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Abstract. In this article we prove that there do not exist non-architecturally singular Stewart Gough Plat-
forms with planar base and platform and no four anchor points collinear, whose singularity set for any
orientation of the platform is a cylindrical surface with rulings parallel to a given fixed direction p in the
space of translations.
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1 Introduction

The geometry of the parallel manipulator is given by the six base anchor points M; :=
(A;,B;,C;)T in the fixed space and by the six platform anchor points m; := (a;,b;,¢;)” in
the moving space. By using Euler Parameters (eq, e1,e3,e3) for the parametrization of the
spherical motion group the coordinates m; of the platform anchor points with respect to the
fixed space can be written as m} = K~ 'R-m; +t with

e%—i—e%—e%—e% 2(erex+epe3) 2(ere3 —eper)
R:=(rij) = | 2(e1e2—epe3) e%—e%—l—e%—e% 2(ezez +eper) |, (D

2(ere3+epez) 2(eres—eper) e€f—ei—e3+e3

the translation vector t := (1 ,tz,t3)T and K := e(z) + e% + e% + e%. Moreover it should be
noted that K is used as homogenizing factor whenever it is suitable.

It is well known (see e.g. [4]) that the set of singular configurations is given by Q :=
det(Q) = 0, where the i row of the 6x 6 matrix Q equals the Pliicker coordinates (1;,1;) :=
(R-m; +t— KM;,M; x 1,) of the carrier line of the i’ leg.

As we consider only manipulators with planar platform we may suppose C; = ¢; =0
fori=1,...,6. Moreover it was proven by Karger in [2] that for planar parallel manipu-
lators with no four points on a line we can assume A; = B} = By =a; = b; = b, =0 and
A233B4B5612(d4 — Cl3)Coll(3,4,5) 75 0 with

COll(i,j,k) = ai(bj 7bk) +aj(bk 7b,') +ak(b,' 7bj). )

Note that coll(i, j,k) = O characterizes collinear platform anchor points m;,m; and my.
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Fig. 1 Non-planar manipulator with cylindrical singularity surface: (a) Axonometric view. (b) Projection
in direction p: The singularity surface (with respect to the barycenter of the platform) is displayed as conic.

2 Preliminary Considerations

The set of Stewart Gough Platforms whose singularity set for any orientation is a cylindri-
cal surface with rulings parallel to a given direction p also contains the set of architecturally
singular manipulators. This is due to the fact that the singularity surface of these manipu-
lators equals the whole space of translations for any orientation.

It can easily be seen from the following example that the above two sets are distinct:
The non-planar manipulator determined by m; = my, m3 = my, ms = mg and M; M, ||
M;3;M, || MsMg || p has for any orientation of the platform a cylindrical surface with rul-
ings parallel to the direction p without being architecturally singular (see Fig. 1). This
manipulator is in a singular configuration if and only if the three planes [M;,M,,m,],
[M3, M4, m3] and [Ms, Mg, ms] have a common intersection line.

As the direct kinematics of this manipulator can be put down to that of a 3-dof RPR
parallel manipulator, a rational parametrization of its singularity surface according to [1]
can be given. The singularity surface is a quadratic cylinder due to the (singular) affine
correspondence between the base and the platform (cf. [3]).

Moreover, if Mj,...,Mg are coplanar we get an example for a planar parallel manip-
ulator with this property. Now the question arises, whether there exist non-architecturally
singular planar manipulators with no four anchor points on a line possessing such a sin-
gularity surface. In the following section we prove that such manipulators do not exist.

3 The Main Theorem and its Proof

Theorem The set of planar parallel manipulators with no four anchor points on a line
which posses a cylindrical singularity surface with rulings parallel to a given fixed direc-
tion p for any orientation of the platform equals the set of planar architecture singular
manipulators (with no four anchor points on a line).

The analytical proof of this theorem is based on the following idea: We choose a Carte-
sian frame in the base such that one axis #; is parallel to the given direction p. Then
0 = det(Q) = 0 must be independent of 7; for all e, ..., e3,t;,4 with j # k # i # j. Our
proof is based on the resulting equations and Theorem 1 of [2].

We have to distinguish between two cases, depending on whether the base of the manip-
ulator is parallel to p or not.
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Base is not parallel to p:
The proof of the case where the base is orthogonal to p is hidden in the proof of Theorem
1 of [2]. For all other cases the proof was given by the author in [5].

Base is parallel to p:

In this case we take as translation vector t := (cos @t| —sin @1y, sin @t; +cos @1y, 13)7 . After
performing the same elementary operations with the matrix Q as described on page 1154
of [2], we can replace the sixth row of Q by

(ri1Ki +ri2A2Ks, 1Ky +rnAsKs 131 Ki 4+ r30A2Ks,

- 3)

0,731A2K3 + r32A2Ky, —r21A2K3 — rpA2Ka) D™
with D := A, B3B4Bscoll(3,4,5). Ki = K, = K3 = K4 = 0 are the four conditions given in
[2] which are satisfied iff a planar manipulator (with no four points on a line) is architec-
turally singular. We distinguish between the following two cases:

e MM, is parallel to p. The proof of this part can be done by considering only the four
equations (12-15) given in [5].

e MM, is not parallel to p. This part of the proof is the primary concern of this pa-
per, because it was to long to be given in [5]. In the cited paper only the two solutions
were given which fulfill all equations resulting from the coefficients of #; of Q without
contradicting

AQB3B4B§02((14 —113)6011(3,4,5)[(2 sin(p 75 0. 4)

These two solutions S| and S, are

S1: Aj=Bjcot@,A;j=Bjcot@, Ay = Az + Bicoto, 5
by =0,ar = ar, a; = K1b;/ (K2A2),a; = K1b;/(K>A»), (6)
K3=0 and K, =0 (7)

Sy: Aj=Ay+Bicot@,A;j =Ar+Bjcotp, Ay = Brcot @, ()

ai:a2+biK3/K4,aj:a2+ij3/K4,ak:bk:0, 9)
A)Krb+K4=0 and K1 +K3=0 (10)

for i, j,k € {3,4,5} and i # j # k # i. In the following we proof that for K, # 0 all
coefficients of #; can only vanish for the above two given solutions. Moreover we prove
that for K, = 0 all coefficients of #; only vanish for architecturally singular manipulators,
i.e. K| = K3 = K4 = 0. The proof is split into the following two cases given in subsection
3.1 and 3.2, respectively.

3.1 MM, is orthogonal to p

We denote the coefficients of titété‘ from Q by O/, From all 9"/ with i > 0 we can factor
out K. From 099 we can even factor out K2.

For this case we set ¢ = /2 and eliminate 7; from Q. Now we can additionally factor
out (epe; — eze3) of 0%*/*_We denote the coefficient of egell’egeg of QhJk by P;f)lz 4 and
compute the following 15 polynomials:

Pi[18]:=Pyyye Pald2]:=Plg1o Ps[12]:= Py, (11)

3 3

P[42] := ng{g{o ps[72] := Pi’ﬁ’ﬁo (12)



4 G. Nawratil

Ps[36] := P: 31,’20,’10,0 - 21,730,700,1 - 11,b(),§(),2 +F 01,710,720,3 (13)
P[42] =P, i,’ﬁll,o —P 11,%,1 —P 11,’00}4},1 +F (i,’107711,4 (14)
PS[30] := P20+ Pyyoo+ Pooas + Poora (15)
Py[30] := P, 41,’20.3,0 +P 21,’40.3,0 - (ibo,hl,z - (ibo,’zl,zt (16)
Po[18]:=Py g =Py, Puld2:=Py0 P (17
Pip[36] := P31,’21,’10,0 - lesl(())1 Pi3[24] = P31,’11,’20,o - le,’olfso,l (18)
Pul12]:= P30 0+ Pyoss  Pisl24] =Py )5 —Pl3Y, (19)

It should be noted that the number in the square brackets denotes the number of terms in
the expression. In the first step we compute the resultant of P; and P4 with respect to Az
which yields

a%b3b4b5B3B4B5choll(3, 4,5)[K>(A4Bs — AsBa4) + K4(Bs — By)]. (20)

Therefore we have to distinguish between the following three cases:

Case) K, =0

We set K, equal to zero and compute P; and Pyp which factor into K F;[6] and K Fio[6],
respectively.

Part [A] K| # 0: The resultant of F} and Fjo with respect to B3 yields
b3B4Bscoll(3,4,5)(baBs — bsBy). 21

(i) b3 = 0 implies bybs # 0. From P, = 0 we get B4 = Bs. Substituting this into Py yields
K1B3Bscoll(3,4,5) and therefore a contradiction.

(ii) So we set bs = byBs /B4 and plug this into Py and Py which yields:
KiBsbs (Bs — Bs) (Bsbs — B3bs) and K;Bs(as —as) (Bsbs — B3by). (22)

If we set aq = as and By = Bs we get by = bs and therefore coll(3,4,5) =0, a contradiction.
For by = B4b3/Bj3 the polynomial Pj4 factors into a,b3B4BsKacoll(3,4,5) which implies
K4 = 0. Now Pg, which splits into b3B4BsK|coll(3,4,5), yields a contradiction.

Part [B] K; = 0: We compute
Py =aKoFy, By=aaKiFy, Pi=akKiF, Pi3=akKihy, (23)

which implies that K3 = K4 = 0 or F| = Fj9 = 0 must hold. We assume K3 # 0 and K4 # 0
and consider again the resultant of F; and Fj¢ with respect to B3 given in Equ. (21).

(i) For b3 = 0 we get By = Bs from P; = (. Substituting this into Py and Pj3 yields
azB3B5K4C0ll(3,4, 5) and azB3B5K3COll(3, 4, 5).

(i) If we plug b5 = byBs/By into P; =0, P =0, P;; =0 and Pj3 = 0 we see that these
equations can only vanish for by = B4b3 /B3 or as = as and B4 = Bs. The later contradicts
again coll(3,4,5) # 0. Therefore we set by = B4b3 /B3 and substitute this into P4 and P;s
which yields ayb3B3BsKacoll(3,4,5) and a;b3B3BsKzcoll(3,4,5), respectively.
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CaseIl) b; =0,K, #£0

Without loss of generality we can say b3 = 0, which implies b4bs5 # 0. Now P; factors into
ayB3babs|Ky(A4Bs — AsBy) + K4(Bs — By)]. From the last factor we compute As. Now the
resultant of P and P; with respect to A3 yields KxaaB3BaBscoll(3,4,5)R; with

Ry := KA, (a4b5B5 — a5b4B4) + K1 b4bs (34 — Bs) + Kyan (b5B5 — b4B4). 24)
From R; = 0 we compute as. Then P; simplifies to
BS (b4 - b5) [KzB4(a2A3 - a3A2) - azB3 (K4 + K2A4)] . (25)

If by = bs the equation Py = 0 can only vanish (w.c.) for Ay = —K4/K>. Now Py = 0 implies
az = axA3/A; and Pyp = 0 yields a contradiction.

Therefore we set as = dap [KQ(A3B4 —A4B3) — K4B3]/(K2A2B4). Now Pl() =0can only
vanish (w.c.) for KrAras — K1bs + Ksay = 0. From this equation we compute as. Py =0
implies A4 = —K4/K>. Then Py factors into a»B3(K»As + Ka)F7[8]/(K3Az). As KrAsz +
K4 = 0yield coll(3,4,5) = 0 we set F7 equal to zero:

Part [A] K1 K4 — K»K3A; # 0: Under this assumption we can compute by from F; = 0.
P, = 0 splits into several factor, where only one does not lead to a direct contradiction.
From this factor we compute

bs = az|[K3A3B5(A2 — A3) + K4B3(KaAs + K4)]/[B3 (K1 K4 — K2 K3A3)). (26)

Finally Ps = O yields a contradiction.

Part [B] K; K4 — K> K3A, = 0:
(i) Assuming K3 # 0 we can compute A;. Now F; factors into asz(B5 —B4) (K1 +K3)/Ks.

o Firstly we consider the case K| = —K3. Now Pj = 0 implies Az = 0 and we get solution
S, for cos ¢ =0 and k = 3.
e By = Bs,K| + K3 # 0: From P, = 0 we compute B3 as

B3 = K»A3B4(K2K3As — K1 Ky) /(K3 (K1 4+ K3)). (27)
Plugging this into Ps = 0 yields the contradiction.
(ii) Assuming K3 = 0 yields K1 K4 = 0.

e We start with K4 = 0. P = 0 can only vanish (w.c.) for A, = A3 which yields solution
S for cos¢ =0 and k = 3.
e K| =0,K4 # 0: We compute P;3 which factors into

a%K4B3 (K2A2 + K4) (K2A3 + K4) (B4 — BS)/(KZZA%) (28)

K>Az + K4 = 0 contradicts coll(3,4,5) # 0.

(a) For Ay = —K4 /K> we get from Pj, = 0 the condition A3 = 0. We get solution S, for
cos @ = 0 and k = 3 with the additional condition K; = 0.

(B) B4 = Bs,K4 + KAy # 0: Now Ps = 0 can only vanish (w.c.) for A3 = (K»A»(Bs —
B3) — K4B3)/(BsK3) or Az = 0. For both cases we get a contradiction from Py, = 0.

Case III) K> (A4B5s —AsBy4) + K4(Bs — B4) = 0, b3bsbsKr # 0
From the above condition and P3 = 0 we compute A3 and A4 as

A= [KQB,‘AS —|—K4(B,' —BS)}/(KQBS) for i=3,4. 29)
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In the next step we calculate the resultant of P; and Pjo with respect to a, which yields
B3B4Bscoll(3,4,5)K4R,[12].

Part [A] K4 = 0: Now Py equals K»A»B3BsAscoll(3,4,5) which implies As = 0. Then P,
simplifies to A, K3 F> with

F> := B3(asbs — asbs) + B4(azbs — asb3) + Bs(asbs — azby). 30)

(i) FQ =0:

o If we assume byBs — bsB4 # 0 we can compute a3 from F,. Now the polynomials Py and
Ps factors into

K3Az(asbs —asbs)Fy[8] and  K3Az(asbs — asba)Fs[6], (31

respectively. The factor asbs — asbs = 0 implies coll(3,4,5) = 0.
(&) Therefore we assume K3 # 0 and compute the resultant of Fy and Fs with respect to
Bs3, which yields

b3B4Bs(By4 — Bs) (b3 — bs)(b4Bs — bsBy)(bs — b3 ) (asbs — asby,). (32)

For the cases B4 = Bs or b3 = b; for i = 4,5 equation F5 = 0 yields a contradiction. The
last factor of Equ. (32) implies coll(3,4,5) = 0.
(B) K3 =0: Now the P, and Py factors into F5C and F4C with

C:= K2A2 (cl4B5 — 61534) — K1 (b4B5 — b5B4). (33)

For C = 0 we compute a4 from this equation and plug the obtained expression into
P3 =0, which already yields a contradiction.
Therefore we consider again the resultant of F4 and F5 with respect to B3 given in Equ.
(32). For all possible cases (B4 = Bs or by = b; for i = 4,5) the equation P; = 0 can only
vanish (w.c.) for C = 0.

e We proceed with by = B4bs/Bs. Now the polynomial F; equals

(a4BS —a5B4)(b335 —bsB3)/Bs. (34)

(a) as = Bsas/Bs: Ps = 0 can only vanish (w.c.) for K3 = 0. Then P = 0 implies
as = K1bs/(K»A,). P = 0 yields a contradiction.

(B) b3 = bsB3/Bs: Now we consider P| = AyK»>bsF[6]/Bs and Py = K2A2Fo[6]. The
resultant of F; and Fjo with respect to a3 yields

B3 (B3 —B4)(B3 - B5)(a4BS - 0534). (35)

For B3 = B; for i = 4,5 the equation P; = 0 yields the contradiction. If we set a4 =
Basas/Bs the equation Ps = 0 implies K3 = 0. Now P equals B3Bycoll(3,4,5)(Kbs —
asK>A3). From the last factor we compute as and plug this into P; = 0 which yields the
contradiction.

(ii) K3 = 0,F, # 0 : Computing the resultant of P; and P;y with respect to A, yields
K1 K;B3B4Bscoll(3,4,5)F,. This implies K; = 0.

e Assuming b4 # b5 we can compute a3 from P; = 0. Now Pjg splits up into KA, B3(asBs —
asBy)coll(3,4,5)/(bs — bs). Plugging a4 = Byas/Bs into Py = 0 yields a contradiction.

e by = bs: Now P, factors into KrAyB3(b3 — bs)(asaBs — asBa). As b3 = bs contradicts
coll(3,4,5) # 0 we set as = Bsas/Bs. Pio = 0 can only vanish (w.c.) for a3 = Bzas/Bs.
Again Py = 0 yields a contradiction.
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Part [B] R, = 0,K4 # 0:

(i) If we assume B4 # Bs we can compute a3 from Ry = 0. Now P; splits up into the two
factors C and F; with

C .= Kyar (B4 - B5) + K, (b4Bs — b534) +K2A2(a5B4 — a4B5) (36)
Fi :=b3B3(Bs — Bs) +b4B4(Bs — B3) + bsBs(B3 — By). 37

If we compute a; from C = 0, the resulting equation Py = 0 cannot vanish without contra-
diction. If we compute b3 from F; = 0 the polynomial Py splits up into four factors. Three
of them yield coll(3,4,5) = 0 and the fourth factor equals C.

(i) We get Ry = (B3 — Bs)[K2Az(as — as) + K| (ba — bs)] for the remaining case B4 = Bs. If
B3 = Bs the equation Py = 0 yields a contradiction. Therefore we compute a4 from the sec-
ond factor. Now Pjs factors into ayBscoll(3,4,5)(B3 — Bs)(K1bs — KpAsas). This implies
as = K1bs/(K»A3) and finally P; = 0 yields the contradiction. O

3.2 MM, is not orthogonal to p

Due to the above studied cases we can assume cos ¢ # 0 and sin ¢ # 0 when eliminating
from Q. For the proof of this part we need the following 20 polynomials:

P12) = (P + Ry 0ss) /(asing)  P[78]:=PRyy, —Pigsg  (38)
Po[36] := (Pyo5 0 — Py5os)/ (azcos@)  Ral66]:= Py —Piguy  (39)
P5[30] := (Pztlgolo+Pol(§)412)/Sin(P Py[36] := P41,720,’01,0 _P(},bq;,4 (40)
Po[66] := (P02 Fo4i0.0)/ cos @ B[42) = Pyouy—Ropaa (4D
Py[18] := (P{ 5.0+ Pl 350)/sin@ Pii[108] := Py — P (42)
Po[18]:= (ot —Pliag)/coso  Pol102:=P{{o =Py, (43)
Pis[24] := (Py5) 0 — P13 — a3t + o)/ (azsing) (44)
Pi4[42] = (leg1O0+P01?203+P21§001+P118302)/A2 (45)
Pys[48] : P;g?o‘*‘Pol?& leé)(())l_Pll’(())gz (46)
Pi6[36]:= P50~ Po1s — Paoai T Plaoa (47)
Py7(66] :P41,10’110+P112011+P11(§)411+P0110114 (48)
P18[54}5:P41,’10,’11,0 Pllfol1+P11g411 P0110114 (49)
P[48]:= Py, — P30~ Fotaa T Plos (50)
Py 150}::P3l§’011+P21§)110 Pol,’l(),3l,2_Pll,k()),21,3 (D

Firstly we compute the resultant of Py and Pjo with respect to As, which yields the expres-
sion azB3B4B5K200”(374, S)Rl with

R := K»B3(Azas — Asan) + K2Ba(Azay — Azas) + Ky (b3Bs — byB3). (52)

In the following section we show that for K = 0 the equations P, =0 fori = 1,...,20 can
only be fulfilled for K} = K3 = K4 = 0.
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321 K;=0

Now the polynomials Py and Pjq factors into K Fy and K Fj¢ with

Fy := B3Bybs(as — az) + BaBsbs(as — as) + B3Bsba(az — as) (53)
Fig := B3B4bs(by — b3) + B4Bsb3(bs — bs) + B3Bsb4(b3 — bs). (54)

(i) K1 # 0: We compute the resultant of Fy and Fjy with respect to B3 which yields
b3B4B5(b4B§ — b534)6‘0”(3,4,5). We start with b3 = 0. Now Fjp = 0 implies Bs = Bs
and Fy equals K B3Bscoll(3,4,5).

Therefore we set by = B4bs/Bs. Now Fy splits up into B4(as — as)(b3Bs — bsB3). If we
set b3 = B3bs/Bs the equation Ps = 0 yields the contradiction. For a4 = a5 the equation
Fio = 0 implies b3 = B3bs/Bs, which yields via Ps = 0 the contradiction.

(ii) K; = 0,K4 # 0: Now Ps equals KyarFy. Moreover from Py also Ky factors out. We
compute the resultant of Fy and F := Py /K4 with respect to B3 which yields

b3B4Bscoll(3,4,5)(asbsBs — asbsBs). (55)

e For by =0 we get P, = Kyazbsbs(Bs — Bs).
(a) For a3 = 0 the equation Ps = 0 implies bs = bsasBs/(a4Bs). Now P4 = 0 and
P3 = 0yield A3 = B3 =0, a contradiction.
(B) For B4 = Bs we get the contradiction from Ps = 0.

e Now we set asbsB4 —asbsBs = 0.
(o) We assume b; = 0 which yields a; = 0 for i, j € {4,5} and i # j. Then equation
Ps =0 can only vanish (w.c.) for a3 = a;b3B4/(b;B3). The equations P4 = 0 and Py =0
yield A; = B; = 0, a contradiction.
(B) For babs # 0 we can compute as. Now the polynomial P; factorize into Kabs(Bs —
Bs)(asbsB3 — asb3Bs). For a3 = bzasBs/(Bsbs) we get Pis = asBsK4Fs5/(bsB3Bs)
(as = 0 implies a3 = a4 = 0 a contradiction) and Py = K4F3/(B3B4). Computing
F3 — 2F5 = 0 yields the contradiction. For B4 = Bs the condition Ps = 0 also implies
a3 = bzasBs /(B3bs) and we can constuct the same contradiction as before.

(iii) K; = 0,K4 = 0,K3 # 0 : Now the polynomials Pjg and Py5 split into K3a; sin ¢Fy and
K3A; sin @ Fj. We consider again the resultant which is given in Equ. (55).

e For b3 = 0 the polynomial F splits into a3bsbs(Bs — Bs). As for By = Bs the equation
Fy = 0 yields a contradiction, we set a3 = 0. Now Fy = 0 implies b5 = bsasBs/(asBa).
From Ps; = 0 we get Ay = As. Py7 = 0 yields the contradiction.

e Now we set agbsBs — asbsBs = 0:

(a) We assume b; = 0 which yields a; = 0 for i,j € {4,5} and i # j. Now Pjg =0
implies a3 = a;b3B4/(b;B3). Then Ps = 0 can only vanish (w.c.) for A3 = A;. Finally
P17 = 0 yields the contradiction.

(B) babs # 0 We compute a4 and factorize P, and F; which yield

K3b4(A4 —A5)((13b5B3 — a5b3B5) and b4(B4 —Bs)(a3b5B3 — a5b3B5). (56)

For A4 = A5 and B4 = Bs the equation Ps = 0 can only vanish (w.c.) for A3 = As5. Now
P17 = 0 implies B3 = Bs, a contradiction. Therefore we set a3 = bzasBs/(B3bs). Ps
factors into K3apFg with

Fg := b3byBs (A3 —A4) + b3bSB4(A5 _A3) +babsB; (A4 _AS)' 57

Assuming B4b3 — byB3 # 0 we can compute As from Fg = 0. Plugging this into P17 =0
yields the contradiction. For b3 = byB3 /B4 the equation P; = 0 implies A3 = A4. Again
P17 = 0 yields the contradiction. Hence, we can assume K, # 0 for the rest of the proof.
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322 R =0,K#0

We proceed by setting Ry of Equ. (52) equal to zero. We compute A3 from Ry = 0 and plug
this into Py which splits into B3 (a3 — a4 )Fy with

Fy = KzB4(A5a2 —A2a5) + K»Bs (A2614 —A4a2) + K, (bSB4 — b4B5). (58)

From Fy = 0 we can compute As. Now the resultant of P; and P5 with respect to A, simpli-
fies to K»B3B4Bscoll(3,4,5)R,[12] /as.

Case I) azbsbs [K4a2 ((l4 — (15) + K, (b4615 — b5a4)] 75 0

Under this assumption we can compute B3 from R, = 0.

Part [A] Assuming asas(baBs — bsBs) # 0 we can compute A, from the common factor
OfP1 and P5. Now Pg = B3B5coll(3,4,5)Fg [8] and P7 = B3B5COZI(374,5)F7 [27]. F7 =0and
Fg = 0 are homogeneous linear equations in the unknowns sin ¢ and cos ¢. So we compute
the determinant of the coefficient-matrix which yields K» (b4Bs — bsB4)BasazasD|[21]. From
DI[21] = 0 we can compute A4. Now we get F; = F3 = asas(baBs — bsB4)C[8]. From C =0
we compute By and plug the expression into Pjj, which splits into coll(3,4,5)F;. The
factor Fi; is quadratic in the unknown Bs. Therefore we obtain two solutions for

Be — 2[K1 (a,'bs — b,'as) + K4a2(a5 — a,-)]Klbs sin @
> (Ksay — K1 bi)Krapas cos @

(59)

with i = 3,4. If we plug Bs into B; we get B; = 0, a contradiction.

Part [B] a; = 0 for i, j € {4,5} and i # j. We compute Ps which splits into B;b3F5[8]. As
b3 = 0 yields B3 = 0 we can assume b3 # 0.

(i) Assuming d := K4(a3 —a;)(b;Bj — bjB;) # 0 we can compute

ay = K [Bibj(ajbs — asb;) + b}Bj(as —a;)] /d (60)

from F5 = 0. Plugging this into P; = 0 yields the contradiction.

(ii) K4 = 0: Now P] equals b3b,’BjK] (a3bj — (ljb3)(bl'Bj — bjBi)/(azbz). For both possible
cases (i.e. a3z = b3aj/bj and b; = bjB,-/Bj) the equation Ps = 0 yields the contradiction.

(iii) B; = bjB,-/b,~7 K4 # 0: Now Ps = 0 implies K| = 0 and P; = 0 yields the contradiction.
(iv) a3 = a;: Again Ps = 0 yields K; = 0 and Py = 0 the contradiction.
Part [C] by = bsB4/Bs,asas # 0: Ps =0 implies K; = 0 and P; = 0 yields the contradiction.

Case II) K4a, (a4 — a5) +K; (b4a5 — b5614) =0
We do this case without the assumption az — a4 # 0, such that a later reindexing can be
done without loss of generality.

Part [A] Assuming K4(as — as) # 0 we can compute ap. Now the factor R, simplifies to
Kl a4a5b3 <b4BS — bsB4)COU(3, 47 5).

(i) For b3 = 0 we compute A, from Ps = 0 which yields Ay = K| (bs — bs)/[K2(as — as)).
Now P; = 0 can only vanish (w.c.) for

By = (K4 +A4K5)sing /(K cos ). (61)

We compute P; which splits up into coll(3,4,5)K; B3 F3[18].
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o Assuming K] (b4a5 — b5(14) + K3b4(a5 — (14) + K4a4(a4 — 115) 3& 0 we can compute Bs
from F3 = 0. Now P, = 0 can only vanish (w.c.) for a3 = 0 and a factor F>[14] = 0.
As for a3 = 0 the equation P>y = 0 yields a contradiction, we compute B3 from F, = 0.
Again P,y = 0 yields a contradiction.

o Ki(bsas — b5a4) + K3b4(a5 — a4) + K4a4(a4 — a5) =0:

(o) We can compute bs from this equation for as # 0. Now F3 = 0 can only vanish
(w.c.) for K| = —K3. Then P, = 0 implies az = 0. This yields solution S, for k = 3.

(B) For as = 0 we get bsas(K; + Kz) = 0 which implies K; = —K3. P3 = 0 can only
vanish (w.c.) for by = (K b5 + Ksas) /K. Pig = 0 implies a3 = 0. We get solution S, for
k = 3 with the additional condition a4 = 0.

(ii) a; = 0,b3 £ 0 for i,j € {4,5} and i # j. As Ps = 0 yields a contradiction if we set
a3 = 0 or b3 = b;jB3/Bj, we can assume a3(b;B3 — b3B;) # 0. Now we can compute A
from Ps = 0. Py = 0 can only vanish (w.c.) for b; = 0 and a second factor Fg = 0.

e For b; = 0 we compute B4 from the only factor of P; = 0 which does not yield a contra-
diction.
(o) Assuming K; + K3 # 0 we can compute Bz from the only factor of P3 = 0 which
does not yield a contradiction. From the factor of P;3 = 0 which does not yield a contra-
diction we compute Bs. Then Py = 0 yields the contradiction.
(B) For K; = —K3 we compute b3 from F3 = 0. Plugging this into P;3 = 0 yields the
contradiction.

o I3 =0,b; #0: We compute A4 from Fg = 0. Then P;; = 0 yields the contradiction.

(iii) by = bsB4/Bs,asasb; # 0: As Ps = 0 yields a contradiction if we set az = 0 or b5 =
b3Bs /B3, we can assume a3(bsBz — b3Bs) # 0. Now we can compute A, from Ps = 0.
We compute A4 from the only non-contradicting factor of 3 = 0. Finally P;; = 0 yields a
contradiction.

Part [B1] K4, =0and K| =0:

(i) Assuming Buasbs(asbs — azbs) + Bsasba(aszbs — asbs) # 0 we can compute B3 from
Py =0. Now Ps = 0 can only vanish (w.c.) for (Bsbs — Bsbs) =0 or a; = 0 with i = 4,5.

e Fora; =0 (i,j € {4,5}, i # j) we compute Pjg = 0, which can only vanish (w.c.) for
K3 =0or Fig =0. As Py = 0 yields a contradiction if we compute B4 from Fj5 = 0, we
set K3 = 0. Now P9 = 0 implies a3 = [a2(b; —b3) +a;b3]/b;. Pi4 = 0 can only vanish
(w.c.) for Fi5 = 0.

e by = Bybs/Bs: Py =0 can only vanish (w.c.) for A4 = (sin @Aza4 +cos Bsaz)/(az sin @).
P = 0 yields the contradiction.

(ii) B4a5b5 (a4b3 — a3b4) —I—B5a4b4 (a3b5 — a5b3) =0:

e Assuming bsbs(asBs — asB4) # 0 we can compute a3. Now P; = 0 vanish (w.c.) for
b3 =0, bsBy — Bsby =0 or a; = 0 with i =4, 5.
(a) a; = 0: From P; = 0 we get B4. Py = 0 yields a contradiction.
(B) bz =0,a4as # 0: We get ag = as (sin 9Ag — cos @B4) /(A2 sin @) from Pj5 = 0. Now
Ps =0 can vanish (w.c.) for B4 = sin 9A4/ cos ¢ or by = bsB4/Bs. For both cases Ps =0
yields the contradiction.
(7) by = bsB4/Bs,bzasas # 0: Now Py = 0 implies a4 of (). Plugging this into P =0
yields the contradiction.

e b; =0 (i=4,5): Equ. (ii) can only vanish (w.c.) foras =0 or as = 0.
(a) For a; = 0 we compute B4 from Pis = 0. Now Ps = 0 only vanish (w.c.) for a3 =0,
aj=0or by =b;B3/B;. For all three cases equation Py = 0 yields the contradiction.
(B) aj = 0,a; # 0: Ps = 0 can only vanish (w.c.) for a3 = 0. From the only non-
contradicting factor of P; = 0 we compute Bs. Now P;5 = 0 can only vanish (w.c.) for
K3 =0 or B3 = B;. For K3 = 0 the equation Ps = 0 implies a, = ;. This yields solution
Sy for k = i with the additional condition K; = 0. For B3 = B; and K3 # 0 the equation
P, = 0 yields the contradiction.
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® (4 = asB4/35,b4b5 75 0:
(&) Assuming bsB4 — baBs # 0 we can compute as from Ps = 0. Now P; = 0 implies
by = [B3bs+b3(Bs — Bs)]/B3. Py = 0 implies B4 = sin A4/ cos ¢ and Py = 0 yields the
contradiction.
(B) by = bsB4/Bs: Now Ps = 0 can only vanish for a3 = 0 or b3 = B3bs/Bs. In both
cases we compute A from the only non-contradicting factor of P = 0. 3 = 0 yields the
contradiction.

Part [B2] K4 = 0 and byas — bsay = 0,K; #0:

(i) With as # 0 we can set by = bsas/as. Now P; = 0 vanishes without contradiction for
aq = O, a4B5 —B4a5 =0or K1b5 — K2A2a5 =0.

e as =0: As Ps =0 yields a contradiction if we set a3 = 0 or b3 = bsB3/Bs, we can
assume a3 (b3Bs — bsB3) # 0. Now we can compute A, from Ps = 0. P; = 0 implies A4.
P14 = 0 yields a contradiction.

e By = a4Bs/as,as # 0: For the same reason as above we can again assume a3 (b3Bs —
bsB3) # 0 and compute A, from Ps = 0. From the only non-contradicting factor of
Pis = 0 we compute Bs = (KyAsazas — Kzasbs)sin @ /(Krazascos @). Py = 0 can only
vanish without contradiction for b3 = 0 or F3[8] = 0.

(a) P, = 0 implies K3 = 0 for b3 = 0. Then Ps = 0 implies ap = a3 which corresponds
with solution S for k = 3 with the additional condition B4 = a4Bs/as.

(B) Now we can assume b3 # 0 for the case Fg = 0. We can compute B3 from Fg = 0.
Plugging this into P, = 0 yields the contradiction.

e Kibs—KyAras=0,a4 (a4B5 —B4a5) 75 0: Weset A, =K b5/(K2a5) and compute Ps = 0
which yields b3 = 0. From P; = 0 we get By = sin A4/ cos ¢ and plug this into P, =0,
which can only vanish (w.c.) for K3 = 0 or Bs = A4 sin ¢/ cos @, respectively.

(a) For K3 = 0 we obtain from Ps; = 0 the condition a; = a3, which corresponds with
solution S; for k = 3.

(B) Now we can assume K3 # 0 and set Bs = A4sin¢/cos ¢. Again P; = 0 implies
ap = az, but now Py = 0 yields a contradiction.

(ii) Assuming as = 0 yields bs =0 or as = 0.

e bs =0: We obtain By = [K»(a2A4 — asAz) + K1 ba) sin @ / (a2 K, cos @) from Pjs = 0. Now
P; =0 can only vanish for K1b; — K»Aza; = 0 with i = 3,4 or F;[4] = 0. If we set
a; = K1b;/(K»A7) the equation Py = 0 yields the contradiction. Therefore we compute
Bs from F; = 0 which yields B3 = b3[Kz(Asar — Azas) + K1byg)| sin @ /(azbaKs cos @).
Plugging this into P5 = 0 yields the contradiction.

e as=0,bs5 # 0: Now P; = 0 can only vanish (w.c.) for by = 0 or b5 = bsBs/B4. For both
cases Ps = 0 yields the contradiction.

Part [C] as = as,K4 #0
Now the condition of case II can only vanish (w.c) for K; =0 and a4 = 0.
(i) K; = 0: Ps = 0 can only vanish (w.c.) for as = —a,K4/(A2K3) or by = Babs/Bs.

® ay,= —a2K4/(A2K2): We get By = (KxAy +K4) sin@/(K, cos (p) from P; = 0. Now Py =
0 can only vanish (w.c.) for b3 = 0.
(a) K3z # 0: We can compute by from the only non-contradicting factor F4[9] = 0 of
Py = 0. Moreover if we assume as(ay —az) # 0 we can compute Bs from Fy[5] = 0,
which is the only factor of P; = 0, which does not yield a direct contradiction. Plugging
this into P = 0 yields the contradiction. For both remaining cases (a3 = 0 and a; = a3)
the equation Fg = 0 already yields the contradiction.
(B) K3 = 0: Now Fy = 0 can only vanish (w.c.) for A, = —K4 /K or Bs = sin ¢(KyA4 +
K4)/(Kycos ). For A, = —K4/K; the equation Ps = 0 implies a3 = 0, which yields
solution S, for k = 3 with the additional condition K; = K3 = 0. Now we can assume
Ay # —K4 /K, and set Bs = sin @(K»A4+ K4) /(K> cos @). From Ps = 0 we can compute
B3. Plugging this into P, = 0 yields the contradiction.
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° b4 = B4b5/35,(l4 75 —a2K4/(A2K2): We get By = (02A4 — a4A2) sin (P/(az COS (p) from
P; =0. Now P4 = 0 can only vanish (w.c.) for as = 0 or a4 = a,. For both cases we com-
pute Bz from the non-contradicting factor of Pjg = 0 and plug the obtained expression
into P; = 0 which yields the contradiction.

(ii) a4 = 0,K; # 0: As Ps = 0 yields the contradiction if we set by = bsB4/Bs, we can

assume byBs — bsB4 # 0. Now we can compute ap from Ps = 0. P; = 0 can only vanish

(w.c.) for b; =0 (i, j € {4,5}, i # j). Then Pi4 = 0 can only vanish (w.c.) for K (b; —b3) +

AsazK, = 0 and a second factor Fi4 = 0.

e If we solve Fi4 = 0 for B4 we get from P, = 0 the condition K; = —K3. From P3 =0
we compute b3 and plug the obtained expression into Pj7 = 0, which can only vanish
(w.c.) for A, = —K4 /K. This corresponds with solution S, for k = i with the additional
condition a; = 0.

o Ay =K (b3 —bj)/(K>az),Fi4 # 0: From Pig = 0 we get K; = —K3. P; = 0 yields the
contradiction.

CaseIll) b; =0fori=4,5
For b; = 0 the factor R, simplifies to
Ry := b3bja,~B,~ [K4a2 (a3 — Clj) + K (b3aj - bjag)] (62)

with i, j € {4,5} and i # j. Therefore the two possibilities are a; = 0 or Kyaz(a3 —a;) +
Ki(b3aj—bjaz) = 0. The later was already done in case II just for another indexing. There-
fore we obtain the same solutions as in case II just for another index k.

The remaining discussion of a; = 0 can be done under the assumption Ksas(as — as) +
K (bsas — bsas) # 0 due to case IL. If we consider Pjs = 0 and P = 0 we see that these
equations can only vanish (w.c.) for K; = —K3 and A, = —K4/K; or for the common factor
G=0.

Part [A] G = 0: From this equation we compute By.

(i) K7 # 0: We can compute b3 from Py = 0. From Ps = 0 we get a;.

o Assuming K>As(a2Ks+b;jK3) — K4(K1bj — asKa) # 0 we can compute B3 from Ps = 0.
P, = 0 yields the contradiction.

o KrAr(axKy —|—ij3) — K4(K1bj — a2K4) =0:
(o) Assuming A»K, + K4 # 0 we can compute ay. P; = 0 yields the contradiction.
(B) A, = —K4 /K, implies K} = —K3. We get solution S, for k = i.

(i) K; = 0: Now we can compute a3 from Py = 0. From Ps = 0 we get a, = —K2A2aj/K4.

e K3 # 0: We compute a; from P4 = 0. Then Ps = 0 yields a contradiction.

e K3 =0: Now Py =0 can only vanish for Ay = —K4 /K,, which yield solution S, for k =i
with the additional condition Ky = K3 = 0, or B3 = B;. For the later P,y = 0 yields the
contradiction under the assumption A, # —K4/K>.

Part [B] K| = —K3,A, = —K4/K»,G #0:

(i) Assuming b3a;B; — b;Bszaz # 0 we can compute ap from Ps = 0. Now B = 0 can only

vanish (w.c.) for K3(bj — b3) — K4(a;j —az) = 0 or a second factor Fy = 0.

e aj = (K3(bj —b3) + Ksa3)/Ks: Now Py = 0 yields K3 = 0. Then the equation Py = 0
yields the contradiction.

o Fg =0,K3(bj — b3) — K4(aj —a3) # 0: From Fg = 0 we compute A4. P4 = 0 implies
a3z =0 and Ps = 0 yields the contradiction.

(ii) az = b3aij/(bjB3)Z From P5 =0we compute Bj = bjB3 [K3 (b3 —bj) —|—K4aj]/(K4ajb3).

Now P4 = 0 implies a» = (ajK4 — b ;K3)/K4. P; = 0 yields the contradiction.
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Case IV) a3 =0,N := bybs [K4a2(a4 — (15) + K (b4a5 — b5a4)] 75 0

Now R; splits up into asasbs(Kibs — Kaap)(bsBs — bsBy).

Part [A] b3 = 0: As Ps = 0 yields a contradiction if we set as = 0 or by = bsB4/Bs we can
assume as(baBs — bsB4) # 0. Now we can compute Ay from Ps = 0. Pj4 and P factors into
NCOll(3,4,5)B3B§F]4[8] and NC()ll(3,4,5)B3B§Fg [8] Computing Fg — 2F]4 =0 yields the
equation apasB4K,(baBs — bsBy) cos @ = 0 and therefore a contradiction.

Part [B] as = 0,b3 # 0: Assuming K;b3 — Kyap # 0 we can compute Bs from Ps = 0.
Py = 0 yields the contradiction. Therefore we assume Ky # 0 and set ap = K;b3/Ky. Ps =0
implies b3 = b4 and P; = 0 yields the contradiction. For K4 = 0 we get K{b3 which is a
contradiction.

Part [C] by = b3B4/Bs,asb; # 0: We can solve Ps = 0 for Bs. P; = 0 yields the contradiction.

Part [D] K b3 — Kaap, = 0,b3a5(bsBs — bsBs) # 0: We can assume Ky # 0 otherwise we
get a contradiction. So we can set ap = K;b3/K4. From Ps = 0 we can compute A;. Then
we compute A4 from the only factor of P; = 0 which does not yield a direct contradiction.
Now we can compute By from P; = 0. P;; = 0 yields the contradiction. End of all cases.

The close of the proof was already done by the author in [5], by showing that the solutions
S1 and S, imply contradictions for the choice of Mg and mg, respectively. This finishes the
proof of the given Theorem. (]

4 Conclusion

We proved that there do not exist non-architecturally singular Stewart Gough Platforms
with planar base and platform and no four anchor points collinear which possess a cylin-
drical singularity surface with rulings parallel to a given fixed direction p in the space of
translations.

A complete list of planar parallel manipulators with such a singularity surface is in
preparation [6].
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