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Abstract—In the general case the singularity loci of parallel
manipulators of Stewart Gough type is a cubic surface in the
space of translations. In [G. Nawratil, Stewart Gough platforms
with non-cubic singularity surface, Technical Report No. 204,
Geometry Preprint Series, Vienna University of Technology
(2010)] all manipulators with a non-cubic singularity surface were
characterized. Based on this result we determine the whole set of
parallel manipulators of Stewart Gough type possessing a linear
singularity surface. These manipulators have the advantage, that
their singularity surface can easily be visualized because it is
a plane for any orientation of the platform. We also give a
geometric interpretation of these manipulators.

I. INTRODUCTION

A parallel manipulator of Stewart Gough type consists
of two systems, namely the platform Σ and the base Σ0,
which are connected via six Spherical-Prismatic-Spherical (or
Spherical-Prismatic-Universal) joints. The geometry of such a
manipulator is given by the six base anchor points Mi ∈ Σ0

with coordinates Mi := (Ai, Bi, Ci)T and by the six platform
anchor points mi ∈ Σ with coordinates mi := (ai, bi, ci)T . By
using Euler parameters (e0, e1, e2, e3) for the parametrization
of the spherical motion group SO(3) the coordinates m′

i of
mi with respect to the fixed space can be written as m′

i =
H−1R ·mi + t with the translation vector t := (t1, t2, t3)T ,
the homogenizing factor H := e2
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It is well known that a Stewart Gough platform (SG
platform) is singular if and only if the carrier lines of the
prismatic legs belong to a linear line complex. This is the
case if Q := det(Q) = 0 holds, whereas the ith row of the
6× 6 matrix Q equals the Plücker coordinates li := (li, l̂i) :=
(m′

i −Mi,Mi× li) of the ith carrier line.
Moreover it should be mentioned that we denote the coef-

ficients of ti1t
j
2t

k
3 of Q by Qijk. The coefficients of ea

0eb
1e

c
2e

d
3

of Qijk are denoted by Qijk
abcd.

A. Motivation and related work

From the design point of view, it is desirable to have a
graphical representation of the singularity set of SG platforms,
because it simplifies the identification of the singular loci
within the given workspace. As it is impossible to represent
the singularity surface in 6-dimensional space graphically, only

the visualization of 3-dimensional subspaces make sense. This
can be done for a general SG platform according to [11].

Usually one fixes the orientational part and visualizes the
singularity surface which is in the general case a cubic
surface in the translation parameters t1, t2, t3. The drawback
of surfaces of degree 3 is that they can have very complicated
shapes. Therefore it is desirable for designers to handle only
with parallel manipulators of SG type which have a simple
singularity surface for any orientation of the platform.

The best, one can think of in this context, are non-
architecturally singular parallel manipulators those singularity
set for any orientation of the platform is a cylindrical surface
with rulings parallel to a given fixed direction p in the space
of translations. In this case the singularity set can easily be
visualized as curve by choosing p as projection direction. In
addition the computation of singularity free zones reduces to
a 5-dimensional task (cf. LIE ET AL. [12]). In NAWRATIL [13]
and [14] it was shown, that planar SG platforms possessing
such a cylindrical singularity surface must have 4 collinear
anchor points. Finally it was proven by the author in [16] that
there only exist two planar manipulator designs with such a
property, namely:

(i) m1 = m2, m3 = m4, m5 = m6 and [M1, M2] ‖ [M3, M4] ‖
[M5, M6] ‖ p,

(ii) [M5, M6] ‖ [M1, . . . , M4] ‖ p, m5 = m6, M1, M2, M3, M4

and m1, m2, m3, m4 are collinear.

The determination of the whole set of non-planar parallel
manipulators with a cylindrical singularity surface is still an
open problem, but there are good reasons to conjecture that
this set consists of only one element, namely manipulator (i)
without planar base.

Unfortunately, the set of SG platforms with a cylindrical
singularity surface has only a very limited variety due to the
above given conditions on the design parameters. Therefore
one has to look for manipulators with other simple singularity
surfaces. KARGER [7] suggested to use SG platforms with
a quadratic singularity surface because all types of quadrics
have well known and rather simple shapes. Moreover this
property simplifies the computation of singularity free zones in
the space of translations (for a fixed orientation) considerably,
as the problem reduces to the minimization of a quadratic
function under a quadratic constraint (cf. FLETCHER [3]).

In [19] the following main theorem of SG platforms with
non-cubic (i.e. linear or quadratic) singularity surface was
given by the author:



Theorem 1. A non-architecturally singular SG platform pos-
sesses a non-cubic singularity surface if and only if rk(M) <
5 holds with

M =

1 a1 b1 c1 A1 B1 C1

...
...

...
...

...
...

...
1 a6 b6 c6 A6 B6 C6

 . (1)

In addition it was shown in [19] that this main theorem
possesses the following geometric interpretation:

Theorem 2. A non-architecturally singular SG platform pos-
sesses a non-cubic singularity surface if and only if there exists
a affine correspondence between the platform and the base or
if the manipulator is planar with rk(M) = 41.

Remark 1. For the characterization of architecturally singular planar
SG platforms we refer to KARGER [6], NAWRATIL [15], RÖSCHEL

AND MICK [20] as well as WOHLHART [21]. For the non-planar case
we refer to KARGER [8] and NAWRATIL [17]. �

Based on these theorems we determine all manipulators with
a linear singularity surface, whereas we distinguish between
planar SG platforms (cf. Section 2) and non-planar ones (cf.
Section 3).

II. PLANAR SG PLATFORMS

Theorem 3. A non-architecturally singular SG platform with
planar platform and base possesses a linear singularity sur-
face if and only if there exists a affinity between corresponding
anchor points.

Proof: The fact that planar parallel manipulators of SG type
with affine equivalent platform and base possess a linear
singularity surface was already demonstrated by KARGER [7].
The proof that these are the only planar manipulators with this
property is split up into the following 2 cases:

• No four anchor points are collinear:
For the proof of this part we will not invest that rk(M) = 4
must hold due to Theorem 2.

Without loss of generality (w.l.o.g.) we can choose co-
ordinate systems in the platform and the base such that
A1 = B1 = B2 = a1 = b1 = b2 = 0 and ci = Ci = 0
for i = 1, . . . , 6 hold. Moreover due to Lemma 1 of [6] and
Lemma 2 of [18] we can assume

a2A2B3B4B5(a3 − a4)(b3 − b4)coll(m3,m4,m5) 6= 0, (2)

whereas coll(x, y, z) 6= 0 denotes the collinearity condition of
the points x, y and z.

Therefore we can perform the elementary matrix manipu-
lation of Q given by KARGER [6]. We end up with l6 :=
(v1, v2, v3, 0,−w3, w2) with

vi := ri1K1 + ri2K2, wj := rj1K3 + rj2K4,

1According to KARGER [9] no special geometric properties for these planar
parallel manipulators of SG type were known so far.

and

K1 = |A,B,Ba,Bb,a|, K3 = |A,B,Ba,Bb,Aa|,
K2 = |A,B,Ba,Bb,b|, K4 = |A,B,Ba,Bb,Ab|,

(3)

and

X =

X2

...
X6

 , y =

y2

...
y6

 , Xy =

X2y2

...
X6y6

 . (4)

Due to Eqs. (12) and (13) of [13] the expression K1 and K2

must vanish. Therefore we set K1 and K2 equal to zero and
compute Q in dependency of K3 and K4. Then we get

Q200 = a2A2r13(r31K3 + r32K4)F [24],

Q020 = A2r23(r31K3 + r32K4)G[48],
(5)

whereas the numbers in the brackets give the numbers of
terms of the non-explicitly given factors F and G. Now we
denote the coefficients of ea

0eb
1e

c
2e

d
3 of F resp. G by Fabcd

resp. Gabcd. W.l.o.g. we can solve F1010 = 0 for b5. Then
F1100 = 0 can only vanish without contradiction (w.c.) for
b3 = b4B3/B4. W.l.o.g. we can express a5 from G1100 = 0.
Then we can compute A4 from the only non-contradicting
factor of G1010 = 0. Now K2 = 0 implies b6 = b4B6/B4

and K1 = 0 can be solved for a6 w.l.o.g.. As a consequence
we get rk(M) = 3 which indicates that there exists a affinity
between the platform and the base (cf. [9]). This finishes the
discussion of this case.

• Four anchor points are collinear:
First of all, we compute those planar SG platforms with four
collinear anchor points which yield rk(M) = 4 (cf. Theorem
2). W.l.o.g. we can set A1 = B1 = B2 = B3 = B4 = a1 =
b1 = b2 = 0, i.e. M1, . . . ,M4 are collinear. An elementary
case study shows that there exist the following two non-
architecturally singular cases (up to renumbering):
a) b3 = b4 = 0 and b5 = b6B5/B6,
b) A4 = [b4(a2A3 − a3A2) + a4b3A2]/(a2b3) and A5 =

[a2b3A6B5 + A2B6(a5b3 − a3b5)−A2B5(a6b3 − a3b6) +
a2A3(b5B6 − b6B5)]/(a2b3B6).

For these two cases we show that the coefficients Qijk with
i + j + k = 2 cannot vanish w.c.:
ad a) For this case Q020 can only vanish w.c. for a5 = a6

and B5 = B6 (⇒ m5 = m6). Then Q002 = 0 already
yields the contradiction.

ad b) In this case Q200 factors into

r13B5B6((a5 − a6)r31 + (b5 − b6)r32)L[20]. (6)

1. B5 = 0: Then Q101 cannot vanish w.c..
2. a5 = a6, b5 = b6 (⇒ m5 = m6): Q101 cannot vanish w.c..
3. L[20] = 0: Computation of L1100 yields

b4[A2(a4b3 − a3b4)− a2A3(b3 − b4)]. (7)

As for b4 = 0 we get the contradiction from L1010 = 0 we
set the remaining factor equal to zero.



i. A2 6= 0: Under this assumption we can express a4

from this condition. Again L1010 = 0 yields the
contradiction.

ii. A2 = 0: Now the condition can only vanish w.c. for
b3 = b4. Again L1010 = 0 yields the contradiction.
This finishes the proof of Theorem 3. �

Remark 2. In the case with 4 collinear anchor points we only
end up with contradictions as planar SG manipulators with affine
equivalent platform and base and 4 collinear anchor points are already
architecturally singular. The reason for this is that the carrier lines of
the legs through these 4 collinear anchor points always belong to a
regulus (cf. item 8 of Theorem 3 in [8]). �

III. NON-PLANAR SG PLATFORMS

Due to Theorem 2 we know that non-planar parallel ma-
nipulators of SG type possess a non-cubic singularity surface
if and only if there is a affine correspondence between the
platform and the base anchor points. Moreover the following
two lemmata hold:

Lemma 1. A non-planar parallel manipulator of SG type
possessing a linear singularity surface has to have 3 collinear
anchor points.

Proof: KARGER proved in Theorem 1 of [8] that a non-
planar architecturally singular SG platform has to possess 3
collinear anchor points. He only used coefficients of Qijk with
i+j+k > 1 for the proof of this theorem and therefore Lemma
1 is valid. �

Lemma 2. A non-planar parallel manipulator of SG type
possessing a linear singularity surface has to have 4 collinear
anchor points.

Proof: KARGER proved in Theorem 2 of [8] that a non-planar
architecturally singular SG platform has to possess 4 collinear
anchor points. In his proof (done by contradiction) he only
used in one case the coefficients of Q100 = 0. In all other cases
he used coefficients of Qijk with i + j + k > 1. Therefore
we only have to prove that in the one mentioned case the
contradiction can also be concluded from coefficients of Qijk

with i + j + k > 1. This can be done as follows:
This special case equals case (IIa) in the proof of Theorem

2 of [8]. The case is given by:

A1 = B1 = B2 = B3 = a1 = b1 = b2 = b3 = 0,
Ci = c1 = c2 = c3 = c4 = 0 for i = 1, . . . , 6,

A3 = a3A2/a2, B5 = B6, A5 = A4(c6 − c5)/c6,

and x6 = (x5 − x4)c6/c5 + x4 for x = a, b.

(8)

Now Q factors into:

A2a3B6(a2 − a3)S[10705]/(a2c5c6). (9)

Then S003 can only vanish w.c. for A6 = 0. Then S101 yields
the contradiction. This finishes the proof of Lemma 2. �

Theorem 4. There do not exist non-planar parallel manipu-
lators of SG type with a linear singularity surface.

Proof: W.l.o.g. can choose coordinate systems in the platform
and base such that

A1 = B1 = B2 = a1 = b1 = b2 = 0,

C1 = C2 = C3 = c1 = c2 = c3 = 0,
(10)

hold. Due to Theorem 2 there exists a affinity κ between
corresponding anchor points. W.l.o.g. we can assume that
M1,M2,M3,M4 are not coplanar, i.e. A2B3C4 6= 0. Now the
matrix K of κ mapping Mi 7→ mi for i = 1, . . . , 4 equals: a2

A2

a3A2−a2A3
A2B3

B3(a4A2−a2A4)+B4(a2A3−a3A2)
A2B3C4

0 b3
B3

b4B3−b3B4
B3C4

0 0 c4
C4

 . (11)

Due to Lemma 2 there also exist four collinear anchor points.
If these four points are base anchor points then the manipulator
is architecturally singular for the same reason as given in
Remark 2.

Therefore κ has to be a singular affinity with 4 collinear
platform anchor points. W.l.o.g. we can assume that the planar
platform is located in the xy-plane; i.e. c4 = 0. Moreover we
can assume that 3 points from m1, . . . ,m4 are not collinear.
W.l.o.g. we can assume that these points are m1,m2,m4, i.e.
a2b4 6= 0. Now we are left with the following possibilities:
a. mi,mj ,m5,m6 collinear,
b. mi,mj ,m3,mk collinear,
c. mi,m3,m5,m6 collinear,
with i, j ∈ {1, 2, 4}, i 6= j and k ∈ {5, 6}.

• Discussion of case a:
W.l.o.g. we can set i = 1 and j = 2. We solve equation
bk = 0 for Bk which yields: Bk = (b4B3 − b3B4)Ck/(b3C4)
for k = 5, 6.2 Then the computation of Q200

5001 yields
a2b4A2B

2
3C2

4C5C6T [10] with

T := a2b3[C4(A5 −A6)−A4(C5 − C6)]
+[A2(a4b3 − a3b4) + a2b4A3](C5 − C6).

(12)

Therefore we have to distinguish the following 2 cases:
1. C5C6 = 0: W.l.o.g. we can set C5 = 0. Now Q020

5010 can
only vanish w.c. for a3 = a2A3/A2. Then Q200

4020 = 0
implies b4 = b3B4/B3. Finally Q200

4011 = 0 yields the
contradiction.

2. T = 0, C5C6 6= 0: We can solve T = 0 for A5 w.l.o.g..
Then Q200

4011 = 0 cannot vanish without contradiction.

• Discussion of case b:
W.l.o.g. we can set i = 1, j = 2 and k = 5. We get b3 =
C5 = 0. Then Q200

5010 yields a2b4A2B
2
3C2

4B5C6(C4−C6)R[4]
with

R := a2(A3B5 −A5B3) + a3A2(B3 −B5). (13)

Therefore we have to distinguish the following 4 cases:
1. C6 = 0: This yields the collinearity of m1,m2,m3,m5,m6.

Moreover Q200
0303 cannot vanish w.c..

2As b3 is in the denominator of Bk we loose the case m1, m2, m3, m5, m6

collinear, but this case is discussed in case b, item 1.



2. B5 = 0, C6 6= 0: Now Q200
4020 can only vanish w.c. for

C4 = C6. Then Q020
4020 yields:

a2b4A2B
2
3C3

6A5(A2−A5)(A4−A6)(a2A3−a3A2). (14)

We must distinguish two cases:
i. A4 = A6: Then Q020

4110 = 0 implies a3 = a2A3/A2.
Now Q200

3030 can only vanish w.c. for a4 = a2A3/A2.
Finally Q200

3120 = 0 yields the contradiction.
ii. a3 = a2A3/A2, A4 6= A6: Then Q200

3030 = 0 can only
vanish w.c. for

a2[B6(A3+A4)−B4(A3+A6)]+a4A2(B4−B6) = 0.

Assuming B4 6= B6 we can express a4 from this
equation. Then Q200

3120 = 0 yields the contradiction.
For B4 = B6 this condition can only vanish w.c.
for B6 = 0. In this case Q200

3021 = 0 yields the
contradiction.

3. C4 = C6, B5C6 6= 0: Now Q200
4110 yields

a2b4A2B
2
3B5C

3
6 (B4 −B6)R[4]. (15)

We must distinguish two cases:
i. B4 = B6: Now Q200

4020 and Q020
4110 can only vanish for

R = 0 or Ai = −ai for i = 2, 3. As for R = 0 we get
the contradiction from Q200

3021 = 0 we set A2 = −a2

and A3 = −a3. Then Q200
3120 = 0 implies A5 = A3 and

finally Q200
3021 = 0 yields the contradiction.

ii. R = 0, B4 6= B6: W.l.o.g. we can solve R = 0 for
A5. Then Q200

3120 = 0 cannot vanish w.c..
4. R = 0, B5C6(C4 − C6) 6= 0: In this case we get the

contradiction from Q200
4020 = 0.

• Discussion of case c:
If m1, . . . ,m4 form a quad then we can renumerate the
points such that m1,m2,m5,m6 are collinear (see case a).
The same can be done if m3 is located on a side of the
triangle m1,m2,m4 whereas m3 does not coincide with one
of the vertices. Therefore we only have to discuss the case:
mi = m3,m5,m6 collinear with i ∈ {1, 2, 4}. W.l.o.g. we can
set i = 1 which implies a3 = b3 = 0. We compute a5b6−a6b5

which can only vanish w.c. for

C6(A3B5 −A5B3) + C5(A6B3 −A3B6) = 0. (16)

For C5 = C6 = 0 we get a special case of case b, item 1.
For the case Ci = 0 and A3Bi − AiB3 = 0 with i ∈ {5, 6}
we already get an architecturally singular manipulator as m1 =
m3 = mi and M1,M3,Mi are collinear (cf. item 6 of Theorem
3 in [8]). Therefore only the discussion of the cases C5C6 6= 0
remains:

Under this assumption we can solve Eq. (16) for A4 w.l.o.g..
Then Q200

5001 can only vanish w.c. for (C5−C6)P [4] = 0 with

P := C6(A3B4 −A4B3) + C4(A6B3 −A3B6) = 0. (17)

1. C5 = C6: Now Q020
5010 can only vanish w.c. for:

i. A3 = 0: As for C4 = C6 the coefficient Q200
4101 yields

the contradiction, Q200
5010 can only vanish for:

a2(A6C4 −A4C6) + a4A2C6 = 0. (18)

W.l.o.g. we can express A6 from this condition. Then
Q200

4101 = 0 implies a4 = 0 and from Q200
4110 = 0 we get

A4 = 0. Finally Q200
4011 = 0 yields the contradiction.

ii. P = 0, A3 6= 0: W.l.o.g. we can solve P = 0 for
A6. As for C4 = C6 the coefficient Q020

5010 yields the
contradiction, Q200

5010 can only vanish for:

a2(B6C4 −B4C6) + b4A2C6 = 0. (19)

From this equation we can express B6. Then Q020
5010 =

0 implies a4 = A3b4/B3 and Q200
4020 = 0 yields A4 =

B4A3/B3. Finally Q200
4011 cannot vanish w.c..

2. P = 0, C5 6= C6: W.l.o.g. we can express A6 from P = 0.
Then Q200

5010 can only vanish w.c. for a4 = A3b4/B3. Then
Q200

4011 = 0 yields the contradiction. �

IV. MAIN THEOREM

The results of section 2 and 3 can be summed up into the so-
called main theorem of SG platforms with a linear singularity
surface:

Theorem 5. A parallel manipulator of SG type possesses a
linear singularity surface if and only if the platform and base
are planar and affine equivalent and neither the base nor the
platform anchor points are located on a (degenerated) conic
section.

Proof: Due to Theorem 3 and 4 there exists a affinity κ
between corresponding anchor points of the planar platform
and planar base. κ has to be regular because otherwise one set
of anchor points is at least located on a line, which corresponds
to an architecturally singular design.

Moreover we can again choose coordinate systems in the
platform and the base such that A1 = B1 = B2 = a1 =
b1 = b2 = 0 and ci = Ci = 0 for i = 1, . . . , 6 hold. We can
also assume that M1,M2,M3 are not collinear, i.e. A2B3 6= 0.
Then the matrix K of κ mapping Mi 7→ mi for i = 1, 2, 3
equals:  a2

A2

a3A2−a2A3
A2B3

0
0 b3

B3
0

0 0 0

 . (20)

Now the determinant Q of the Jacobian factors into
a2b3HW1[48]W2[12]W3[32] = 0, whereby a2b3 = 0 implies
a singular affinity κ.

W1 only depends on the design parameters and its geometric
meaning is that the six base anchor points are located on a
conic section. Therefore W1 = 0 corresponds to an architec-
turally singular design. This is also true if one replaces the
affinity κ by a projectivity. This even more general statement
is very well known from the beginning of the 20th century
(cf. BOREL [1] and BRICARD [2]).



The factor W2 is independent of the translation parameters
and is given by:

r13r31U + r23r31a2B3 − r13r32A2b3 (21)

with U := a2A3 − a3A2. The factor W3 is linear in the
translation parameters and it can be written as αt1 +βt2 +γt3
with:

α = a2(r13b3 + r31B3), β = b3(a2r23 + A2r32)− r31U,

γ = r21U + A2(B3H − b3r22)− a2(B3r11 − b3r33).

It can immediately be seen that W2 or W3 cannot vanish for
all poses of the platform if κ is regular (see also KONG AND
GOSSELIN [10]). �

Remark 3. It was shown by KARGER in [5] that planar parallel
manipulators with affinely equivalent platform and base (for the
special cases of equiform and congruent platforms see [4] and
[9], respectively) have self-motions only if they are architecturally
singular, i.e. if the anchor points are located on a conic section.
Moreover it should be noted, that such manipulators can only have
translatory self-motions. For more details on these self-motions we
refer to the above cited papers of KARGER and to [10]. �

It should also be noted that the computation of singularity
free zones in the space of translations is a very simple task
for planar manipulators with affinely equivalent platform and
base. For a fixed orientation the signed distance to the next
singularity is given by the Hessian normal form of the plane
αt1 + βt2 + γt3. Therefore the radius r > 0 of the largest
singularity free sphere is given by

r :=

∣∣∣∣∣αt1 + βt2 + γt3√
α2 + β2 + γ2

∣∣∣∣∣ . (22)

As a consequence of Theorem 2 and 5 we can also characterize
manipulators with a quadratic singularity surface:

Corollary 1. A non-architecturally singular SG platform
possesses a quadratic singularity surface if and only if the
manipulator is planar and rk(M) = 4 holds or if the
manipulator is non-planar and there is a (regular or singular)
affinity between corresponding anchor points.

V. CONCLUSION

In the general case the singularity loci of parallel manipula-
tors of Stewart Gough type is a cubic surface in the space of
translations. Based on the set of SG platforms with a non-
cubic singularity surface given by the author in [19], we
determined all parallel manipulators of Stewart Gough type
possessing a linear singularity surface. These manipulators are
characterized by the fact that there exists a regular affinity
between corresponding anchor points of the planar platform
and planar base (cf. Theorem 5).

Moreover, these manipulators have the advantage, that their
singularity surface can easily be visualized because it is a plane
for any orientation of the platform. The radius of the largest
singularity free sphere in the space of translations (for a fixed
orientation) can be given explicitly (cf. Eq.(22)).

As a side product of Theorem 5 and the results of [19] we
also characterized parallel manipulators of Stewart Gough type
with a quadratic singularity surface (cf. Corollary 1).
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