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Abstract

We present a set of planar parallel manipulators of Stewart Gough type which are
singular with respect to the Schönflies group X(a) without being architecturally
singular. This set of so called Schönflies-singular planar parallel manipulators is
characterized by the property that the carrier plane of the platform or of the base
anchor points is orthogonal to the rotational axis a of the Schönflies group X(a). By
giving the necessary and sufficient conditions we provide a complete classification
of this set. Beside this algebraic characterization we also present a geometric one.
Moreover we discuss the self-motional behavior of these manipulators and prove
that they possess a quadratic singularity surface.
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1 Introduction

In this article we discuss a class of planar parallel manipulators of Stewart
Gough type which are singular with respect to the Schönflies motion group
X(a). This 4-dimensional group, which is named after the German geometer
Arthur Moritz Schönflies (cf. [20,21]), is the largest subgroup of the Special
Euclidean motion group SE(3) and includes three linearly independent trans-
lations and all rotations about a fixed axis a.

A planar parallel manipulator of Stewart Gough type consists of two systems,
namely the platform Σ and the base Σ0, which are connected via six Spherical-
Prismatic-Spherical (or Spherical-Prismatic-Universal) joints. The geometry
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of such a manipulator is given by the six base anchor points Mi ∈ Σ0 with
coordinates Mi := (Ai, Bi, 0)T and by the six platform anchor points mi ∈ Σ
with coordinates mi := (ai, 0, bi)

T . By using Euler parameters (e0, e1, e2, e3)
for the parametrization of the spherical motion group SO(3) the coordinates
m′

i of mi with respect to the fixed space can be written as m′
i = K−1R·mi + t

with

R := (rij) =


e2
0 + e2

1 − e2
2 − e2

3 2(e1e2 − e0e3) 2(e1e3 + e0e2)

2(e1e2 + e0e3) e2
0 − e2

1 + e2
2 − e2

3 2(e2e3 − e0e1)

2(e1e3 − e0e2) 2(e2e3 + e0e1) e2
0 − e2

1 − e2
2 + e2

3

 , (1)

the translation vector t := (t1, t2, t3)
T and K := e2

0 + e2
1 + e2

2 + e2
3.

It is well known (see e.g. [10]) that a Stewart Gough platform is in a singular
position if and only if the carrier lines of the prismatic legs belong to a linear
line complex C, or analytically seen, if Q := det(Q) = 0 holds, where the
ith row of the 6× 6 matrix Q equals the Plücker coordinates li := (li, l̂i) :=
(m′

i −Mi,Mi× li) of the ith carrier line.

1.1 Preliminary considerations and overview

Definition 1 A Stewart Gough platform is called Schönflies-singular (or more
precisely X(a)-singular) if there exists a Schönflies group X(a) such that the
manipulator is singular for all transformations from X(a) (applied to the mov-
ing part of the SG platform).

A special class of Schönflies-singular manipulators are the architecturally sin-
gular ones (cf. Ma and Angeles [9]) because they are singular with respect to
any Schönflies group. As architecturally singular manipulators are already
classified (cf. Karger [4,6], Mick and Röschel[11,19], Nawratil [14,15]) and
Wohlhart [23]) we are only interested in Schönflies-singular manipulators which
are not architecturally singular.

For the determination of X(a)-singular planar parallel manipulators we dis-
tinguish the following cases depending on the angles between the axis a and
the carrier plane Φ of the base anchor points and the carrier plane ϕ of the
platform anchor points, respectively. By setting α := ∠(a, Φ) ∈ [0, π/2] and
β := ∠(a, ϕ) ∈ [0, π/2] the classification can be done as follows:

(1) α 6= β
(a) α = π/2 and β ∈ [0, π/2[ (b) α ∈ [0, π/2[ and β ∈ [0, π/2[

(2) α = β
(a) α = π/2 (b) α ∈]0, π/2[ (c) α = 0
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Every Schönflies-singular manipulator belongs to one of these cases (after ex-
changing the platform and the base).

In this paper we give a complete classification of case (1a). The presented so-
lution set is remarkable because it turns out (cf. [16]) that these are the only
Schönflies-singular planar manipulators with α 6= β aside from the architec-
turally singular ones. Moreover it should be noted, that the special cases (i.e.
α = β) of Schönflies-singular planar Stewart Gough platforms are given in
[17]. Therefore we also close the discussion of Schönflies-singular planar par-
allel manipulators which was started by Wohlhart [22] by giving an example
(polygon platform) for a X(a)-singular planar SG platform of case (2a).

As α 6= β holds there always exist a common line s of ϕ and Φ and therefore
we can apply the following lemma given by Mick and Röschel [11]:

Lemma 1 If the connecting lines of Mi ∈ Φ and mi ∈ ϕ of two intersecting
planes Φ and ϕ belong to a linear line complex, then this property remains
unchanged under rotations of the planes about their intersection line.

As Φ is orthogonal to the axis a the rotations about a and the line s com-
mute. Therefore the solution set of case (1a) does not depend on β and we
can assume β = 0. This is the reason for choosing ϕ as the xz-plane of Σ, i.e.
mi = (ai, 0, bi)

T while a equals the z-axis (i.e. e1 = e2 = 0). As a consequence
the solution of our problem corresponds to those non-architecturally singular
manipulators which cause Q = 0 for all values of t1, t2, t3, e0, e3.

1 The dis-
cussion of the resulting set of equations is split up into the following parts:
The case study is started in Sec. 2, where we assume that there do not exist
4 collinear anchor points. In Sec. 3 resp. Sec. 4 we assume that at least 4 base
anchor points resp. platform anchor points are collinear. In Sec. 5 we give a
geometric characterization of the computed set and in Sec. 6 we discuss its
self-motional behavior. We close the article by giving a final example.

1.2 Notation

Beside the term Schönflies-singular, we also introduce a new notation in the
study on singularities of parallel manipulators. We denote the determinant of
certain j× j matrices as follows:

|X,y, . . . ,Xy|(i1,i2,...,ij) := det(X(i1,i2,...,ij),y(i1,i2,...,ij), . . . ,Xy(i1,i2,...,ij)) (2)

1 Nevertheless the Schönflies group has 4 parameters we have five unknowns
t1, t2, t3, e0, e3 as the rotational part is homogenized.
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with X(i1,i2,...,ij) =



Xi1

Xi2

...

Xij


, y(i1,i2,...,ij) =



yi1

yi2

...

yij


, Xy(i1,i2,...,ij) =



Xi1yi1

Xi2yi2

...

Xijyij


(3)

and (i1, i2, . . . , ij) ∈ {1, . . . , 6} with i1 < i2 < . . . < ij. Moreover it should be

noted that we write |X,y, . . . ,Xy|iji1 if ik+1 = ik + 1 for k = 1, . . . , j − 1 hold.
This notation helps considerably proving the given theorems and its clarity
allows a deeper insight into the geometry of the manipulator.

Moreover c(i,j,k) := |1, a,b|(i,j,k) = 0 and C(i,j,k) := |1,A,B|(i,j,k) = 0 express
the collinearity of the points mi, mj, mk and Mi, Mj, Mk, respectively.

It should also be said that in the later done case study we always factor out the
homogenizing factor K if possible. Moreover we give the number n of terms of
a not explicitly given polynomial F in square brackets, i.e. F [n]. The notation
F uv

ijk denotes the coefficient of ti1t
j
2t

k
3e

u
0e

v
3 of F [n]. Moreover we only consider

such coefficients where u + v equals the degree of F with respect to e0 and e3

(after factoring out the homogenizing factor K as often as possible).

2 No four anchor points are collinear

The following lemma is a modified version of the one presented by Karger [4]:

Lemma 2 For any planar parallel manipulator with no four anchor points
collinear, we can choose Cartesian coordinate systems in Σ and Σ0 in such
a way that A1 = B1 = B2 = a1 = b1 = 0 and |A,B,Ba,Bb|52 6= 0 hold.
Moreover we can assume |A,B,Ba|42 6= 0 and |A,B,Bb|42 6= 0.

Proof: For the proof of |A,B,Ba,Bb|52 = A2B3B4B5c(3,4,5) 6= 0 we refer to
[4]. As the points m3, m4, m5 are not collinear we can relabel them such that
(b3 − b4)(a3 − a4) 6= 0. This already yields the proof. �

Beside this lemma we also need the following abbreviations for the formulation
of Theorem 1:

K1 := |A,B,Ba,Bb, a|62, L1 := |A,B,Bb, a|52,
K2 := |A,B,Ba,Bb,b|62, L2 := |A,B,Bb,b|52,
K3 := |A,B,Ba,Bb,Aa|62, L3 := |A,B,Bb,Ab|52,
K4 := |A,B,Ba,Bb,Ab|62.

(4)

Theorem 1 For a planar Stewart Gough platform with no 4 collinear base
anchor points we can assume Cartesian coordinate systems such that Lemma
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2 hold. Then a non-architecturally singular manipulator, where a is orthogonal
to Φ and parallel to ϕ, is X(a)-singular in one of the following cases (after
permutation of indices): Compute A6 from K1 = 0 and A5 from L1 = 0.

1. Compute a6 from K2 = 0 and a5 from L2 = 0. Moreover we compute A4
from L3 = 0 and one equation remains:

b23b24(B3 − B4)B5B6(b5 − b6) − b23b25(B3 − B5)B4B6(b4 − b6) + b23b26(B3 − B6)B4B5(b4 − b5)+

b24b25(B4 − B5)B3B6(b3 − b6) − b24b26(B4 − B6)B3B5(b3 − b5) + b25b26(B5 − B6)B3B4(b3 − b4)+

b2
[
B3|b,B,Bb|64 − B4|b,B,Bb|(3,5,6) + B5|b,B,Bb|(3,4,6) − B6|b,B,Bb|53

]
= 0.

(5)

2. We set b2 = 0, compute B5 from L2 = 0 and a5 fom L3 = 0.
a. B6 = b6 = 0.
b. We compute B6 from K2 and one equation remains:

A2B3[a6b4(b3 − b6) − a4b3b6] − A2B4[a6b3(b4 − b6) − a3b4b6]

+b26|a,A,B|42 + a2(b3b4 − b4b6 − b3b6)|A,B|43 = 0.
(6)

Proof: We split the proof up into two parts:

Part [A] In this part we show that K1 = K2 = K4 = L1 = L2 = L3 = 0 are
the six necessary and sufficient conditions for a non-architecturally singular
manipulator with no four anchor points collinear to be Schönflies-singular.

We set e1 = e2 = 0 (⇒ axis a equals the z-axis of the fixed system) and
compute Q. The necessity of K1 = K2 = K4 = 0 follows from:

Q60
002 = K1, Q60

101 = K2, Q80
001 −Q08

001 = 2A2K4. (7)

Due to Lemma 2 we can perform the elementary operations with the matrix
Q given by Karger [4] without loss of generality (w.l.o.g.). These five steps
can be written as follows:

(a) li := li − l1 i = 2, . . . , 6 (b) li := li − l2 Ai/A2 i = 3, . . . , 6

(c) li := li − l3
|A,B|(2,i)

|A,B|32
i = 4, 5, 6 (d) li := li − l4

|A,B,Ba|(2,3,i)

|A,B,Ba|42
i = 5, 6

(e) l6 := l6 − l5
|A,B,Ba,Bb|(2,3,4,6)

|A,B,Ba,Bb|52
.

Finally l6 has the following structure:

(r11K1+r13K2, r21K1+r23K2, r31K1+r33K2, 0,−r31K3−r33K4, r21K3+r23K4)
(8)

with Ki (i = 1, . . . , 4) of Eq. (4) and rij of Eq. (1). 2 Due to Eq. (7) we
set K1 = K2 = K4 = 0 in Eq. (8) and compute Q = A2e0e3K3F [744]. The

2 Note that K1 = K2 = K3 = K4 = 0 are the generalized version (b2 6= 0) of the
4 sufficient and necessary conditions for a planar parallel manipulators with no 4
points collinear to be architecturally singular (cf. [4]).
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necessity of the remaining conditions follows from:

F 40
002 = |A,B,Bb, a|52, F 40

101 = |A,B,Bb,b|52, F 60
001+F 06

001 = 2|A,B,Bb,Ab|52.
(9)

For the proof of the sufficiency we must show that F [744] vanishes if these 3
conditions are fulfilled. A close inspection of the coefficients of F shows that
they all can be written as determinants of 4× 4 submatrices of the matrix
S := (A,B,Bb, a,b,Ab)5

2 or linear combinations of those. But the conditions
of Eq. (9) imply rk(S) ≤ 3 because A5

2,B
5
2,Bb5

2 are linearly independent due
to Lemma 2. This finishes the first part.

Part [B] In this part we show that the only non-architecturally singular
manipulators with no 4 points collinear fulfilling K1 = K2 = K4 = L1 = L2 =
L3 = 0 are the listed 3 designs.

Due to Lemma 2 we can compute A6 from K1 = 0 and A5 from L1 = 0 w.l.o.g..
In the following we distinguish two cases:

1. b2 6= 0: Under this assumption we can express a6 from K2 = 0 and a5 from
L2 = 0.
a. (b3 − b5)(b4 − b5) 6= 0: Now we can also express A4 from L3 = 0. Then

K4 = 0 can only vanish without contradiction (w.c.) if the condition Eq.
(5) is fulfilled. This yields the solution of item 1.

b. bi = b5 with i, j ∈ {3, 4} and i 6= j: Now L3 = 0 can only vanish w.c. for
b5(b5 − b2) = 0.

i. b5 = 0: Now K4 = 0 can only vanish w.c. for

A2Bibj(b2 − b6)(Bj −B6) + (AjBi − AiBj)b2B6(bj − b6) = 0. (10)

It should be noted that m1, mi, m5 and M1, Mi, M5 are collinear. This
solution corresponds with item 2a.

ii. b5 = b2: This can be done analogously to the above case. Again the
solution corresponds with item 2a.

2. b2 = 0: Now L2 = 0 can only vanish w.c. for |b,B,Bb|53 = 0. It is very easy
to verify that this equation cannot be solved for B3, B4 or B5 if 4 points
are collinear or |A,B,Ba,Bb|52 = 0. Therefore we can assume w.l.o.g. that
|b,B,Bb|53 = 0 can be solved for B5. As a consequence we can also express
a5 from L3 = 0 w.l.o.g..

Now K2 = 0 can only vanish w.c. for |b,B,Bb|(3,4,6) = 0. Again it can
easily be shown that this equation cannot be solved for B3, B4 or B6 w.c.
only for b6 = B6 = 0, B3 = B4. But this is a special solution of item 2a.

For the general case we can assume w.l.o.g. that B6 can be expressed
from |b,B,Bb|(3,4,6) = 0. Now K4 = 0 can only vanish w.c. for b6 = 0
which yield item 2a or if Eq. (6) is fulfilled. The latter case yields item 2b.
�
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3 Four base anchor points are collinear

W.l.o.g. we can assume M1, . . . , M4 are collinear. Now we can choose Cartesian
coordinate systems such that A1 = B1 = B2 = B3 = B4 = a1 = b1 = 0 hold.
In the first step we show that m5 = m6 or B5B6 = 0 yield architecturally
singular manipulators:

1. For B5 = 0 we get Q = B6(z + b6K)F [384]. Inspection of the coefficients of
F show that the condition rk(A, a,b,Aa,Ab)5

2 ≤ 3 must hold because the
determinants of all five possible 4× 4 submatrices appear as coefficients or
can be produced as linear combinations of coefficients. According to [19,15]
this already implies an architecturally singular design.

2. m5 = m6: Now Q splits up into (z + b6K)F [768]. The conditions

F 40
020 = |A,B,Ab, a,b|62 = 0, F 42

100 = |A,B,Aa, a,b|62 = 0,

F 51
010 + F 15

010 = |A,B,Aa,Ab,b|62 = 0, F 42
001 = |A,B,Aa,Ab, a|62 = 0,

are the generalized version (b2 6= 0) of those given by Nawratil [14], indicat-
ing the degenerated cases of architecturally singular planar manipulators.

Theorem 2 For a planar Stewart Gough platform with 4 collinear base an-
chor points we can assume Cartesian coordinate systems such that A1 = B1 =
B2 = B3 = B4 = a1 = b1 = 0 hold. Then a non-architecturally singular ma-
nipulator, where a is orthogonal to Φ and parallel to ϕ, is X(a)-singular in one
of the following cases (after permutation of indices):

1. [m5, m6] ‖ Φ :

a. Compute A4 from |A, a,b|42 = 0, A3 from |Ab, a,b|42 = 0 and A6 from
|Ab,B, a,b|63 = 0. The condition |A,B, a,b|63/(A2c(1,3,4)) = 0 remains.

b. M1, M5, M6 collinear: Compute A4 from |A, a,b|42 = 0.
i. m2, m3, m4 are situated on a line which is parallel to Φ, condition
|A,B, a,b|(2,3,5,6) = 0 remains.

ii. [m3, m4] ‖ Φ, M1 = M2, condition |B, a,b|(2,5,6) = 0 remains.
c. m1, m2, m3, m4 are situated on a line which is parallel to Φ and M5 = M6.

2. m1, m5, m6 are situated on a line which is parallel to Φ:
M1, M5, M6 collinear, compute A4 from |A, a,b|42 = 0 and A3 from |Ab, a,b|42 =
0, condition |a,B|65 = 0 remains.

3. m1, m2, m5, m6 are situated on a line which is parallel to Φ:
M3 = M4, compute A4 from |A, a,b|42 = 0 and |A,B, a|(2,5,6) = 0 remains.

4. m1, m3, m4, m5, m6 are situated on a line which is parallel to Φ:
compute A4 from |A, a|43 = 0 and the condition |A,B, a|(3,5,6) = 0 remains.

Proof: Due to Q31
102 = B5B6(a5−a6)|A, a,b|42 and Q40

111 = B5B6(b5−b6)|A, a,b|42
we set |A, a,b|42 = 0. The equation cannot be solved for any Ai (i = 2, 3, 4) if
and only if m1, . . . , m4 are collinear.
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• m1, . . . , m4 collinear: We distinguish two cases:

? b2 6= 0: We set ai = a2bi/b2 for i = 3, 4. Then Q splits up into several
factor. It can easily be seen that none of these factor can vanish without
contradiction.

? b2 = b3 = b4 = 0: Again Q splits up into several factors, where the longest
has 28 terms. This is the only factor which can vanish w.c. and it implies
solution (1c).

• m1, . . . , m4 not collinear: In this case we can relabel the points in such a way
that c(1,2,3) 6= 0 and c(1,2,4) 6= 0 hold. We compute A4 from |A, a,b|42 = 0. Now
Q60

110 = 0 and Q60
011 + Q06

011 = 0 imply |Ab, a,b|42 = 0.

1. b3 6= b4: Under this assumption we can express A3 from |Ab, a,b|42 = 0.
Then Q51

002 = 0 and Q51
101 + Q15

101 = 0 can only vanish w.c. in two cases:
a. b5 = b6: Now Q splits up into several factors; one of them F has 480

terms. The vanishing of all other factors yield easy contradictions.
i. b6 6= 0: W.l.o.g. we can compute A6 from F 31

100 = |Ab,B, a,b|63 = 0.
Now the condition F 20

011 = |A,B, a,b|63 = 0 remains. This condi-
tion splits up into A2c(1,3,4)G[48] = 0. Then A2c(1,3,4) = 0 yields a
contradiction and from G[48] = 0 we get solution (1a).

ii. b6 = 0: Now the two conditions F 40
010 + F 04

010 = |Ab,A,B,b|63 = 0
and F 31

100 = 0 can only vanish w.c. in the following 3 cases:
? A6 = B6A5/B5 and a6 = B6a5/B5, which yields solution (2).
? For b2 = 0 the remaining coefficients of F can only vanish w.c.

for |a,A,B|(2,5,6) = 0 which yields solution (3).
? For bi = 0 the remaining coefficients of F can only vanish w.c. for
|A,B, a,b|(2,j,5,6) = 0 with i 6= j and i, j ∈ {3, 4}. We get solution
(3) after a permutation of indices.

b. |a,b,bb|42 = 0, |a,b, ab|42 = 0, b5 6= b6: The resultant of these condi-
tions with respect to a4 can only vanish w.c. for b4 = 0 or b2 = b4.
Plugging these conditions into the above two expressions already yields
a contradiction.

2. b3 = b4: Now |Ab, a,b|42 = 0 splits up into A2b4(b2 − b4)(a3 − a4) = 0. As
for a3 = a4 the 3rd and 4th leg coincide, we must distinguish three cases:
a. b4 = 0: In this case m1, m3, m4 are collinear. Now Q51

101 +Q15
101 = 0 implies

b5 = b6 and Q splits up into several factor where only the one with 68
terms yields no contradiction. It can easily be seen that the coefficients
of this factor can only vanish in the following two cases:

i. b6 = 0 and |a,A,B|(3,5,6) = 0 yield solution (4).
ii. C(2,5,6) = 0 and |a,b,A,B|(2,3,5,6) = 0 yield solution (1bi) after a

permutation of indices.
b. b2 = b4 6= 0: This case is similar to the last one. After performing the

same steps as above we end up with the following two solutions:
i. b4 = b5 = b6 and |a,b,A,B|(2,3,5,6) = 0 yield solution (4) after a
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permutation of indices.
ii. b5 = b6, C(1,5,6) = 0 and |a,b,A,B|(2,3,5,6) = 0 yield solution (1bi).

c. A2 = 0, b4(b2 − b4) 6= 0: Now Q51
002 = 0 and Q51

101 + Q15
101 = 0 imply again

b5 = b6. Now it can easily be seen that the other conditions can only
vanish w.c. in the following two cases:

i. b4 = b6 and |a,b,A,B|(2,3,5,6) = 0 yield solution (3) after a permu-
tation of indices.

ii. C(1,5,6) = 0 and |a,b,B|(2,5,6) = 0 yield solution (1bii). �

4 Four platform anchor points are collinear

Theorem 3 For a planar Stewart Gough platform with 4 collinear platform
anchor points parallel to Φ and no 4 collinear base anchor points we can as-
sume Cartesian coordinate systems such that A1 = B1 = B2 = a1 = b1 = b2 =
b3 = b4 = 0 hold. Then a non-architecturally singular manipulator, where a is
orthogonal to Φ and parallel to ϕ, is X(a)-singular in one the following cases
(after permutation of indices):

1. m1, . . . , m5 are situated on a line which is parallel to Φ:
a. Compute a3 from |A,B, a|53 = 0 and |A,B, a|(2,4,5) = 0 remains.
b. m1 = m2, compute a3 from |a,B|43 = 0 and |a,B|54 = 0 remains.

2. m1, . . . , m4 are situated on a line which is parallel to Φ and M5 = M6:
a. Compute A4 from |A,B, a|42 = 0 and |A,B, a,b|(2,3,5,6) = 0 remains.
b. m1 = m2, compute a3 from |a,B|43 = 0 and |a,b,B|64 = 0 remains.

Proof: We split the proof again into two parts:

Part [A] We assume that m1, . . . , m5 are collinear; i.e. b5 = 0. Now Q splits
up into

z2b6(2e0e3(x− A6K)− (e2
0 − e2

3)(y −B6K))F [42] (11)

and two conditions (F 20 = 0 and F 11 = 0) remain. Computing the resultant of
these two conditions with respect to A2 yields a2|A,B, a|53G[12]. As G = 0 and
F 20 = 0 imply item 10 of Karger’s list of architecturally singular manipulators
given in Theorem 3 of [6], there are two possibilities left:

1. a2 = 0: In this case the two equations F 20 = A2|A,Ba, a|53 = 0 and
F 11 = A2|B,Ba, a|53 = 0 remain. The resultant with respect to a5 yields
A2

2a3a4B5C(3,4,5)|a,B|43. As C(3,4,5) = 0 implies the special case of item 10
of Karger’s list, we are left with three cases:
a. a3a4 = 0: W.l.o.g. we set a3 = 0. Then F 20 = 0 imply B4 = B5 and

F 11 = 0 yields the contradiction.
b. B5 = 0, a3a4 6= 0: From F 20 = 0 we get a3 = a4. Then F 11 = 0 yields

the contradiction.
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c. |a,B|43 = 0, a3a4B5 6= 0: Now F 20 = 0 and F 11 = 0 can only vanish w.c.
for |a,B|54 = 0. This yields solution (1b).

2. |A,B, a|53 = 0, a2 6= 0: As C(1,3,4) = C(1,3,5) = C(1,4,5) = 0 yields a con-
tradiction we can assume w.l.o.g. that C(1,4,5) 6= 0 holds. Therefore we can
express a3 from |A,B, a|53 = 0. Then we get F 20 = |A,B, a|(2,4,5)H1[8]
and F 11 = |A,B, a|(2,4,5)H2[8]. The vanishing of the common factor yields
solution (1a).

The resultant of the remaining two factors with respect to A3 yields
B3a4a5(B3 − B4)(B3 − B5)(a4 − a5)|A,B|54. All possible cases yield easy
contradictions after back-substitution into H1 = 0 and H2 = 0.

Part [B] Only 4 platform anchor points are collinear. Now Q splits up into
zF [1028]. Due to F 31

200 = 0 and F 40
020 = 0 we must distinguish the following two

cases:

1. M5 = M6: F splits up into z(2e0e3(x−A6K)−(e2
0−e2

3)(y−B6K))R[84] and
two conditions (R20 = 0 and R11 = 0) remain. These are exactly the two
conditions given in Eq. (18) by Karger [6]. But it is shown in [14] that these
conditions are not sufficient for an architecturally singular design. There
are three cases where these two conditions vanish and the manipulator is
not architecturally singular. Two of these cases correspond to solution (2a)
and (2b), respectively. The third case equals case (1c) of Theorem 2.

2. |A,B, a|42 = 0, M5 6= M6: As no 4 base anchor points are collinear we can
assume A2B3 6= 0 w.l.o.g.. Therefore we can express a4 from |A,B, a|42 = 0.
Then F splits up into S[14]T [120]. It can easily be seen that S20 = 0 and
S11 = 0 as well as T 40

100 = b5b6A2B3(B5 − B6) = 0 and T 40
010 + T 04

010 =
2b5b6A2B3(A5 − A6) = 0 imply contradictions. �

Note that item (3) of Theorem 2 is a special case of item (2a) of Theorem 3.
Moreover, item (4) of Theorem 2 is a special case of item (1a) of Theorem 3.
Therefore the remarkable set of Schönflies-singular planar parallel manipula-
tors contains 12 different manipulator designs.

Remark 1 It should also be mentioned that the only degenerated manipula-
tors are those given in item (1a) and (1b) of Theorem 3, because they are
independent of the choice of the sixth platform and base anchor point; i.e. the
first five legs always belong to a congruence of lines. Therefore these designs
also yield non-planar Schönflies-singular manipulators which are not architec-
turally singular. �

Theorem 4 For a planar Stewart Gough platform with 4 collinear platform
anchor points and no 4 collinear base anchor points we can assume Cartesian
coordinate systems such that A1 = B1 = B2 = a1 = b1 = 0 hold. If no 4
collinear platform anchor points are parallel to Φ, then there does not exist
any X(a)-singular manipulator, where a is orthogonal to Φ and parallel to ϕ.
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Proof: This proof of the non-existence can be done as in Theorem 2 and 3,
respectively. For the lengthy discussion of cases we refer to the appendix of
this technical report. �

Remark 2 At the end of this case study we want to recall that the manip-
ulators given in Theorem 1, 2 and 3 are also Schönflies-singular for any
β ∈ [0, π/2] due to Lemma 1. But the set of non-architecturally singular manip-
ulators which are X(a)-singular with a orthogonal to Φ and ϕ is much larger
than the set of manipulators obtained from Theorem 1, 2 and 3 by setting
β = π/2. For more details we refer to [17]. �

5 Geometric characterization

Lemma 3 The Schönflies-singular planar parallel manipulators given in The-
orem 1, 2 and 3 fulfill the following rank condition:

rk(1,A,B,Bb, a,b,Ab)6
1 = 4. (12)

Proof:
ad Theorem 1: K1 = K2 = K4 = 0 imply rk(1,A,B,Bb, a,b,Ab,Ba)6

1 ≤ 5
because A,B,Ba,Bb are linearly independent due to Lemma 2. From the
proof of Theorem 1 we already know rk(1,A,B,Bb, a,b,Ab)5

1 ≤ 4. This
already implies the condition given above because if the rank is smaller than
4 the manipulator is architecturally singular according to [19,15].

ad Theorem 2 and 3: For the special cases listed in these theorems the rank-
property can be proven explicitly. �

In the following theorem we show the converse of this lemma:

Theorem 5 A non-architecturally singular Stewart Gough platform with pla-
nar base Φ and platform ϕ which fulfills Eq. (12) and where a is orthogonal
to Φ and orthogonal to the x-axis of the moving frame is X(a)-singular.

Proof: This geometric proof is done according to the method introduced by
Röschel and Mick [19]. For readers who are not familiar with line geometry
we refer to [18].

All lines of a linear line complex C with homogeneous coordinates (c1 : . . . : c6)
correspond with the null-lines of a null-polarity κ. This linear mapping κ maps
the point P with homogeneous coordinates (p0 : . . . : p3) onto the plane κ(P)

11



with homogeneous coordinates [ξ0 : . . . : ξ3] by



ξ0

ξ1

ξ2

ξ3


=



0 −c4 −c5 −c6

c4 0 −c3 c2

c5 c3 0 −c1

c6 −c2 c1 0





p0

p1

p2

p3


. (13)

If we restrict κ to the points Mi of the base Φ and intersect κ(Mi) with the
platform ϕ we get a correlation γ from points of Φ to lines of ϕ. Due to Lemma
1 we can assume that ϕ is parallel to a. Now the platform anchor points Mi

with homogeneous coordinates (1 : Ai : Bi : 0) and base anchor points mi with
(1 : ai : 0 : bi) are conjugate points with respect to γ if

(1, ai, bi)


0 −c4 −c5

c4 0 −c3

c6 −c2 c1




1

Ai

Bi

 = 0 (14)

holds. Moreover this condition must hold for the whole Schönflies group X(a)
where a is orthogonal to Φ and parallel to ϕ. Therefore Eq. (14) must hold
independently of translations of Φ in x and y direction as well as rotations
about the z-axis (angle δ) and independently of translations of ϕ in z direction.
This yields (1, ai, bi)A(1, Ai, Bi)

T = 0 with

A := (aij) =


1 0 z

0 1 0

0 0 1




0 −c4 −c5

c4 0 −c3

c6 −c2 c1




1 0 0

x cos δ − sin δ

y sin δ cos δ

 . (15)

The aij are homogeneous linear functions of the coordinates ci. Therefore the
set of linear line complexes spanned by Schönflies-singular manipulators deter-
mine a 4-parametric manifold (parameters x, y, z, δ) of correlations. Moreover
the three equation a00 = 0, a11 = 0 and a01 + a10 = 0 must hold. As a11 of Eq.
(15) equals −c3 sin δ the condition a11 = 0 implies c3 = 0. As a consequence
a12 = −c3 cos δ is also zero. Therefore the ideal points of Φ are mapped onto
the pencil of lines through the ideal point of the x-axis of the moving frame.

The remaining two conditions a00 = 0 and a01 + a10 = 0 can be written as1 0 −z −v w zv −zw

0 1 0 cos δ − sin δ −z cos δ z sin δ

 (a00, a10, a20, a01, a02, a21, a22)
T =

0

0


(16)
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with v := x cos δ+y sin δ and w := x sin δ−y cos δ. Due to the first two columns
this 2×7 matrix has rank 2 independently of the parameters x, y, z, δ. Moreover
we can also rewrite the 6 equations (1, ai, bi)A(1, Ai, Bi)

T = 0 (i = 1, . . . , 6)
in an analogous form as

1 a1 b1 A1 B1 A1b1 B1b1

...
...

...
...

...
...

...

1 a6 b6 A6 B6 A6b6 B6b6

 (a00, a10, a20, a01, a02, a21, a22)
T =


0
...

0

 . (17)

If this 6× 7 matrix has rank 4 the system of linear equations given in Eq.
(16) and (17) has at least a 1-dimensional solution. As a consequence the 6-
parametric linear manifold of correlations described by (3,3)-matrices aij with
a11 = a12 = 0 contains at least one correlation γ and therefore the manipulator
is Schönflies-singular. �

This geometric proof also provides us the following geometric characterization:

Corrolary 1 Given are two sets of points {Mi} and {mi} (i = 1, . . . , 6) in
two planes Φ and ϕ, respectively. Then the non-architecturally singular planar
parallel manipulator of Stewart Gough type, where a is orthogonal to Φ and
parallel to ϕ, is X(a)-singular if and only if {Mi, mi} are three-fold conjugate
pairs of points with respect to a 2-dimensional linear manifold of correlations,
which map the ideal points of Φ onto the pencil of lines through the ideal point
of the intersection line of ϕ and Φ.

Based on the results of this section we can also prove the following theorem:

Theorem 6 A non-architecturally singular planar manipulator which is X(a)-
singular with a orthogonal to Φ and parallel to ϕ has a quadratic singularity
surface.

Proof: First of all we show that rk(D) = 4 with D := (1, a,b,A,B)6
1 holds.

The proof is done by contradiction as follows:

The relation between the rank of the matrix D and the geometry of the planar
parallel manipulator was studied by Karger [8]. In the trivial cases rk(D) = 1
or rk(D) = 2 we get architecturally singular manipulators as all points collapse
into a point or onto a line, respectively. Moreover Karger proved that the rank
of D is equal to 3 if and only if the base and the platform are affinely equivalent.

Now we assume that this is the case, i.e. ai = n11Ai + n12Bi and bi = n21Ai +
n22Bi for i = 1, . . . , 6. Then we compute Q for e1 = e2 = 0. It can easily be seen
that Q can only vanish if the affinity is singular or if the base anchor points
are located on a conic section. Both possibilities yield again architecturally
singular manipulators. Therefore rk(D) = 4 must hold.
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Due to this result one of the following two linear combinations must hold:

(i) Bibi = λ1Ai + µ1Bi + ν1ai, (ii) Bibi = λ1Ai + µ1Bi + ν1bi, (18)

Aibi = λ2Ai + µ2Bi + ν2ai, Aibi = λ2Ai + µ2Bi + ν2bi, (19)

bi = λ3Ai + µ3Bi + ν3ai, ai = λ3Ai + µ3Bi + ν3bi, (20)

with λi, µi, νi ∈ R. Moreover we can set A1 = B1 = a1 = b1 = B2 = 0.
As a consequence B2b2 is equal to zero, which yields λ1A2 + ν1a2 = 0 resp.
λ1A2+ν1b2 = 0. We can express λ1 from this equation, because we can assume
A2 6= 0 without loss of generality. Now we substitute these expressions into
the homogeneous line coordinates of li and compute Q. It turns out that
Q splits up into three factors, where one is the orientational factor e0e2 −
e1e3. The second factor only depends on the geometry and the third factor
is homogeneous in the Euler parameters of degree 6. Moreover the last factor
only depends quadratically on the translation parameters and therefore this
class of manipulators possesses a quadratic singularity surface (cf. [5]). �

6 Self-motional behavior

In this section we will investigate the set of Schönflies-singular manipulators
of case (1a) with respect to self-motions within the 5-dimensional manifold Γ
of configurations determined by e0e2 − e1e3 = 0. As these manipulators are
singular in each configuration of Γ the necessary condition for a self-motion,
namely to be singular in each pose of the motion, is trivially fulfilled. Therefore
there is the hope of finding new self-motions of Stewart Gough platforms. For
the already known self-motions we refer to [3,7] and the references therein.

For the determination of self-motions it is advantageous to work in the Study
parameter space P 7 which is a 7-dimensional projective space with homoge-
neous coordinates e0, . . . , e3, f0, . . . f3. We get this representation by substitu-
tion of the translation parameters t1, t2, t3 in the formula above Eq. (1) by

t1 = 2(e0f1 − e1f0 + e2f3 − e3f2), t2 = 2(e0f2 − e2f0 + e3f1 − e1f3),

t3 = 2(e0f3 − e3f0 + e1f2 − e2f1).

Now all points of P 7 which are located on the so called Study quadric Ψ :∑3
i=0 eifi = 0 correspond with an Euclidean displacement, with exception of

the 3-dimensional subspace e0 = . . . = e3 = 0 of Ψ because these points cannot
fulfill the normalizing condition K = 1. It was shown by Husty [2] that the
condition that mi with coordinates mi = (ai, bi, 0) is located on a sphere with
center Mi with coordinates Mi = (Ai, Bi, 0) and radius Ri can be expressed
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by the following homogeneous quadratic equation:

Λi : FK + 4
3∑

i=0

f 2
i + 2(e2

3 − e2
0)(Aiai + Bibi) + 2(e2

2 − e2
1)(Aiai −Bibi)+

4[(e0f2 − f0e2)(Bi − bi)− (e1f3 − f1e3)(Bi − bi) + (e2f3 − f2e3)(Ai − ai)

+ (e0f1 − f0e1)(Ai − ai) + e0e3(Aibi −Biai)− e1e2(Aibi + Biai)] = 0

with F = A2
i + B2

i + a2
i + b2

i −R2
i .

We consider the variety V spanned by Γ, Ψ, Λ1, . . . , Λ6. In general the solution
variety is empty, but for special geometries the variety can be n-dimensional.
Cases with n > 0 correspond to n-dimensional self-motions of the manipulator.

Note that Schönflies-singular manipulators with pure Schönflies self-motions
can only be special cases of the list of parallel manipulators with Schönflies
Borel-Bricard motions given by Borel [1]. The proof of the completeness of this
list was given by Husty and Karger in [3]. Therefore we are only interested in
Schönflies-singular manipulators with non pure Schönflies self-motions.

Moreover we can restrict ourselves to non-architecturally singular manipula-
tors, because it was already shown in [13] that the rank condition

rk(1,A,B, a,b,Ba,Aa,Bb,Ab)6
1 < 6 (21)

of architecturally singular manipulators given in [19] implies the existence
of a linear combination

∑6
i=1 Λiρi = 0 with ρi ∈ R. Therefore all planar

architecturally singular manipulators have self-motions.

Surprisingly the following result holds:

Theorem 7 The Schönflies-singular manipulators of Theorem 5 do not pos-
sess self-motions within the 5-dimensional manifold Γ of configurations deter-
mined by e0e2 − e1e3 = 0 which are not pure Schönflies motions.

Proof: In the first part we assume that e0 6= 0. As the Study parameters are
homogeneous we can normalize them such that e0 = 1 holds. As a consequence
we set e2 = e1e3. Moreover from Ψ we get f0 = −e1f1−e1e3f2−e3f3. According
to Eq. (18)-(20) we substitute

Bibi = λ1Ai+µ1Bi+ν1ti, Aibi = λ2Ai+µ2Bi+ν2ti, si = λ3Ai+µ3Bi+ν3ti,

with s, t ∈ {a, b} and s 6= t in Λi . We proceed by computing the equations
Ui := Λi − Λ1 which only depend linear on f1, f2, f3 for i = 2, . . . , 6. Now we
consider the 5× 3 coefficient matrix M of this system.

First we assume that rk(M) < 3. This is the case if the determinant of all five
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3× 3 submatrices vanish. The determinant of the system Ui, Uj, Uk is given by

(e2
3(λ3 − ν3)− 2µ3e3 − (λ3 + ν3))|A,B, t|(i,j,k). (22)

Therefore we must distinguish the following two cases:

• As there do not exist a Schönflies-singular manipulator with 5 collinear base
anchor points we can assume that M1, M3, M4 are not collinear. Therefore we
can express si from the conditions |A,B, t|(3,4,i) = 0 for i = 5, 6. Then one
equation |A,B, t|42 = 0 remains. But the vanishing of this equation would
yield rk(D) < 4 which is a contradiction.

• For the second possibility we get λ3 = µ3 = ν3 = 0, which means that all 6
platform anchor points are located on a line.

Therefore we can assume that at least one of the five 3× 3 submatrices has
maximal rank. W.l.o.g. we can assume that this submatrix corresponds with
the equations U2, U3, U4. From this system we now compute f1, f2, f3 and plug
it into Λ1 and Ui = (1+e2

1)A2Fi (i = 5, 6), where Fi only depends quadratically
on e3. For s = b Fi has 396 terms and for s = a Fi has 480 additive factors.
Λ1 which is of degree 8 in e1 and e3 is too large to be computed explicitly, but
this is even not necessary for the following argumentation.

In the general case we can compute e3 from F5 or F6. As e3 only depends
on design parameters it is constant. Therefore the rotational part of this self-
motion span a line in the spherical kinematic image space (cf. [12]), which is
the subspace f0 = . . . = f3 = 0 of the Study quadric. It is well known that
straight lines of this subspace correspond with rotation about a fixed axis.
Therefore the resulting self-motion can only be a Schönflies self-motion.

The above argumentation fails if F5 and F6 are fulfilled identically. We show
that this cannot be the case without yielding a contradiction. We denote the
coefficients of ej

3 of F5 by wj and get

w1 := |A,B,Ba, t|52 and w2 − w0 := |A,B,Aa, t|52. (23)

If these two expressions vanish the manipulator is already architecturally sin-
gular as Eq. (21) hold. Clearly the same holds for U6 by changing the indices.

Now we discuss the case e0 = 0. This implies e1 = 0 or e3 = 0. Both cases yield
a Schönflies self-motion, as the rotational parts span a line in the spherical
kinematic image space. �
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Fig. 1. Geometry of the platform (white) and base (gray).

7 Final example

The geometry of the non-architecturally singular planar manipulator is given
by the coordinates of its anchor points. We have m1 = M1 = (0, 0)T and

m2 =

2

0

 , m3 =

 7

−1

 , m4 =

466
37

52
37

 , m5 =

 −8
15

142
−15

 , m6 =

 1

−5

 ,

M2 =

1

0

 , M3 =

3

2

 , M4 =

137
37

120
37

 , M5 =

47
15

4

 , M6 =

29
16

3

 .

Now we want to inspect if this manipulator is X(a)-singular where a is or-
thogonal to the base and parallel to the platform. It can easily be seen in Fig.
1 that no 4 anchor points are collinear. Moreover these anchor points fulfill
Lemma 1. 3 Therefore we have to check if there exists an orientation σ of the
platform such that the 6 conditions K1 = K2 = K4 = L1 = L2 = L3 = 0 of
Theorem 1 are fulfilled forAi

Bi

 := Mi and

ai

bi

 :=

cos σ − sin σ

sin σ cos σ

 mi. (24)

After applying the half angle substitution (s = tan σ
2
) it can easily be seen

that all equations have the factor s2 + 2s − 1 in common which implies the
two solutions σ = π/4 and σ = −3π/4, respectively. As a consequence any

3 If this would not be the case one must relabel the anchor points.
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configuration is singular where the line g of the moving system is parallel to
the base (cf. Fig. 1).

Remark 3 Note that it is not necessary to inspect if the manipulator is also
X(a)-singular where a is orthogonal to the platform and parallel to the base,
because both properties would already imply an architecturally singular design.
This can be seen as follows: If both properties hold then there must exist coor-
dinate systems in the platform and the base with

rk(1,A,B,Bb, a,b,Ab)6
1 = rk(1,A,B,Bb, a,b,Ba)6

1 = 4 (25)

(cf. Lemma and Theorem 5). As rk(1,A,B, a,b)6
1 = 4 holds (cf. proof of

Theorem 6) Eq. (25) implies rk(1, a,b,A,B,Aa,Ab,Ba,Bb)6
1 ≤ 5. There-

fore the manipulator is architecturally singular (cf. [19,15]). �

8 Conclusion

In this paper we presented a complete classification of the set of Schönflies-
singular planar parallel manipulators of Stewart Gough type characterized by
the property that one of the carrier planes of the platform or base anchor
points is orthogonal to the rotational axis a of the Schönflies group X(a). Be-
side an algebraic characterization (cf. Theorem 1,2,3) also a geometric one
(cf. Corrolary 1) was given. Moreover the self-motional behavior of these ma-
nipulators was discussed (cf. Theorem 7) and it was shown that this class of
planar Stewart Gough platforms possesses a quadratic singularity surface (cf.
Theorem 6).
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(B. Jüttler, O. Röschel, E. Zagar, eds.) 25 (9) 775–783 (2008).

[8] Karger, A.: Parallel Manipulators with simple geometrical structure, In Proc.
of EuCoMeS’08 (M. Ceccarelli, ed.), 473–480 (2008).

[9] Ma, O., and Angeles, J.: Architecture Singularities of Parallel Manipulators,
Int. J. of Robotics and Automation 7 (1) 23–29 (1992).

[10] Merlet, J.-P.: Singular Configurations of Parallel Manipulators and Grassmann
Geometry, Int. J. of Robotics Research 8 (5) 45–56 (1992).
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Appendix

In the following the proof of Theorem 4 is given in two parts:

Part [A] W.l.o.g. we can assume that m1, . . . , m5 are collinear with b2 6= 0
and ai = a2bi/b2 for i = 3, 4, 5. Then Q splits up into:

|a,b|(2,6)(2e0e3(x− A6K)− (e2
0 − e2

3)(y −B6K))F [288]. (26)

1. m1, . . . , m5 are pairwise distinct: We consider F101 = b2KU1 and F100 =
b2
2K

2U2. Now U1 = 0 and U1−U2 = 0 correspond to the conditions given in
Eq. (17) of Karger [6] implying case 10 of the list of architecturally singular
manipulators.

2. Assuming m1 = m4 = m5; i.e. b4 = b5 = 0. Then F101 can only vanish w.c.
for B3 = 0. Now F = zb2b3(A2 − A3)|A,B|54(yb2K − 2za2e0e3) yields the
contradiction.

3. Assuming m1 = m3: Then U1 = 0 and F010 = 0 imply the collinearity of
M2, M4, M5. Now the equation U2 = 0 remains, which corresponds to the
special case of item 10 of Karger’s list of architecturally singular manipu-
lators (cf. [6]).

Part [B] W.l.o.g. we can assume that m1, . . . , m4 are collinear with b2 6= 0 and
ai = a2bi/b2 for i = 3, 4. Then Q splits up into Kb2

2F [6312]. In the first step
we compute the resultant of F 31

102 and F 31
201 with respect to A2 which yields:

b2c(1,2,5)c(1,2,6)B3B4(b3 − b4)(B5 −B6)G[20]. (27)

B3 = 0:
Now F 60

101 = 0 yields B4B5B6|A,b|32[a2b4(b5−b6)−a5b2(b4−b6)+a6b2(b4−b5)].

1. A3 = A2b3/b2: The resultant of F 51
200 and F 51

101 −F 15
101 with respect to a6 can

only vanish w.c. in the following two cases:
a. b4 = b6: Then F 51

200 = 0 implies b4 = b5. From F 51
101 − F 15

101 = 0 we get
B5 = B6. Then F 22

102 = 0 implies an expression for A6. F 42
101 = 0 yields

the contradiction.
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b. B5 = B6, b4 6= b6: W.l.o.g. we can compute a5 from F 51
200 = 0. Now F 40

021 =
0 implies an expression for A5. Again F 42

101 = 0 yields the contradiction.
2. [a2b4(b5 − b6)− a5b2(b4 − b6) + a6b2(b4 − b5)] = 0, |A,b|32 6= 0:

a. b4 6= b5: Under this assumption we can compute a6 from the condition.
Then F 31

201 = 0 and F 51
101 + F 15

101 = 0 imply M5 = M6. Finally F 40
021 = 0

yields the contradiction.
b. b4 = b5: The condition implies b4 = b5 = b6. From F 31

102 = 0 we get
B5 = B6.

i. A2b3(b6 − b2)−A3b2(b6 − b3) 6= 0: W.l.o.g. we can compute A6 from
F 40

021 = 0. Then F 51
200 = 0 yields the contradiction.

ii. A2b3(b6−b2)−A3b2(b6−b3) = 0: W.l.o.g. we can solve this equation
for b6. Again the conditions F 40

021 = 0 and F 51
200 = 0 cannot vanish

w.c..

As a consequence of this study we can assume for the remaining discussion
that no 3 points of M1, . . . , M4 are collinear.

b3 = b4, B3B4 6= 0:
In this case F 51

200 yields b4C(2,3,4)T [8]. For b4 = 0 the condition F 60
101 = 0 implies

B5 = 0 or B6 = 0. In both cases F 31
102 = 0 and F 31

201 = 0 yield the contradiction.
Therefore we can assume b3 = b4 6= 0 and set T equal to zero.

1. b4 6= b6: Under this assumption we can compute B6 from T = 0. Then we
compute F 51

101 + F 15
101 which splits up into B5(A5 − A6)(b4 − b5)c(1,2,6)U [4]

with U := b2(A3B4 − A4B3) + b4A2(B3 − B4). As B5 = 0 yields B6 = 0 a
contradiction, we have to distinguish the following 3 cases:
a. W.l.o.g. we can solve U = 0 for A4. Then F 51

101 − F 15
101 = 0 implies an

expression for a5. From F 60
020 = 0 we get A5. Finally F 42

101 = 0 yields the
contradiction.

b. b4 = b5, U 6= 0: Now F 31
102 = B5Uc(1,2,5)c(1,2,6) yields a contradiction.

c. A5 = A6, (b4 − b5)U 6= 0: Now F 31
102 = 0 implies an expression for a5.

Then F 60
020 = 0 yields the contradiction.

2. b4 = b6: Then T splits up into B5(b5 − b6)c(1,2,6).
a. b5 = b6: In this case F 31

102 factors into c(1,2,5)c(1,2,6)(B5 −B6)U .
i. U = 0: W.l.o.g. we compute A4 from this condition. Then F 51

101 −
F 15

101 = 0 implies B5 = B6. From F 51
200 = 0 we get an expression for

A6. Finally F 42
101 = 0 yields the contradiction.

ii. B5 = B6, U 6= 0: Assuming B3 6= B4 we can compute A6 from
F 40

021 = 0. Then F 51
200 = 0 already yields the contradiction. For B3 =

B4 the condition F 40
021 = 0 implies a5 = a6. Then F 51

200 = 0 yields the
contradiction.

b. B5 = 0, b5 6= b6: Now F 31
102 can only vanish w.c. for U = 0. From

this condition we again express A4. Finally F 51
101 − F 15

101 = 0 yields the
contradiction.
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B5 = B6, (b3 − b4)B3B4 6= 0:

W.l.o.g. we can express A6 from F 31
201 = 0.

1. b5 6= b6: Under this assumption we can compute A5 from F 51
200 = 0. Now

F 62
100 can only vanish w.c. for b3b4 = 0. In both cases F 42

101 = 0 implies the
contradiction.

2. b5 = b6: Here we distinguish the following subcases:
a. b3 6= b6, b4 6= b6: W.l.o.g. we compute A4 from F 51

200 = 0. Now the
resultant of F 62

100 and F 22
102 with respect to B6 can only vanish w.c. in the

following cases:
i. b3b4 = 0: W.l.o.g. we set b3 = 0. Then F 22

102 = 0 implies b6 =
b2 + B6(b4 − b2)/B4. Finally F 42

101 = 0 yields the contradiction.
ii. b5 = b6 = 0, b3b4 6= 0: Now F 22

102 = 0 implies b3 = b2+B3(b4−b2)/B4.
Again F 42

101 = 0 yields the contradiction.
iii. b2 = b6, b3b4b5b6 6= 0: F 62

100 = 0 implies the contradiction.
iv. b3 = b2+B3(b4−b2)/B4, (b2−b6)b3b4b5b6 6= 0: Then F 62

100 = 0 implies
b6 = b2 + B6(b4 − b2)/B4. Finally F 42

101 = 0 yields the contradiction.
b. W.l.o.g. we set b4 = b6: In this case F 51

200 can only vanish w.c. for B4 = B6.
Finally F 51

101 + F 15
101 = 0 yields the contradiction.

G[20] = 0, (B5 −B6)(b3 − b4)B3B4 6= 0:

1. |B,b|43 6= 0: Under this assumption we can express A6 from G = 0. Then
the resultant of F 31

102 and F 31
201 with respect to a6 can only vanish w.c. for:

a. |A,B,b|42 = 0: We compute A2 from this condition. Then F 60
101 = 0

implies an expression for A5. Finally F 60
002 = 0 yields the contradiction.

b. |B,b,Bb|(3,4,6) = 0, |A,B,b|42 6= 0:
i. B4b3(b4 − b6) − B3b4(b3 − b6) 6= 0: Under this assumption we can

compute B6 from |B,b,Bb|(3,4,6) = 0.
? B4b3(b4 − b5)− B3b4(b3 − b5) 6= 0: Now we can compute B5 from

F 31
201 = 0. Finally F 31

102 = 0 yields the contradiction.
? B4b3(b4 − b5)−B3b4(b3 − b5) = 0: W.l.o.g. we can express b5 from

this condition. Now F 31
201 can only vanish w.c. for b3 = 0, b4 = 0

or B3 = B4. In all three cases F 31
102 = 0 yields the contradiction.

ii. B4b3(b4 − b6) − B3b4(b3 − b6) = 0: W.l.o.g. we can express b6 from
this condition. Then |B,b,Bb|(3,4,6) = 0 can only vanish w.c. for
b3 = 0, b4 = 0 or B3 = B4. In all three cases the conditions F 31

102 = 0
and F 31

201 = 0 yield the contradiction.
2. |B,b|43 = 0: We solve this condition for b3. Now G splits up into C(1,3,4)N [6].

W.l.o.g. we can compute B6 from N = 0. Then we can express B5 from
F 31

102 = 0. Finally F 31
201 = 0 implies the contradiction. End of all cases. �
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