdgy # 0 because both cases imply a contradiction. There-
fore we can express, from the only non-contradicting factor 4. ThenRy, = 0 implies
022000C3 + Co2C2002; = 0 which can be solved fat;, w.l.0.g.. NowQqgo andQy4 cannot vanish
w.C..

2. G20C11011(dooCa2 + C200k0) + 2(dooCaz2 — C20020)%d11 = 0: W.I.0.g. we can solve this equation
for g11. Now we proceed as follow€Qyo = 0 is a homogeneous quadratic equatiogf goo
and Q4 = 0 is a homogeneous quadratic equatiorgig, goo. Moreover,Q,, = 0 is also a
homogeneous quadratic equationgi, g»2, goo Wheregoo and gy, appear only linear. From
these 3 equations we eliminaigy andgy, by applying the resultant method. We compute the
resultantR of Q44 and Q,, with respect tag,,. Then we compute the resultant Rfand Qgg
with respect tajgo. This resultant can only vanish w.c. if a homogeneous fde{@g] of degree
16 in the unknowns;;, d;;j is fulfilled. MoreoverQ:; andQs3 can only vanish w.c. for:

dooda0(4C02C50020 — 4C02000C22C20 — dooCi1C22 — 0203 1C20) = O, (3.13)
C20C22(402203,C22 — 4022C20000020 — C22031do0 — C200%1020) = O. (3.14)



Reducible compositions of spherical four-bar linkageswaispherical coupler component 31

It can easily be seen that the caslggdooCo0Co2 = 0 only imply contradictions. Therefore we
can assume W.1.0.@lyod20C20C22 # 0. Moreover we distinguish two cases:

a. dgoCo2 + Coodog # 0: Under this assumption we can compatgeandd;; from the remaining
factors of Egs. (3.13) and (3.14), respectively. For altfmanched- is fulfilled identically.
In all cases we end up with a special spherical focal mecha(item 2 of Theorem 3.5).

b. dgoCo2 + Cootho = 0: W.1.0.g. we can solve this equation fyp. ThenQ;1 andQsz can only
vanish w.c. forcg, = 0 anddy, = 0. AgainF is fulfilled identically. This yields a special
spherical focal mechanism (item 2 of Theorem 3.5).

do2 = Cp2 = 0= dpoCp2 # 0: For this case we refer to analogy. It can be done similarhhéo t
last case if the variables are substituted as follows:

Coo > Op2, Co2 > dop, Cpp¢= 0o, Co2 0o, C11 i1

3.3.3 General case ofzogo2 — fo2020 =0

Due to the discussion of the last two subsections we can a&ssuho.g. thatfoegos fo2g20 # O
holds. Therefore we can s&ly = Agyo and fo, = Agpz with A€ R\ {0}.

In the next step we compuigyo from Qo = 0 which yields+W,/+/A. Moreover we can
expresgo2 from Qo4 = 0 which yields+\Ws /+/A. Therefore we have to distinguish the following
cases:

The casegzo = —Wy/V/A, goz = Ws /A Or goo =Wy /VA, goz = —Ws/V/A

W.l.0.g. we can computgy, andggg from Q42 = 0 andQg2 = 0. In the following we distinguish
two cases:

1. g11A— f11 # 0: Now we can expresko and f, from Q11 = 0 andQs3 = 0 w.l.0.g.. Moreover
we can computdq, from Qz1 = 0 w.l.0.g.. TherQ;3 can only vanish w.c. fow; = 0.

Special casegirst of all we discuss again the special cas®s= 0 holds only in the following
8 cases (without contradictingsWs £ 0) if two variables out of the se{tci i dhij } are equal to
Zero:

a. ¢y = dyo = 0: It can easily be seen that the following expression hasutist in order to
get a reducible composition:

4¢20002(Co0020 — Co2000) + C410d00do2 — C200%4Coo-

b. cxo = dpo = 0: It can easily be seen that the following expression hasutist in order to
get a reducible composition:

ACp022(Conta0 — Co2000) — €3 1022020 + Co202;Coo.
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C. Co2 = tyg = 0: It can easily be seen that the following expression hasutist in order to
get a reducible composition:

4Co00oo(022C20 — C22002) + €31d00do2 — C2002; Coo.

d. cpo=dgo = 0: It can easily be seen that the following expression hastish in order to
get a reducible composition:

Ad0C02(022C20 — C22002) — 31022020 + Co202;Coo.

€. Coo = Cp2 = 0: In this cas&,4 = 0 andQyp = 0 imply dgg = dpo = 0, which already yields
a reducible composition.

f. doo = d22 = 0: In this cas&,4 = 0 andQzo = 0 imply coo = C22 = 0, which already yields
a reducible composition.

g. Cpo = Co2 = O: In this cas&Q»4 = 0 andQ,g = 0 imply dyg = dg2 = 0, which already yields
a reducible composition.

h. dyp = dp2 = O: In this caseQ,4 = 0 andQyg = 0 imply c9 = Co2 = 0, which already yields
a reducible composition.

The cases a-d imply special spherical focal mechanisms @tef Theorem 3.5). In the cases
e-h we get spherical focal mechanisms where both couplersplerical isograms (items 1 and
2 of Theorem 3.5).

The general cas®ue to the discussed special cases we cangget Bcx0g2Cor anddyg :=
BdhaCo0dz0 With B € R\ {0}. ThenQz4 andQzp can only vanish w.c. if their common factor

Ad0C02(C22002 — U20C0) (BthoCop — 1) + C22Coa0s; — GpaC2400 (3.15)

vanishes. This condition is already sufficient for a redigcitomposition and it yields the
general spherical focal mechanism case given in item 2 obrEme 3.5.

2. g11A— f11=0: W.l.o.g. we can set;; = g11A. Moreover we can compui@; from Q3; =0
w.l.0.g.. ThenQ13 can only vanish w.c. fol, = 0.

In the 8 special cases ¥ = 0 it can easily be seen that the remaining equations cannighva
w.c. (the proof is left to the reader).

Therefore we only discuss the general case in more detdib.g§/.we can seatyg := Bcy2dg2Co2
anddgg := Ad2Co0020 With B € R\ {0}. Now Q11 andQgz3 can only vanish w.c. for:

4d20(C228d22 — l) (doz — Czodng) + d%l(l + szdez) =0.

MoreoverQ,4 and Qg can only vanish w.c. for Eq. (3.15). If these two conditioms aul-
filled then we already get a reducible composition. Cledrly yields a special spherical focal
mechanism (item 2 of Theorem 3.5).
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The casegzo =Ws/ VA, goz =Ws/ VA O goo = —Wy/VA, go2 = —Ws/VA
W.l.0.g. we can computgy, andggg from Q42 = 0 andQq, = 0.

1. g11A— f13 # 0: Under this assumption we can exprégsand fo, from Q11 =0 andQz3 =0
w.l.o.g.. Moreover we can compufg; from Qsz; = 0 w.l.o.g.. ThenQ;3 can only vanish w.c.
for W, = 0. First of all we discuss again the special cas¥s= 0 holds only in the 6 cases
given in Egs. (3.9) and (3.10) (without contradictmMg\Ws +# 0) if two variables out of the set
{Cij , dij } are equal to zero. Itis very easy to verify that these casemtgield a solution (the
proof is left to the reader).

Here we only discuss the general case in more detail: W.haegan setly := Bcy2Cr0d20 and
doz := ACoCoodo with Be R \ {O} Now Q24 and Q20 can onIy vanish w.c. dezoBClzldzz —
dfl =0, which can be solved fah, w.l.0.g.. Then the resultant 6log andQ44 With respect to
g11 can only vanish w.c. in the following two cases:

a. Boyocro+ 1= 0: W.I.o.g. we can solve this equation 8r Now the resultant of,, and the
only non-contradicting factor d@qg and Qa4 with respect tag;1 can only vanish w.c. for
W; = 0. Therefore we setyg = Loz andcyp = Lcyp with L € R\ {0}. ThenQgp = 0 and
Q44 = 0 imply the contradiction, ag;1 = 0 yields f;1 = 0.

b. Wy = 0, BeyoCo2 + 1 # 0: W.I.0.g. we setog = Lcoz andcpo = Lepp with L € R\ {0}. Now
the resultant 06, and the only non-contradicting factor @bo andQa4 with respect ta;1
cannot vanish w.c..

2. g11A— f11=0: W.l.o.g. we can set;; = g11A. Moreover we can compui@; from Q3; =0
w.l.0.g.. ThenQi3 can only vanish w.c. fon,b = 0.

For the six special cases given in Egs. (3.9) and (3.10) ieeaily be seen that the remaining
equations cannot vanish w.c. (the proof is left to the réader

Therefore we only discuss the general case in more detdib.g/.we can seadyg := Bcy2Cr0020
anddpz := BGoCooda2 With B € R\ {0}. Now Q24 andQzp can only vanish w.c. fordzoBcfldzz—
dfl = 0, which can be solved fai,, w.l.0.g.. Then we can computgy from Qz3 = 0 w.l.0.g..
Finally Qq1 cannot vanish w.c..

3.4 Excluded cases of the symmetric reducible composition

3.4.1 Thecas&y==Cyp=0

As we compute the resultait of C andD with respect td, the coefficient oit% in D must not
vanish. Moreover, as still at least one of the two polynosmkaband G should correspond to a
spherical coupler, we can stop the discussialy4f= dyg = 0 or f11 = g11 = 0 holds.

Due t0Qs4 = 0, Qos = 0 andQy4 = 0 eitherfy, = fop = 0 0rgor» = go2 = 0 must hold. W.l.0.g.
we can assumé&; = fpp = 0. Then two cases have to be distinguished:

1. f;1 =0: As a consequence we can assumne# 0 w.l.o.g.. Therefore we can exprefg and
foo from Q31 = 0 andQq1 = 0, respectively. Moreover due ta:d11 # 0 we can computeyp)
from Qa2 = 0, g20 from Qa0 = 0, go2 from Qo2 = 0 andgog from Quo = 0. Now the remaining
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two expression$),, andQ»g can only vanish w.c. fodyg = dg2 = 0 (item 3 of Theorem 3.5).
From the other excluded case we get the second possitility: dyg = Cop = C20 = 0 given in
item 3 of Theorem 3.5.

2. f11# 0: FromQz3 = 0 andQi3 = 0 we getgz2 = goz = 0. Moreover we can computgo from
Q31 =0, g11 from Q22 = 0 andggo from Q11 = 0 w.l.0.g.. Then we distinguish again two cases:

a. dyo =0: Now only the three conditior@40 = 0, Q20 = 0 andQgp = 0 remain. It can easily be
seen that there exists a reducible compositialpdf= 0 holds & Z is a spherical isogram;
item 1 of Theorem 35) or i(ﬂozdooC%l—l— 4dy2Co0Co00ag — CoodJZ_J_Czo = 0 with dgp 75 0 holds
(= special spherical focal mechanism; item 2 of Theorem 3.5).

b. dyz # 0: ThenQs2 andQgp, can only vanish w.c. focgg = ¢o9 = 0 (= ¥ degenerates into
a special spherical isogram ag = 31 = y1 = & = 1/2 hold). The remaining expressions
Q40, Q20 andQqp can only vanish w.c. for:

i. dgp = dg2 = 0: This is a special case of item 1 and item 3 of Theorem 3.5.
ii. doo= fo0= foo = 0: We get a special case of item 1 of Theorem 3.5.

For the discussion of the second excluded ahse- d,g = 0 we refer to analogy.

3.4.2 The special caseyy = Cop =tro=0dyp=0

In this special case the resultant yields:
X := c110oots — Coothats + Cr10oatst] — Coothatat?. (3.16)

This expression cannot have a reducible composition ofaha X = FG with F and G of Eq.
(3.6). This finishes the proof of Theorem 3.5. 0

In order that we must not discuss this special case agairhétvwo asymmetric reducible
compositions given in the following two sections, we inigaste Eq. (3.16) for any reducible
compositions with a spherical coupler. It can easily be seanEq. (3.16) has the desired property
if and only if dgg = 0 or cgg = 0 holds. Therefore at least one of the couplers has to be aicahe
isogram (item 1 of Theorem 3.5). For the special cdge= coo = 0 we get a spherical focal
mechanism wher® and Z are spherical isograms (items 1 and 2 of Theorem 3.5).

3.5 First asymmetric reducible composition

Computation 0fQgs = 0 andQ4g = 0 shows that\, = Ws = 0 must hold. First of all we discuss
the special cases:

3.5.1 Special cases

We distinguish the following 4 groups:
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1. ¥ andZ are spherical isograms:
doo = d22 = Cp2 = C20 = 0, Coo = C22 = U2 = o = 0.

We only discuss the first case (for the other we refer to agildgue toQs2 = 0 andQy4 =0

we getgs1 = g13 = 0. Moreover we gefiop = go2 = 0 from Q31 = 0 andQ3 = 0, respectively.
Then we can expresgs from Qa4 = 0, go» from Q33 = 0, g11 from Qu2 = 0 andggg from
Q11=0w.l.o.g.. Then the equatid@go = 0 remains, which is a homogeneous quartic equation
in foo and f11. This equation can be solved w.l.o.g. féyp. This yields a spherical focal
mechanism wher® andZ are spherical isograms (items 1 and 2 of Theorem 3.5).

2. % is a spherical isogram an@ not: Forcgyp = Cy2 = dg2 = Cpo = 0 the equation®s4 = 0,
Qa2 =0 andQz4 = 0 imply g31 = g13 = 933 = 0, a contradiction.

For the second possibilitggo = Cog = dpg = Coo = 0 we getgz; = 0 from Q44 = 0. Moreover
we can comput@zz from Qa4 = 0, gp» from Qs3 = 0, g11 from Q,, = 0, goo from Qz; = 0 and
013 from Q24 = 0 w.l.0.g.. Then we distinguish 2 cases:

a. foo = 0: The remaining two equatior@; s = 0 andQ11 = 0 imply go2 = goo = O (item 1 of
Theorem 3.5).
b. foo # 0: Qo2 = 0 andQgp = 0 imply go2 = goo = 0. ThenQ13 cannot vanish w.c..

3. Zis a spherical isogram art not: This can be done analogously to 2.

4. ¥ and 2 are no spherical isograms: For the cases
doo = Co0=0o2 =Coo=0, Cp2=Co0= o2 =0p2=0,

we immediately get a contradiction @4 = 0, Q42 = 0 andQ»4 = 0 imply g31 = g13 = g33=0.
For the third casélyg = dyg = Cp2 = Coo = 0 we distinguish two cases:

a. foo=0: Now we getoo = go2 = g11 = 920 = 0 from Q31 = 0, Q22 =0, Q13 = 0 andQy1 = 0.
The remaining four equations can be solveddgy; gs1, 922, andg;z w.l.0.g.. This yields a
special spherical focal mechanism (item 2 of Theorem 3.5).

b. foo # 0: Due toQ2o = 0, Qo2 = 0 andQpo = O we getgzo = o2 = Joo = 0. ThenQz; = 0,

Q13=0andQ1; =0 imply g31 = g13 = g11 = 0. MoreoverQ4, =0, Qx4 =0 andQ,, =0
can only vanish w.c. fogy, = oo = dg2 = 0. Now Q44 andQ33 cannot vanish w.c..

3.5.2 Semispecial cases

The meaning of semispecial cases is the same one as giventiofe 4. We distinguish the
following cases:

1. In the first part we sedog = Ac anddyg = Ac with A € R\ {0} andcyocy # 0. For the
following 4 cases we can assunfig # 0 w.l.0.g. because fofgg = 0 the equatiorQyo = 0
cannot vanish w.c..
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a. Cop = Co2 = 0: We getggo = go2 = 0 from Qg2 = 0 andQqg = 0, respectively. Moreover we
can computazs from Qasa = 0, 931 from Qa2 = 0, g2z from Q33 = 0, 2o from Q31 =0, 913
from Qu4 = 0 andg; 1 from Q22 = 0. ThenQy can only vanish w.c. fofpo = —Acy1 f11/d11.
Then the remaining two equations can only vanish w.cdfer= dyo = 0. This corresponds
to a special spherical focal mechanism (item 2 of Theorem 3.5

b. dy» = dp2 = 0: This case can be done analogously. Finally in this casestvihg conditions
Coo = Co2 = 0.

C. Coo = dp2 = 0: We getgiz = 0 from Q24 = 0 andgpz = 0 from Qo2 = 0. Moreover we
can computegsz from Qa4 = 0, g31 from Qo = 0, g2 from Q33 =0, gy from Q3 =0
and O11 from Q22 =0. Theano =0 anono =0 imply foo = —Acllfll/dll and Joo =
—Ad1165,C3,/ (11 f11), respectively. Finally one equation remainch,c2; — o202, = 0.
This also yields a special spherical focal mechanism (iteshTheorem 3.5).

d. dy2 = cp2 = 0: This case can be done analogously. Finally in this casendeip with the
equationAdyc3; — Cood?; = 0.

2. For the second semispecial catg = Bcyy, doz = Bcyo with B € R\ {0} andcpoCoz # 0 we
refer to analogy.

3.5.3 General case

Wlog we can setlpg = Acyg, thg = ACyy, doo = By anddgy = Beyg with ABeR \ {0} We
can computass from Qa4 = 0, gz1 from Q42 = 0, g22 from Q33 = 0, gzo from Qz; = 0, g13 from
Q24 = 0 andg;1 from Qo2 = 0. As for fog = 0 the equatiorQ,p = 0 cannot vanish w.c. we can
assumefgg = 0. Therefore we can expregs, from Qg2 = 0 andgpg from Qo = 0 w.l.0.g.. Then
Q20 = 0 implies foo = —Ac1f11/d11. Finally one equation remains, namelBc, — d?, = 0,
which indicates a special spherical focal mechanism (iteshTheorem 3.5).

3.5.4 Excluded cases

Now we discuss the cagg, = cg» = 0. The equation§44 = 0 andQy4 = 0 imply gzz3 = g13=0.
Then the equation®33 = 0 andQ13 = 0 yield g2» = go2 = 0. Moreover we can assunsgydy, # 0
because otherwis®,, = 0 yieldsgs; = 0, a contradiction. Therefore the equatidpg = 0 and
Qo2 =0 imply dyo = cgo = 0 (= ¥ is a spherical isogram). We proceed by expresgiigrom
Qa2 =0, g2o from Q31 = 0 andgy; from Q22 = 0. Then we distinguish two cases:

1. fgo = 0: In this case the remaining two equations can only vanishfar gog = dpo = 0. This
yields a spherical focal mechanism whefds a spherical isogram (items 1 and 2 of Theorem
3.5).

2. foo# 0: ThenQpo= 0 impliesggo = 0 and fromQ;1 = 0 we getdy, = 0. Finally a homogeneous
guadratic equation itigg, f11 remains which can be solved fdgo w.l.0.g.. This also yields a
spherical focal mechanism whegeis a spherical isogram (items 1 and 2 of Theorem 3.5).

For the discussion of the second excluded ahse- d,g = 0 we refer to analogy.
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3.6 Second asymmetric reducible composition

Computation 0fQ44 = 0 andQ4o = 0 shows thaty,dg, — d22Co0 = 0 andWs = 0, respectively,
must hold. First of all we discuss the special cases; i.easés wherey,dy, — droCop = 0 and
Ws = 0 hold due to the vanishing of sonsg’s andd;;’s.

3.6.1 Special cases
It can easily be seen that there only exists two possibleiapeases:
1. dyp = dgo = 0: In this case&,4 cannot vanish w.c..

2. dg2 = Cgp = Cp0 = 0: AgainQ,4 = 0 yields the contradiction.

3.6.2 Semispecial cases

Here the term semispecial is used for those cases yietdig, — d>ocoo = W5 = 0, where only

two variables out of the se{tcij ,dij} are equal to zero. In this asymmetric case there is only one
possible semispecial case, namealy; := Acyp, dzp := Atz andcgy = coo = 0 with A€ R\ {0}
andcyoCz # 0. W.l.0.g. we can compuig, from Qa2 = 0 andg 3 from Q24 = 0. In the following

we distinguish two cases:

1. foo=0: ThenQi3 =0 andQ;1 = 0 imply go2 = goo = 0. Now we can computgyo from
Qa0 =0 andg;; from Qz2 = 0 w.l.0.g.. Moreover we gefog = —di1f11/(Ac1) from Qzz = 0.
Finally, the remaining two equations can only vanish w.c.dgy = dyxo = 0. This yields a
special casel = 0) of the later given Theorem 3.6.

2. foo# 0: Qo2 = Qoo = 0 imply go2 = goo = 0. ThenQ;3 cannot vanish w.c..

3.6.3 General case

Due to the last two subsections we can®gt= Adyy, Cro := Adby, Co2 := Bdhy andcyg := Bdyo
with A,B € R\ {0} anddp,d22 # 0. W.l.0.g. we can compui@; from Q2 = 0, g2o from Q40 =0
and g3 from Q4 = 0. ThenQs3 can only vanish w.c. forfag = —Adi1f11/c11. Moreover we
can expresgp, from Qi3 = 0. Now Qpz = 0 implies foo = —Bd1f11/c11 and fromQq, = 0 we
can computay;; w.l.0.g.. ThenQq1 = 0 yieldsgoo = 0 andQz; andQgo can only vanish w.c. for
W5 = 0. It can easily be seen thdg and the last remaining expressi@ag can only vanish w.c.
for dog = dyo = 0. This yields a new reducible composition (cf. Theorem.3.6)

3.6.4 Excluded cases

The case,, = g2 = 0 does not yield a solution &4 cannot vanish w.c.. Therefore we consider
the other excluded cask, = dpp = 0. Now Q42 = 0 impliesgpo = 0. ThenQz3 cannot vanish
w.c.. End of all cases.

We sum up the results of Section 3.5, Section 3.6 and the d@agpmph of Section 3.4.2 into the
following theorem:



Reducible compositions of spherical four-bar linkageswaispherical coupler component 38

Theorem 3.6. Beside special cases of the isogram type and focal type afr@ime3.5 there exists
one special asymmetric reducible composition with a sghéigoupler component, namely the
following:

C20 := Az, C22 := Aty Co2 := Btha, Coo = Bz, doo = 020 = 0, do2022 # O resp. @z := Acz,
dos := ACyy, tog := BGyy, dyg := BCyg, Coo = Co2 = 0, CraC22 75 OwithAe R \ {0} and Be R.

3.7 Conclusion and final remarks

The results of this article are summed up in the followingodary:

Corollary 3.1. If a reducible composition of two spherical four-bar linlkeggwith a spherical
coupler component is given, then it is one of the followingesaor a special case of them, respec-
tively:

a. One of the following four cases hold:
Coo=C2=0, ,doo=022=0, C=Co2=0, dxo=0o2=0,
b. The following algebraic conditions hold farc R\ {0}:
CooC20=Adootoz,  C22Coz = Ao,  Cf; —4(CooCaz+ C20C02) = A[0F1 — 4(dootaz+ dzo0lo2)],
c. One of the following two cases hold:
C22 = Coz = oo =0do2 =0, dz2 =20 = Coo = C20=0,

d. One of the following two cases hold foARR \ {0} and B R:

* Co0 1= Albz, C22:=Adpp, Coz:=Bth2, Coo:= Bdyz, doo = dzo =0, do20z2 # O,

* oz 1= ACpo, T2 1= ACz, tpo:=Bez2, doo:= B, Coo= Co2 =10, C20C22 # 0.

A comparison of Corollary 3.1 with the known examples of m@ble compositions with a
spherical coupler component given in Subsection 3.1.2 shibat we have found 3 new cases;
namely items a, ¢ and d of Corollary 3.1. The determinaticth ggometric interpretation of the
corresponding flexible 2 3 complexes implied by these new cases of reducible coniposiis
dedicated to future research.

We close the paper with the following concluding remarks:

e Note that the spherical coupler components of the givenaibiucompositions must not cor-
respond to real spherical four-bars. For example, the gatidour-bars given by

a1 = 3%, B =26, vi = 415°, 5 =58, (3.17)
ap = 1584394, B, = 137.3509, Vo = 284922 & =53270F, (3.18)
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form a spherical focal mechanism, but it shows up that bolttespal coupler components
andG do not correspond with real spherical four-bar linkages.

Moreover it should be noted that an example of a sphericall fmechanism where both com-
ponents= andG correspond with real spherical four-bar linkages is givefv]. Clearly, there
also exist spherical focal mechanisms where only one ofdhgoonentd- andG corresponds
with a real spherical four-bar linkage, like the followingaenple given by:

ap = 424420, B, =60, Vo = 34.9019, & =42,

anda,,...,0; of Eq. (3.17). Now one component corresponds with the fahgwspherical
four-bar linkage:

o3 =59.9608, Bs = 522807, ys = 37.0987, 03 =821748.

e Moreover, it was shown by the author in [5] that a second pdigiis hidden in the algebraic
characterization of the spherical focal mechanisms (cf(E42)) beside the one given in [7]. It
can easily be seen that tegmmetridype (cf. Subsection 3.1.2) is a special case of this second
focaltype.

e Clearly, theisogonaltype given in Subsection 3.1.2 is a special case ofgbgramtype (item
a of Corollary 3.1) but also of thiecal type (item b of Corollary 3.1).

e Beside the compositions given in Subsection 3.1.2 alsotti@gonaltype [3] is known which
is as follows: Two orthogonal four-bars are combined sudt they have one diagonal in
common (see Fig. 5a of [3]), i.e. undep = B; and &, = —d1, hencelzg = ;9. Then the
4-4-correspondence betwe&pandB; is the square of a 2-2-correspondence of the form

Sp1t?ts + Spotits + Syt + Soatz = 0

(cf. [3]) and therefore this component cannot produce astrassion which equals that of a
single spherical coupler. As already mentioned in Sectidn&paper on such reducible com-
positions without a spherical coupler component is in pragian. At this point it should only
be noted that the giveorthogonaltype can be generalized as follovdp : = Ay, dop ;= A2,
dy2 ;= By, doz := Bgg with A/ B € R and% being an orthogonal coupler.

e Finally it should be noted that also the transmission fumctf a planar four-bar mechanism
can be written in the form of Eq. (3.1). Therefore also théofeing statement holds (see also

[5]):

Corollary 3.2. If a reducible composition of two planar four-bar linkageghnaligned frame links
is given and the transmission equals that of a single plaoar-bar mechanism (i.e. a planar
coupler component), then one of the algebraic conditioreradterizing the four items a-d of
Corollary 3.1 is fulfilled.

5General results on conditions guaranteeing real fourtbas not yet been found.
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Chapter 4

Flexible octahedra in the projective
extension of the Euclidean 3-space

Abstract In this paper we complete the classification of flexible oethah in the projective
extension of the Euclidean 3-space. If all vertices areieah points then we get the
well known Bricard octahedra. All flexible octahedra witheovertex on the plane at
infinity were already determined by the author in the contésielf-motions of TSSM
manipulators with two parallel rotary axes. Therefore weanly interested in those
cases where at least two vertices are ideal points. Our agipiis based on Kokotsakis
meshes and reducible compositions of two four-bar linkages

Keywords Flexible octahedra, Kokotsakis meshes, Bricard octahedra

4.1 Introduction

A polyhedron is said to be flexible if its spatial shape canhmnged continuously due to changes
of its dihedral angles only, i.e. every face remains congfrtmitself during the flex.

4.1.1 Review

In 1897 R. BRICARD [5] proved that there are three types of flexible octahédnethe Euclidean
3-spaceES. These so-calleBricard octahedraare as follows:

type 1 All three pairs of opposite vertices are symmetrihwwéspect to a common line.

type 2 Two pairs of opposite vertices are symmetric witheesf a common plane which passes
through the remaining two vertices.

type 3 For a detailed discussion of this type we refer to [22&. only want to mention that these
flexible octahedra possess two flat poses.

INo face degenerates into a line and no two neighboring fameside permanently during the flex.

41
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() (b)

Figure 4.1: AKokotsakis mesfs a polyhedral structure consisting ohasided central polygon
¥, € E3 surrounded by a belt of polygons in the following way: Eaatesi of 3 is shared by an
adjacent polygorz;, and the relative motion between cyclically consecutivigimaor polygons is
a spherical coupler motion. Here tKekotsakismesh forn = 3 which determines an octahedron
is given. ¢;, xi andy; denote the angles enclosed by neighboring faces.

Due toCauchy’s theorenB] all three types are non-convex, but they have even sédfsections.

As |I.K. SaBITOoV [20] proved theBellows Conjectureevery flexible polyhedron i&2 keeps
also its volume constant during the flex. Especially Boicard octahedrait was shown by R.
CONNELLY [9] that all three types have a vanishing volume. RNBIELLY [10] also constructed
the first flexible polygonal embedding of the 2-sphere Bfo A simplified flexing sphere was
presented by K. 8EFFEN[26]. Note that both flexing spheres are compoundBrafard octahe-
dra.

R. ALEXANDER [1] has shown that every flexible polyhedronEs preserves its total mean
curvature during the flex (see also A#[19, p. 264]). Recently V. AEXANDROV [2] showed
that theDehn invariantg(cf. [12]) of anyBricard octahedrorremain constant during the flex and
that theStrong Bellows Conjecturf. [11]) holds true for theSteffen polyhedran

H. STACHEL [24] proved that alBricard octahedraare also flexible in the hyperbolic 3-space.
Moreover H. SACHEL [22] presented flexible cross-polytopes of the Euclideapdece.

4.1.2 Related work and overview

As already mentioned all types of flexible octahedr& fwere firstly classified by R. BICARD
[5]. His proof presented in [6] is based on properties aftraphoidal spatial cubic curve. In
1978 R. ®NNELLY [9] sketched a further algebraic method for the determamadif all flexible
octahedra irE3. H. STACHEL [21] presented a new proof which uses mainly arguments from
projective geometry beside the conversdvofy’s Theoremwhich limits this approach to flexible
octahedra with finite vertices.

A. KoKOTSAKIS [14] discussed the flexible octahedra as special cases at afsmeshes
named after him (see Fig. 4.1). As recognized by the authfit8hKokotsakis very short and
elegant proof foBricard octahedrass also valid for type 3 in the projective extensigh of E? if
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no two opposite vertices are ideal points. HABHEL [23] also proved the existence of flexible
octahedra of type 3 with one vertex at infinity and presenkeair tconstruction. Moreover the
author determined in [18] all flexible octahedra where omgexds an ideal point.

Up to recent, there are no proofs for Bricard’s famous statérknown to the author which
enclose the projective extension®t although these flexible structures attracted many prorinen
mathematicians; e.g.; G.T.HBINETT [3], W. BLASCHKE [4], O. BOTTEMA [7], H. LEBESGUE
[13] and W. WUNDERLICH [27]. The presented article together with [18] closes thig.g

Our approach is based on a kinematic analysi&aiotsakis meshess the composition of
spherical coupler motions given by HT&HEL [25], which is repeated in more detail in Section
4.2. In Section 4.3 we determine all flexible octahedra wherpair of opposite vertices are ideal
points. The remaining special cases are treated in Secdon 4

4.2 Notation and related results

We inspect &okotsakis mesfor n = 3 (see Fig. 4.1). If we intersect the planes adjacent to the
vertexV; with a spheres’ centered at this point, the relative motigyyZ; 1 (mod 3) is a spherical
coupler motion.

4.2.1 Transmission by a spherical four-bar mechanism

We start with the analysis of the first spherical four-bakdige4 with the frame linkl1gl2o and
the couplerA;B; according to H. $SACHEL [25] (see Fig. 4.1 and 4.2).

We seta := I10A; for the spherical length of the driving ari; := 1,0B; for the output arm,
v1 := A1B1 anddy = T1glo0. We may suppose @ ay, Br, V1,01 < TT.

The coupler motion remains unchanged wheiis replaced by its antipod&; and at the same
time a; and y; are substituted byr— a; and m— i, respectively. The same holds for the other
vertices. Whenyg is replaced by its antipodeg, then also the sense of orientation changes, when
the rotation of the driving baroA; is inspected from outside & either atl1g or atl 0.

We use a cartesian coordinate frame wlith on the positivex-axis andliglyg in the xy-
plane such thalyg has a positivey-coordinate (see Fig. 4.2). The input angle is measured
betweenlglog and the driving armpA; in mathematically positive sense. The output angle
$2 = I 110l20B1 is the oriented exterior angle at vertiey. As given in [25] the constant spherical
lengthy; of the coupler implies the following equation

Cootft5 + Cootf + Coots + Caatatr + Coo = O (4.1)
with t; = tan(¢;i /2), 11 = 4sa1 801 # 0,

Coo= N1 —Ki1+L1+Mz, Co2=Np+Ki+Li—My,

(4.2)
Co0=N1—Ki—L1 =Mz, Coo=N;+Ky—L1+My,

Ki=ca1sBisd, Li=saicfisd, Mi=saisBicd, Ni=caicBicd—cy. (4.3)

In this equation s and c are abbreviations for the sine anithe&dsnction, respectively, and the
spherical lengthsr1, B1 andd; are signed.
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Figure 4.2: Composition of the two spherical four-bagA1B1lo0 andlopA2B:130 with spherical
side lengthsyi, B, Vi, &, i = 1,2 (Courtesy of H. Stachel).

Note that the biquadratic equation Eq. (4.1) describ@s2acorrespondencbetween points
A; on the circlea; = (l10;01) and By on by = (l20;81) (see Fig. 4.2). Moreover, this 2-2-
correspondence only depends on the ratio of the coefficoapts - - : cog (cf. Lemma 1 of [16]).

4.2.2 Composition of two spherical four-bar linkages

Now we use the output angll of the first four-bar linkages” as input angle of a second four-
bar linkage2 with verticesl,pA:Bsl30 and consecutive spherical side lengths y», B, and &,
(Fig. 4.2). The two frame links are assumed in aligned pmsitin the case< l1gl2ol30 = 1 the
spherical lengthd, is positive, otherwise negative. Analogously, a negativexpresses the fact
that the aligned baisgB;1 andl,pA; are pointing to opposite sides. Changing the sigf.aheans
replacing the output angl@s by ¢3 — . The sign ofy, has no influence on the transmission and
therefore we can assume without loss of generality (w.)at@ty, > 0 holds.

Due to (4.1) the transmission between the angles, and the output angl¢s of the second
four-bar withts := tan(¢3/2) can be expressed by the two biquadratic equations

Coat?t5 + Coot? + Cootd + Cratato + Coo = 0, Opot3t] + oots + dloots + daatotz + doo = 0. (4.4)

Thedi are defined by equations analogue to Egs. (4.2) and (4.3).

The author already determined in [17] all cases where tlaioal between the input angia
of the arml10A; and the output anglés of 139B; is reducible and where additionally at least one of
these components produces a transmission which equalsf thatngle spherical four-bar linkage
Z% (= spherical quadrangligl,oBzAs). These so-called reducible compositions with a spherical
coupler component can be summarized as follows (cf. Theéramd 6 of [17]):

Theorem 4.1. If a reducible composition of two spherical four-bar linlesgwith a spherical
coupler component is given, then it is one of the followingesa
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(a) One spherical coupler is a spherical isogram which haypé one of the following four
cases:
Coo = C22 =0, dgo =2 =10, Cz0=Co2 =0, dzo=dp2=0,

(b) the spherical couplers are forming a spherical focal hedsm which is analytically given
for F € R\ {0} by:

CooC20 = Fdoodoz,  C22Co2 = F 220k,

2 (4.5)
41 — 4(CooCaz + C20C02) = F[d; — 4(dootlzz + d0d02)],

(C) G2 = Coz = doo = do2 = O resp. @2 = dzo = Coo = C20 =0,

(d) oo = Adnz, G2 = Adg2, Co2 = Bp2, Coo = B2, oo = 2o = O, do2022 # O resp. @2 = Acy,
doo = ACyy, tog = BGyp, dog = BCo, Cog = Co2 = 0, CooCo2 75 Owith Ae R \ {0} and Be R.

4.2.3 Geometric aspects of Theorem 4.1

Spherical isogram: Now we point out the geometric difference between the tweespal iso-
grams given bytgg = €22 = 0 andcyg = Cg2 = 0, respectively.

() 1t was already shown in [25] thatp = 2 = 0 is equivalent with the condition® = a; and
& = y1 which determines a spherical isogram.

(ii) cpo= Co2 = 0 is equivalent with the condition®, = m— a; andd; = m— y (cf. [17]). Note
that the couplers of both isograms have the same movemeatsmave get item (ii) by
replacing eithetyg or lyg of item (i) by its antipode.

Moreover it should be noted that the cosines of oppositeeariglthe spherical isograms (of both
types) are equal (cf. 88 of [14]).

Spherical focal mechanism:Here also two cases can be distinguished:

() In [16] it was shown that the characterization of the gjda focal mechanism given in
Theorem 4.1 is equivalent with the condition

Sa1Sy: - $B1SO1 - (CaiCyr —CP1CO) = SPB2SYe 1 SA250; - (Ca2Cd — CP2CYs).

Moreover it should be noted that in this case always-€ —cy» holds withx; = < 110A1B1
andy, =  I30B2A2.

(i) But in the algebraic characterization of the spheriiwalal mechanism (4.5) also a second
possibility is hidden, namely:

Sa1Sy: - $B1SO1 - (CaiCyr —CP1CO) = SPB2SYe 1 SA250; - (CB2CY2 — CA2CHy).

In this case always)a = cy» holds. Note that we get this case from the first one by repdacin
eitherlzg or I by its antipode.
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4.3 The general case of flexible octahedra iIB*

In this section we assume that no pair of opposite verticeseobctahedron are ideal points. As
a consequence there exists at least one face of the octahetise all three vertices are E?.
This face corresponds & in Fig. 4.1. Now theKokotsakis mesfor n = 3 is flexible if and only

if the transmission of the composition of the two sphericairfbar linkages” and Z equals that
of a single spherical four-bar linkagg with I,g = l30.

It was shown in [18] that the items (c) and (d) of Theorem 4.lvall as the spherical focal
mechanism of type (i) do not yield a solution for this problelhoreover it should be noted that
the composition of two spherical isograms of any type alsm$oa spherical focal mechanism as
Eqg. (4.5) holds, and then the spherical four-bar linkégyalso has to be a spherical isogram. This
implies the following necessary conditions already giveflB8]:

Lemma 4.1. If an octahedron in the projective extension of iE flexible where no two opposite
vertices are ideal points, then its spherical image is a cositppn of spherical four-bar linkages
¢, 2 andZ of the following type:

1. ¥ and 2, ¥ andZ as well asZ and % are forming a spherical focal mechanism of type (ii),
2. ¥ and Z are forming a spherical focal mechanism of type (ii) adds a spherical isogram,

3. ¥, ¥ and hence als®7 are spherical isograms.

4.3.1 Flexible octahedra of type 3 with vertices at infinity

In contrast to the proof for type 1 and type 2 AoKoTsAKIS showed without any limiting
argumentation with respect " that the third case of Lemma 4.1 corresponds withBheard
octahedronof type 3 if no two opposite vertices are ideal points. Themrethe following angle
conditions given in [14] also have to hold in our case:

Gd=V, =0, &®+typ=m a+L=m for i=12, (4.6)

where the angles are denoted according to Fig. 4.1(b)Bfer, = rmandfB; + az = rrtwo of the
remaining 3 vertices are ideal points. These conditioreadly imply; + a1 = T and therefore
also the third remaining vertex has to be an ideal point. ege all three vertices are collinear
which follows directly from the existence of the two flat pss&his already yields a contradiction
(cf. footnote 1). Together with Theorem 2 of [18] this protles following statement:

Theorem 4.2. A flexible octahedron of type 3 with one finite face can havenmme than one
vertex at infinity.

Remarkd.1 For the construction of these flexible octahedra see tACBEL [23]. o

4.3.2 Flexible octahedra with a face or an edge at infinity

We can even generalize the observation that if three vertice ideal points then they have to be
collinear in order to get a flexible structure:
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(b)

Figure 4.3: Both figures can be seen as a parallel projecfiarspatial structure but on the other
hand also as a planar configuration, because such strutiasde possess two flat poses.

Theorem 4.3. In the projective extension of*Ehere do not exist flexible octahedra where one
face is at infinity if the other 3 vertices are finite.

Proof: Given are the finite verticég, V,, V3 and the three ideal points;,U,, U3 (see Fig. 4.3(a)).
W.l.0.g. we can assume that the fadg U,,Us] is fixed. SincgU1,U,,Us] is a face of the octahe-
dron, also the direction &f is fixed.

Now the pointd/, andVs have to move on circles about their footpoiRtsandF; with respect
to [V1,Us] and[Vy,U,], respectively. Note the,,V,,Vs, F; can also be seen as an RSSR mecha-
nism (cf. [15]) with intersecting rotary axesVi. We split up the vectov,V3 in a componenti in
directionU; and in a component orthogonal to it. Now the octahedron isdllexf the length of
the component is constant during the RSSR motion. It can easily be seerathalherical motion
of [V, V3] with centerV; and this distance property can only be a composition of diootabout
a parallel to)V,, V3] throughV; and a rotation aboy¥/,U;].

Then we consider one of the two possible configurations wkigné,V3,U; are coplanar.
Due to our considerations the velocity vectorsvefandVs with respect to the fixed system are
orthogonal to this plane as they can only be a linear comibimatf the velocity vectors implied
by the rotation aboujvi,U;] or about a parallel t§v, V5] throughV;. In order to guarantee that
these vectors are tangent to the circles of the RSSR meahattie two rotary axes also have to
lie within the plané/y,V,,V3,U;. Therefored;,U,,U3 are collinear and this again contradicts the
definition of an octahedron. O

Moreover we can also prove the following theorem:

Theorem 4.4. In the projective extension of*Bhere do not exist flexible octahedra with a finite
face and one edge at infinity.

Proof: We assume thaty,...,V, are finite and that,,Us are ideal points. We consider again
V1,U»,U3 as the fixed system. Now we split up the octahedron into twespam a mechanism
which consists o¥1,U»,V3,V4 and in one which is determined by, V>,U3,V, (see Fig. 4.3(b)).
Note that both mechanisms have the kinematic structure efial R chain.
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We consider the configuration where the 2R chéirlJ,,V3,V, is singular, i.e. these four
points are coplanar where the carrier plane is denotegd bjow this mechanism can only induce
a velocity toV, which is orthogonal t&. The other 2R chain also implies a velocityMpand its
direction is orthogonal ttJ3. In order to guarantee that the directions of the two velegiinV,
are fitting together (which is a necessary condition for tbilfiility) the pointUs has to be located
in €. Therefore the pointg;,U,,Us, V3, V, are withine which equals the plane of the fixed system.

In the following we show that also the poivi has to lie in¢ if the octahedron is of type 1 or
type 2, respectively:

type 1 In this case the spherical image of the motion trarsonifrom2; to 2, viaVz andVs is a
spherical focal mechanism of type (ii). Therefore the ctiadicy, = cys (see Fig. 4.3(b))
holds which implies that also the other 2R chain has to be inguar configuration.

type 2 We have to distinguish three subcases depending eeittigesV; (i = 1,2, 3) in which the
spherical image of the motion transmission correspondssfiharical isogram:

e i = 1: Now the spherical image of the motion transmission fé&onmo %, via V3 andV,
is a spherical focal mechanism of type (ii) which equals theva discussed case.

e i = 3: Now the spherical image of the motion transmission féono 23 via vV, andV,
is a spherical focal mechanism of type (ii) which implieg e= cy». As x1 equals 0 or
rrthis already yields that all 6 vertices are coplanar.

e i = 2: This case can be done analogously as the above one if wevittaia singular
configuration of the 2R chaivi,V»,U3z,Va.

Moreover, as there always exist two singular configuratioing 2R chain, a flexible octahedron
where one edge is an ideal line has to have two flat poses.

In order to admit two flat poses, eith®f has to be an ideal point (cf. Theorem 4.3) or
V>,U>,V3,Us have to be located on a line which again yields a contradici®J, coincides with
Us. This already finishes the proof. O

Remark4.2. The two geometric/kinematic proofs of Theorem 4.3 and 4matestrate the power
of geometry in the context of flexibility because purely dligeéc proofs for these statements seem
to be a complicated task. o

4.4 Special cases of flexible octahedra &*

In the first part of this section we determine all flexible betdra with at least three vertices on
the plane at infinity. These so called trivial flexible octditzeare the content of the next theorem:

Theorem 4.5. In the projective extension offfany octahedron is flexible where at least two edges
are ideal lines but no face coincides with the plane at infinit

Proof: Under consideration of footnote 1 there are only two typescaibhedra fulfilling the
requirements of this theorem. These two types are as fallows
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Vi
Vo
V3
Vy
Vs
Vi
Vo
Ve
Vy
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(@) (b)

Figure 4.4: The degenerated flexible octahedra of type (@@ had-parametric self-motion in
contrast to those of type (b) which possess a constrained one

a. two pairs of opposite vertices are ideal points,

b. three vertices are ideal points where two of them are dfgposes.

It can immediately be seen from Fig. 4.4(a) and (b), thatahe® degenerated cases are flexible.
A detailed proof is left to the reader. O

Due to the Theorems 4.3, 4.4 and 4.5 the only open probleneigétermination of all flexible
octahedra where only one pair of opposite vertices are jol@ats. For the discussion of these
octahedra we need some additional considerations whighrepared in the next two subsections.

4.4.1 Central triangles with one ideal point

Given is an octahedron where two opposite vertices are ju@ats and the remaining four ver-
tices are inE3. The four faces through an ideal point built a 4-sided prishese the motion
transmission between opposite faces equals the one of thesponding planar four-bar mecha-
nism (orthogonal cross section of the prism). It can eaglgéden that the input anglg and the
output anglep, of a planar four-bar linkage (see Fig. 4.5) are related by:

P22t + Paots + pozts + puititz + Poo =0 4.7)
with t; := tan(¢;/2), p11 = —8aband

p22=(a—b+c+d)(a-b—c+d), ppo=(at+b+c+d)(a+b—c+d),

(4.8)
Poz= (@+b+c—d)(@a+b—c—d), poo=(a—b+c—d)jla-b—c—d).

W.l.o.g. we can assumeeb, c,d > 0. Moreover in [18] the following lemma was proven:
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Figure 4.5: Planar four-bar mechanism with driving anfollower b, couplerc and basel.

Lemma 4.2. If a reducible composition of one planar and one sphericak{foar linkage with a
spherical coupler component is given, then one of the alijetmonditions characterizing the four
cases of Theorem 4.1 is fulfilled.

A closer study of the items (a)-(d) of Theorem 4.1 with respet.emma 4.2 was also done in
[18], where we assumed thét denotes the ideal point. In the following we sum up the aadev
results:

ad (a) The conditionsgg = C» = 0 imply a= b andc = d, i.e. the planar four-bar mechanism
is a parallelogram or an antiparallelogram. Note that op@@sgles in the parallelogram
and in the antiparallelogram are equal.

In contrast,cyg = Co2 = 0 has no solution under the assumpti&b, c,d > 0.

ad (b) In this case we only get a solution if the relation
2ac: 2bd: (a® —b?+c? — d?) =SB, Sy, : SA253; : (CBaCys — CA2CHy)
holds. Moreover this condition implie(¢ = c».

ad (¢c) The casdy, = dyg = Cog = Cp0 = 0 does not yield a solution becausg = c,g = 0 cannot
be fulfilled fora,b,c,d > 0.
The other caséyg = dp2 = €2 = cg2 = 0 implies @1 = cy and ¢ = c¢3 or as second
possibility ap; = cyn andVs, Vs, Vs, Vg are coplanar.

ad (d) The casey = Adp, Cr2 = Adha, Co2 = Bha, Coo = By, dop = doo = 0, do2d2 # 0 does
not yield a solution.
The other caseélp, = Acy, tho = AG2, Uxo = BC2, dog = B0, Cop = Co2 = 0, C20C22 # 0

implies the relations ¢, = cx1 and @; = cxs.
4.4.2 Preparatory lemmata

In order to give the proof of the main theorem in the Secti@gn3lin a compact form we prove the
following two preparatory lemmata:

Lemma 4.3. A planar base polygon of a 4-sided pri$nemains planar during the flex if and only
if one of the following cases hold:

2We exclude those prisms where always two pairs of neighgaides coincide during the flex, as they are not of
interest for the problem under consideration (cf. footrigte
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Figure 4.6. Perspective view of an orthogonal cross sedafothe prism & four-bar linkage
a,b,c,d) and of its four coplanar vertice#,,V,,Vs,Vs. Note that the dihedral angles along the
prism edges are denoted by;. Moreover the face angles of the prism\atare denoted by;
andA;, respectively.

1. The edges of the prism are orthogonal to the planar base,

2. the planar quadrilateral is a deltoid and the edges aréhogonal to the deltoid’s line of sym-
metry,

3. the planar quadrilateral is an antiparallelogram and g$éane of symmetry is parallel to the
edges of the prism,

4. the planar quadrilateral is a parallelogram.

Proof: We consider the orthogonal cross section of a prism whiclm isrdinary four-bar mech-
anism as given in Fig. 4.5. We denote withindl the shortest and longest bar, respectively, and
with p andq the length of the remaining bars. As item 1 is trivial we assuhat the edges of
the prism are not orthogonal to the planar base. For the ustation of the following case study
please see Fig. 4.6:

1. s+1 < p+0q: Due toGrashof’s theoremve get a double-crank mechanism if we fix the shortest
bars. Considering all four poses where the sides coincide wighfthme link already imply
the contradiction.

2. s+1 > p+q: If we fix any of the four bars we always get a double-rocker na@ism. W.l.0.g.
we can assume thdtis the longest bar. As a consequence the following inegesitold:

d+a>b+c and d+b>a+c (4.9)

Therefore there exists a configuration where the edggs,es are coplanartfy =0 = e is
betweere; ande;). This implies that the pointg;, V., V5 have to be collinear which is the case
if A1 = up andAs = L hold. The analogous consideration for the edgesy, e, yield A» = »
and}\l = Ha.

Now A1 = g, A2 = Up and the coplanarity condition &f,V>,Va,Vs yield thatt; = 0 implies
7, = 0. Therefore there exists a flat pose which contradicts @uraptions+1 > p+q.
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Figure 4.7: Special poses of the four-bar linkage-6, s= 1, p= 2, q= 4) wherel ands are
neighboring bars.

@

Figure 4.8: Special poses of the four-bar linkage-6, s= 1, p= 2, g = 4) wherel ands are
opposite bars.

3. s+ = p+q: Here we assume that the prism only has one flat position.idrctse we have to
distinguish two subcases:

a. | ands are neighboring bars: W.l.o.g. we det d, s=b, p=candg=a. Due to the
inequalities
l+g>s+p and p+qg>1-—s, (4.10)
there exist the following two special poses of the prisnsiftated in Fig. 4.7. These two
poses implyA, = A4, s = Us andAo = Lo, A1 = L, respectively. Together with the copla-
narity condition oiVy,V>, V4, V5 these conditions yield one of the following three cases:
i. V1,V»,V, are always collinear which contradicts footnote 2,
ii. V»,V4,Vs5 are always collinear which contradicts footnote 2,

iii. [V1,Vo] and [Va4,Vs] are parallel. This already yields the contradiction as a-baur
mechanism where two opposite bars are always parallelgitmamotion, can only be
a parallelogram.

b. | andsare opposite bars: W.l.0.g. we $et d, s=c, p=aandg= b. Due to the inequalities
l+p>s+q and |+q>s+p, (4.12)

there exist the following two special poses of the prismsiifated in Fig. 4.8. These two
poses implyA\; = A4, s = Us andA4 = As, L1 = s, respectively. Together with the copla-
narity condition ofV1,V,,V,,Vs these conditions yield one of the following three cases:

i. Vo,V4,V5 are always collinear which contradicts footnote 2,

ii. V1,V4,V5 are always collinear which contradicts footnote 2,

iii. [V1,Vs] and|V,,V,] are parallel. This yields the same contradiction as theesponding
case given above.
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4. s+1 = p+q: Now we assume that the prism has two flat positions. Tdénc,d can only
form a deltoid, a parallelogram or an antiparallelogramr. tRese three cases we show by the
following short computation that the base remains planainduhe flex if and only if item 2,

3 or 4 of Lemma 4.3 holds.
W.l.o.g. we can assume that the prism has z-parallel edgkthaty; coincides with the origin.
Then the remaining points have coordinates:

d d+ bee, acey
Vs, = (o), V= ( bsp, ) Vs = (asd;l), (4.12)
hy hy hs

with a,b,c,d > 0. Therefore beside Eq. (4.7) the coplanarity conditiet(V>,Vs,V,) = 0 has
to hold, which can be written under consideration; of= tan(¢; /2) for i = 1,2 as follows:

aldhy + hy(b— d)]tt2 + aldhy — hy(d -+ bty + b(ah, — dhs)t, — b(ahy + dhs)2t, = 0. (4.13)

Moreover due to footnote 2 we can assume thar t, is not constant zero during the flex. In
the next step we compute the resultRf Eq. (4.7) and Eq. (4.13) with respecttio

e Deltoid: W.l.o.g. we can sea=d andb = c. Moreover we can assune# d because
otherwise we get a rhombus which is discussed later on asabpase of the parallelogram
case. NowR can only vanish without contradiction féins — hy)[qy (c— d)t3 +g2(d +c)] =0
with

g1 = (hz + h5)C—|— (2h4 —hy — h5)d7 02 = (hz + h5)C— (2h4 —hy— h5)d

Therefore we have to distinguish two cases:
* 01 = g2 = 0: This factors can only vanish without contradiction fer= —hs andh; =0
which already yields item 2 of Lemma 4.3.

* hy =hs: Now Eq. (4.7) and Eq. (4.13) have the common fadtpr 0. Then the resultant
of the remaining factors wit respecttpcan only vanish without contradiction (w.c.) for
Gu(c—d)t3 +1,(d +¢) = 0 with

0, = hsc+ (h4 — h5)d, 0, = hsc — (h4 — h5)d

0; =0, = 0 implieshy = hs = 0, a contradiction.
e Parallelogram/antiparallelogram: Now we set b andc = d. ThenR can only vanish w.c.
for (h5 —hg+ hz)[ql(b— d)t% + qZ(b+ d)] = 0 with

G1= (hs —hg—ho)b+ (hp —hs —hs)d, G2 = (hs —hs —hz)b— (h, —hs — hs)d.

Therefore we have to distinguish three cases:

* b=d andd, = 0: This impliesh, = hs. Now Eg. (4.7) and Eq. (4.13) have the common
factor d’t; # 0. Then the resultant of the remaining factors with respett tan only
vanish w.c. folh, = 2h,. Then the common factor of Eq. (4.7) and Eq. (4.13) yiéldst,
which implies a special solution of item 4 of Lemma 4.3.
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* @1 = Go = 0: This two conditions already imply; = 0 andh, = hs. As the common factor
of Eq. (4.7) and Eq. (4.13) equéalgb+ d) — to(b— d) this case yields item 3 of Lemma

4.3.
* hs—hg+hy = 0: If this condition is fulfilled the common factor of Eq. (4.d@nd Eq. (4.13)
equalst; —t, and therefore we get item 4 of Lemma 4.3. O

Lemma 4.4. A planar four-bar mechanism with#t s> p+ q which is no parallelogram or an-
tiparallelogram always has a configuration with parallelnas if | is one of these arms. Moreover
such a four-bar mechanism has also a configuration where tupler is parallel to the base.
These two configurations coincide-(folded pose) if and only if the four-bar linkage is a deltoid.

Proof: For the proof we use the notation of the four-bar mechanism firig. 4.5. Now there are
the following two possibilities such that the ara® are parallel:

1. They are located on the same side with respect to the lese-Thereforeg; = ¢, holds and
the corresponding equation of Eq. (4.7) reads as:

(a—b—c+d)(a—b+c+dtf+(a—b+c—d)(a—b-c—d)=0 (4.14)
As a consequence we get a real solution of the problem if
—(a—b—-c+d)(a—b+c+d)(a—b+c—d)(a—b—c—d)>0 (4.15)
T T
> <

holds2 Therefore we get a solution in one of the following four cases
(i) a+d>b+c and a+c>b+d, (i) a+d=b+c, (4.16)
(i) a+d<b+c and a+c<b+d, (iv) a+c=b+d. (4.17)

Now one of the cases (i) or (ii) is fulfilled if one of the armashb is the longest bar of the
mechanism. Clearly, we can also assume in the special dasasd (iv) w.l.0.g. that one of
the armsa, b is the longest bar of the mechanism. This proves the firstghdine lemma.

2. They are not located on the same side with respect to tleelinesd, henceg, = ¢, + 1. Now
the corresponding equation of Eq. (4.7) reads as:

(a+b—c+d)(a+b+c+d)t?+(a+b—c—d)(at+b+c—d)=0 (4.18)
Therefore we get a real solution of the problem if
—(a+b—-c+d)(a+b+c+d)(a+b—c—d)(a+b+c—d)>0 (4.19)
0 0 >0
> >

holds. As a consequence we get a solutiaa-#fb < c+d holds. As due to case 1, one of the
arms is the longest bar, this is only possible for the speaista+ b = c+ d. But on the other
hand there exists a pose where the coupler and the base alleldar c+d < a+b. Now this
equation is always fulfilled which proves the second parheflemma.

If c+d = a-+ b and condition (iii) or (iv) are fulfilled we get a folded posécan easily be seen
that the solution of the linear system of equations is a @klto O

3Note that(a—b+c+d)(a—b—c—d) = 0 would yield that the mechanism is rigid.
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4.4.3 Main theorem

In this section we give the complete classification of flexibttahedra with two opposite vertices
at infinity.

Theorem 4.6. In the projective extension of¥Eny octahedron, where exactly two opposite ver-
tices(Vs,Vs) are ideal points, is flexible in one of the following cases:

(I) The remaining two pairs of opposite verticd4,V,) and(Vz, V) are symmetric with respect
to a common line as well as the edges of the prisms throggmif \§, respectively.

(1) (i) One pair of opposite verticef/,,Vs) is symmetric with respect to a plane which con-
tains the remaining pair of opposite vertic@#,,V,). Moreover also the edges of the
prisms through Yand \4 are symmetric with respect to this plane.

(i) The remaining 4 vertices \Wa,,V,, V5 are coplanar and form an antiparallelogram
and its plane of symmetry is parallel to the edges of the itimough ¥ and \,
respectively.

(1) This type is characterized by the existence of two flasgs and consists of two prisms
where the orthogonal cross sections are congruent antiflograms. For the construction
of these octahedra see Fig. 4.12.

(IV) The remaining 4 vertices;W>, V4, Vs are coplanar and form

(i) a deltoid and the edges of the prisms throughe¥id \§ are orthogonal to the deltoids
line of symmetry,

(i) a parallelogram.

Proof: For the notation used in this proof we refer to Fig. 4.9. Mesdhe corresponding prisms
through the pointd/3 and Vg are denoted byl; and g, respectively. The faces through the
remaining vertice¥; in E3 always form 4-sided pyramids; fori = 1,2,4,5.

We can stop the discussion of cases if the poi¥-,V,, Vs are permanently coplanar during
the flex because then by Lemma 4.3 we can only get a solutigypef(ll,ii) and (IV) or special
cases of them. The following proof is split into three parts:

1st Part:

In this part we apply the conditions of case (d) of Theoremo#dr the octahedron in such a way
that the corresponding two cosine equalities hold if anyhef 8 faces is considered as central
triangle. Up to the relabeling of vertices this yields thkdiwing case:

Chs=CX2, CP1=CX3, CKz=Cl3, CKy=Cls. (4.20)

If additionally cx» = ck3 holds we get a special case of item (A) of the 3rd part treattet. |

Therefore we can assume w.l.0.g. that the orthogonal cexd®r oflM3 andlMg are deltoids
(and not parallelograms or antiparallelograms). More@@n easily be seen that a flat posélaf
or Mg implies a flat pose of the whole octahedron. Therefore thersgdl image o\, A2, A4, As
are spherical deltoids or isograms.
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Figure 4.9: Schematic sketch of the octahedven..,Vs with dihedral anglesp;, ¢, i, ki, | =
1,2,3.

1. If Ay or A4 are of isogram type theryg = ck1 holds, which already implies that the orthogonal
cross section offl3 andlMg are similar deltoids. Now we distinguish two cases:

a. In the first case we assume that in both flat pd5eg Vs holds. Due to the similarity the
intersection point¥1,V,,V4,Vs of corresponding prism edges are located on a line. As two
such flat poses exist the line can only be orthogonal to thesdfthe prism. Therefore
V1,V»,V4, Vs are coplanar during the flex and we are done due to Lemma 4.3.

b. If in one of the flat pose¥; = Vs holds then the deltoids are congruent. As a consequence
there exists an Euclidean motion such tHatandMg coincides. Moreover we can assume
w.l.0.g. that this is a rotation abo¥, Vs]. Due to the rotational symmetry and the symmetry
of the deltoid the line spanned by the intersection poiatandV, of the other edges has to
intersect the rotational axi¥,,Vs| (see Fig. 4.10(a)). Therefokd,V>,V,,Vs are coplanar
during the flex and we are done due to Lemma 4.3.

2. If Ay and/\4 are of deltoid type thenys, = ck, and g1 = cd, hold. We distinguish two cases:

a. If cyr, = c¢, holds, then\, and A5 are of isogram type. In the flat pos¥s = Vs holds
and we see that the corresponding faces of the pyrafkidsnd As are congruent. This
already implies with ¢, = c¢, that the orthogonal cross sectionsitf andlMg are paral-
lelograms/antiparallelograms which yields the contriolic

b. In the other casé, andAs are of deltoid type. This already implies that in the flat gose
V3 = Vg holds. Therefore the orthogonal cross sectiond 9&ndllg are congruent deltoids
(= cx3 = ckq). This yields a contradiction a%; and/\4 are of isogram type.

2nd Part:
As for the one case of item (c) of Theorem 4.1 the four poin&2 are already coplanar during
the flex, we are done due to Lemma 4.3.

Therefore we apply the conditions of the other case of itemo{dheorem 4.1 over the oc-
tahedron in such a way that the corresponding two cosineliggsidold if any of the 8 faces is
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Figure 4.10: (a) Rotation dfi3 about the projecting lind/,Vs]. The connecting linef/t, V4] or
[V2,V2?] of possible intersection points interséds, Vs]. (b) Flat pose of the octahedron whexe
and/\4 are congruent.

considered as central triangle. Up to the relabeling ofieestthis yields the following case:
Cho=cCyp, CP1=Cx3, CKz=CX1, CKi=Cls. (4.21)

Moreover as the cosines of the dihedral angles thragghndV, are pairwise the same we can
apply Kokotsakis’ theorenfSatziiber zwei Vierkandegiven in 812 of [14] which implies that the
pyramids/; and/\4 are congruent. Now we have to distinguish two cases becaaegecain be
congruent with respect to an orientation preserving or agr@ntation preserving isometry:

1. Orientation preserving isometry: A%, V] || [Va,Vs] and[V1, V3] || [Va, V3] has to hold the rigid
body motion can only be a composition of a half-turn aboumna liorthogonal to the plane
[X,V3, V] plus a translation along the axis, whetestands for any point dE3. Moreoverl has

to be located within the plan#/,V,,Vs| because otherwise there does not exist a translation

such that the remaining pairs of corresponding edges ateisV, andVs, respectively. This

already yields thath, V>, V4, V5 are coplanar during the flex and we are done due to Lemma 4.3.

2. Non-orientation preserving isometry: Here we are lefhwitiree possibilities:

a. The Euclidean motion is a composition of a reflectioreos: [X,V3,Ve] and a translation
parallel to this plane. 1fV1,V,,Vs] is orthogonal tce thenVy, Vs, Vy, Vs are coplanar during
the flex and we are done due to Lemma 4.3.

In any other case the translation vector has to be the zetonfee V, andVs are located
on €) such that the other corresponding edges interset andVs, respectively. As the

orthogonal cross sections bif; is at least a deltoid, the flat poses of this prism imply flat

poses of the whole structure as all vertices are locatedd dinerefore the spherical images
of A1 and/\4 have to be spherical deltoids:
i. If cyr = cky holds the flat poses immediately imply thatVs,,Vy, Vs has to be coplanar
during the flex and we are done due to Lemma 4.3.

ii. For the other possibility g3 = cky the pointsVz andVg coincide in the flat poses and

therefore the deltoidal cross sectiongafandllg are congruent. This case was already

discussed in item (1b) of the 1st part.
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b. The Euclidean motion is a composition of a reflectionsor= [X,V3,Vs] and a half-turn
about a linel orthogonal tos. Applying such a transformation all pairs of corresponding
edges of the pyramids are parallel. Therefdgr@andVs are also ideal points which contra-
dicts our assumption$.

c. Under the assumption thag V3XVs is constantrr/2 during the flex the Euclidean motion
could also be composed of a reflection on one of the planes: [I,V3] or & = [I,Vg]
plus a translation parallel to it. This case cannot yield latem as any octahedron with
I V35XV = const.# 0 has to be rigid. The proof is left to the reader.

Kokotsakis’ theorencannot be applied if the spherical image/af and/\4 are isograms. In this
case (@» = CKp, Cx3 = CK1) such an octahedron already has two flat poses. Now the artiabg
cross sections dfl; andlMg are deltoids, parallelograms or antiparallelograms ardsfgherical
image ofA\, andAs are spherical isograms or spherical deltoids. As not batlerspal images of
N\, and/A\s can be isograms (otherwise we get item (B) of the 3rd part)ameassume w.l.0.g. that
N\, has a deltoidal spherical image.

1. If at least one further structure bf; andlMg is of deltoid type thenV/; has to coincide with
V, in the flat pose (see Fig. 4.10(b)). This already shows thsat ial this casé\; and/\,4 are
congruent and therefore we can apply the same argumentegigiven above.

2. If the orthogonal cross sectionsl@g andllg are parallelograms or antiparallelograms then we
can only get a special case of item (A) of the following 3rdtpar

3rd Part:

We are left with the possibilities given in item (a) and (b) dieorem 4.1. W.l.o.g. we take
V1,V»,V3 as representative triangle. Then the motion transmissmmn X3 to 2, via V3 andV; is
reducible if:

e the orthogonal cross sectiondg is a parallelogram or an antiparallelogram,
e the spherical image a1 is an isogram,
e case (b) holds.

Analogous possibilities hold for the motion transmissioomi 2, to 2, via V3 andV,. Now com-
binatorial aspects show that one of the following casesdaslid:

A. the orthogonal cross section idg is a parallelogram or an antiparallelogram,
B. the spherical image @f; andA, are isograms,
C. both motion transmissions are reducible due to case (b),

D. the motion transmission frol; to X, (or 23 to X,) is reducible due to case (b) and the spher-
ical image ofA\; (or A\,) is an isogram?

4We get a special case of a flexible octahedron of Theorem 4.5.
SNote that we get the case in the parentheses from the oth¢usirtay a relabeling.
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Therefore the remaining flexible octahedra with opposittices on the plane at infinity can only
belong to one of these four cases. As a consequence thebledoomposition implied by these
flexible octahedra has to be of the same type independeng ghttice of the central triangle. This
yields the following conditions:

ad A. ap1 = CX3, Ch3 = Cl)3, CYy = CKq, CX2 = CK3.

ad B. ap1 = cyn, ch3 = CX2, CK1 = CX3, CK3 = Cl)3, Ch2 = Cll = CK2 = CX1.
ad C. @1 = cKy, CP3 = CK3, CY3 = CX2, CX3 = Cl).

ad D. ap1 = cyn, CP3 = CKs, CY3 =CX2, CX3 = CK1, CK2 = Cll}p, CX1 = C¢h2.
In the following these four cases are discussed in detalil:

ad (C) If the orthogonal cross section BOf; andlg are parallelograms or antiparallelograms then
we get a special case of item (A). Therefore we can assuméhikas not the case.

This assumption together with the property that the cosfrtbedihedral angles dfl; and
Mg are the same, already imply that these prisms are relatedh liguelidean similarity trans-
form. Now we consider the orthogonal cross section (fourfhachanisma, b, c,d) of one of
these prisms:

1. I +s< p+q: If we chooses as base therashof’s theorenis fulfilled and we get a double-
crank mechanism. Such a mechanism has two poses where fhlerdsiparallel to the base.

a. If in one of these two poses the parallel planes of botimarido not coincide or ¥3 = Vg
holds then the condition that the corresponding edges gbitisens intersect each other in
this pose, already yields that the coupler and the base raustthe same length. But this
already contradictb+s< p+a.

b. If in one of the two flat poses the parallel planes of botlsps coincide (buVs # Vg),
then this already implies th&t, Vs, Vs, Vs, V3 andVy, Vs, Vi, Vo, Vg are congruent. Moreover
it can be seen from this pose that the pyramidsand/\4 are congruent with respect to an
orientation preserving isometry. Due tgsc= cy; and &1 = c¢ this property has to hold
during the whole fle®. As the corresponding rigid body motion also has to intergeathe
ideal pointsvz andVg we are left with two possibilities:

i. The rigid body motion is a composition of a half-turn abaue of the two bisectors
of 4V3XVs plus a translation along this axis. If the axis is locatedhimithe plane
V1, V2, V5] the pointsVy, Vo, Vg, Vs are coplanar during the flex and we are done due to
Lemma 4.3. In any other case the translation vector has tbhebedro vector such that
the other corresponding edges intersedHm@ndVs, respectively. This yields solution
(0.

ii. The angle 4V3XVs is constantit/2 during the flex. Then a 9€rotation about a line
orthogonal to[X,V3,Vs] plus a translation along the axis yields a further possjbili
This case cannot yield a solution for the same reason as 2esef(the 2nd part.

6The same holds for the pyramidls andAs.
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2. | +s> p+q: Now there exist the two special poses of Lemma 4.4. Analsgamsiderations
as in the case+ s < p+ qyield one of the following cases:

a. a= Db, c=d: Now the four-bar mechanism b,c,d is a parallelogram or an antiparallelo-
gram. We get a special case of item (A).

b. We get the above discussed item (1b) and therefore sol(ijio

c. The orthogonal cross sectionldg andlg are similar deltoids. This can only yield a case
discussed in item (1) of the 1st part.

ad (D) If the spherical image of, and/As5 are isograms we get item (B). Therefore we can assume
w.l.0.g. that this is not the case and we can apfakotsakis’ theorenwhich yields that\, and/\s
are congruent. Again we have to distinguish two cases:

1. Non-orientation preserving isometry: We can transfdmmttvo pyramids into each other by a
reflection on one of the bisecting plangqi = 1,2) of < V3XVs plus a translation parallel to
7
&.
If [V2,V1,Vy] is orthogonal tcg; thenVy, Vo, Vs, Vs are coplanar during the flex (cf. Lemma 4.3).

In any other case the translation vector has to be the zetornfee V; andV, are located on
&) such that the other corresponding edges intersedt andV,. We get solution (I1,i).

2. Orientation preserving isometry: As the correspondigid roody motion also has to inter-
change the ideal pointg andVg we are left with two possibilities:

a. The rigid body motion is a composition of a half-turn abooe of the two bisectors of
JV3X V5 plus a translation along this rotary axis. In order to guss@rhat the remaining
verticesV, andVs exist, the corresponding edges have to intersect the ax@aifon. This
already shows that all vertices BF are coplanar during the flex (cf. Lemma 4.3).

b. The angle 4 V3XVs is constantrt/2 during the flex. Then the 9@otation about a line
| orthogonal to[X,Vs,Vs] plus a translation alongyields a further possibility. This case
cannot yield a solution for the same reason as case (2c) @hnith@art.

ad (B) In this case the spherical image of the faces through eatexveiE? is an isogram. Now
the conditions ¢, = cy», = cko = cx; Yyield for ¢, equal O orrm that the octahedron has two flat
poses. Therefore the orthogonal cross section of the piiggrend Mg can only be a deltoid, a
parallelogram or an antiparallelogram.

It can easily be seen that the deltoid case does not fit with fodded positions of the spher-
ical focal mechanism composed of two spherical isogramseréfarell; and Mg have to be of
parallelogram type or antiparallelogram type.

Note that opposite edges of a pyramid with an isogram as igglhé@nage are symmetric with
respect to a common line in a flat pose. The same holds for thedke of a prisms with a
parallelogram or antiparallelogram as orthogonal crostise Beside the scaling factor these
two properties already determine the octahedron in the fis¢ pup to 3 parameters, namely the

"The only possible rotation is a half-turn about a line orthvmj to[X, V3, Ve]. But this rotation is only the transition
between the two possible reflections.
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Figure 4.11: lllustration of the 3 free design parametens, v beside the scaling factor.

angles¢,n,v (see Fig. 4.11). Now this structure is flexible if we flex ondha prisms out of the
flat pose in such a way that the orthogonal cross section isadlglagram because then we get a
special case of type (IV,ii).

In the other case (antiparallelogram) the octahedron igven infinitesimal flexible. Accord-
ing to Kokotsakis (cf. 83 and 813 of [14]) this condition idfiiled if the bisectorsg; i = 1,2,3
have a point in commor?. It can easily be seen (cf. Fig. 4.11) that this is the casésfzero. This
already implies the construction of type (lll) octahedraahtequals the construction of Bricard’s
type 3 octahedra with two opposite vertices at infinity (sigg #.12).

Remark4.3. Note that in each flat pose of a type (Ill) octahedron flexiofifartation into a type
(IV;ii) octahedron flexion is always possible. o

ad (A) In the first case we assume that the orthogonal cross sedtidfiie a parallelogram. Then
we consider one of the two possible configurations wiikgés in a flat pose. In this pose it can
immediately be seen th¥i, V>, Va4, Vs is a parallelogran. Then the flexion of13 already implies
type (I1V,ii).

Therefore we can assume for the last case that the orthogass section of both prisms are
antiparallelograms. We have to distinguish two cases:

1. In both flat poses dflz, Mg is also flat and has the same carrier plarses the folded prisnils.
Therefore this is an octahedron with two flat poses. As a cpresece the spherical image of
the pyramids\y,/\,, A4, /A5 can only be a spherical isogram or a spherical deltoid.

Assume the triangl&/1,V,,V3 as central triangle. If\; is of isogram type then we have a
focal mechanism composed Af andls as Eq. (4.5) hold$® Moreover, this is a reducible
composition with a spherical coupler component. The cpording spherical coupler can
only be of isogram type because the deltoid case does notfiteth folded positions of the
focal mechanism.

8The gi’s are the limit of the intersection of two opposite faceshef tespective pyramids and prism, respectively.

9This parallelogram can even degenerate into a folded one.

19The orthogonal cross section i@ (an antiparallelogram) cannot have the additional propera deltoid as then
we get a flipped over rhombus which contradicts footnote 1.
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Figure 4.12: Construction of flexible octahedra of type)(lih the above given construction four
flexible octahedra/l‘, ... ,vg (i=1,2,3,4) are hidden, where those with indides 1,2 are of type
(lIh: The sides of the three quadrangles spanned by twes piopposite vertices touch three
concentric circles (which cannot degenerate into the niidpo

The octahedra with indicés= 3,4 cannot be of type (lll) because in the second flat pose thegoi
Vi, Vi, V), Vi also have to form a rhombus. This is only possible if the @tmal cross sections
of M3 and Mg are flipped over rhombi which contradicts footnote 1. Thaemefthe octahedra
i = 3,4 can only have a trivial flexion (the relative motion [d§ andlTg is a rotation with axis
Vi, Vi, Vi ViLT; cf. footnote 1) beside the flexibility of type (IV;ii).

As a consequence of this consideration all pyramigs\,,A\4,/\5 are either isograms (which
yields case (B)) or they are all of deltoid type. For the lati@se we have to distinguish two
principal cases:

a. K = Cx1 = CPo = c»: In this case the pointg;, Vs, V,, Vs have to be collinear in both flat
poses which already yield that these points are coplanangltire flex.

b. cx3 = ck1, cyp = cy, Cx1 = CKo: This case can only yield special cases of the 2nd part as
Eq. (4.21) holds under consideration @fic= cxs, C¢3 = ClfJz, CY2 = CK3, Clf1 = CK1. 11

2. Assuming there exists a flat posel®$ andlg is not in a flat pose sharing the same carrier
planee of the foldedrMs. Then we can refledlls on € and we gefTg with the ideal poindg.
If Me = M§ holds then this already implies that the poiitsVz,Va, Vs are coplanar during the
flex.

Therefore we can assume w.l.ol@s # M. If Vi,..., Vs is a flexible octahedron then also the
octahedronVy, V2, Vs, Vs, Ve, V¢ has to be flexible due to the symmetry. For the same reason the
pyramidsA1, Az, A4, s of the octahedrol, Vo, Va, Vs, Vs, V{ are of deltoid type, which already
implies that the point¥y, Vs, Vs, Vs are coplanar during the flex.

This finishes the proof of the necessity of the conditiongigin Theorem 4.6.

11The remaining possibility x» = c3, cy, = ck, cx1 = ¢, can be done analogously because it can be obtained
from this case by an appropriate relabeling.
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The sufficiency for the flexibility of both types of item (IV)sawell as of type (I1,ii) follows
directly from Lemma 4.3. As the types (1), (II) and (l1l) cag bonstructed from the corresponding
types of Bricard flexible octahedra by a limiting proces® shfficiency for these types follows
immediately from the flexibility of Bricard’s octahedra. i§tinishes the proof of Theorem 46l

45 Conclusion and future research

In this paper we completed the classification of flexible lbetha in the projective extension of
the Euclidean 3-space. If all vertices are finite we get thié kmewn Bricard flexible octahedra.
There exist flexible octahedra of type 2 (cf. Theorem 4 of [ B8id type 3 (cf. Theorem 2 of [18])
with one vertex at infinity. Moreover there do not exist fenttilexible octahedra with one vertex
on the plane at infinity (cf. Theorem 3 of [18]).

All flexible octahedra with at least three vertices at infirare trivially flexible and listed in
Theorem 4.5 (see also Theorem 4.3).

Finally we presented all types of flexible octahedra with westices at infinity in Theorem
4.6 (see also Theorem 4.4). The types (1), (Il) and (Ill) o tiheorem can be generated from the
correspondindBricard octahedraby a limiting process. The remaining octahedra of type (I¥) d
not have a flexible analogue E?; they are flexible without self-intersection.

For a practical application one can think of an open serialrcbomposed of prism3y, ... M,
where each pair of neighboring prisris, M1 (i =0,...,n— 1) forms a flexible octahedron of
Theorem 4.6. Note that such a structure admits a constraiiéidn. Moreover, if we additionally
assume thaltlg = My, holds, we get a closed serial chain which is in general rigidvould also
be interesting under which geometric conditions such siras are still flexible. Clearly, some
aspects of this question are connected with the problenRafverconstrained linkages (e.g. the
spatial &R overconstrained linkage is the Bennett mechanism). Finakhould be noted that the
Renault style polyhedropresented by I. & [19] can be seen as a trivial example for the case
n=4.
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