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Abstract. Parallel manipulators which are singular with respect to the Schönflies motion group
X(a) are called Schönflies-singular, or more precisely X(a)-singular, where a denotes the direc-
tion of the rotary axis. A special class of such manipulators are architecturally singular ones be-
cause they are singular with respect to any Schönflies group. Another remarkable set of Schönflies-
singular planar parallel manipulators of Stewart Gough type was already presented by the author.
In this paper we give the main theorem on X(a)-singular planar parallel manipulators and discuss
the consequences of this result.
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1 Introduction

The Schönflies motion group X(a) is the largest subgroup of the Special Euclidean
motion group SE(3) and consists of three linearly independent translations and all
the rotations about the infinity of axes with direction a. This 4-dimensional group,
which is named after the German geometer Arthur Moritz Schönflies (cf. [1, 2]), is
of importance in practice because it is well adapted for pick-and-place operations.

The geometry of a planar parallel manipulator of Stewart Gough type (SG type)
is given by the six base anchor points Mi ∈ Σ0 with coordinates Mi := (Ai,Bi,0)T

and by the six platform anchor points mi ∈ Σ with coordinates mi := (ai,bi,0)T .
By using Euler Parameters (e0,e1,e2,e3) for the parametrization of the spherical
motion group SO(3) the coordinates m′

i of the platform anchor points with respect
to the fixed space can be written as m′

i = K−1Rmi + t with

R := (ri j) =

e2
0 + e2

1− e2
2− e2

3 2(e1e2− e0e3) 2(e1e3 + e0e2)
2(e1e2 + e0e3) e2

0− e2
1 + e2

2− e2
3 2(e2e3− e0e1)

2(e1e3− e0e2) 2(e2e3 + e0e1) e2
0− e2

1− e2
2 + e2

3

 , (1)

the translation vector t := (t1, t2, t3)T and K := e2
0 + e2

1 + e2
2 + e2

3.
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It is well known (cf. Merlet [3]) that a SG platform is singular if and only if the
carrier lines of the prismatic legs belong to a linear line complex, or analytically
seen, if Q := det(Q) = 0 holds, where the ith row of the 6× 6 matrix Q equals the
Plücker coordinates li := (li, l̂i) := (m′

i−Mi,Mi× li) of the ith carrier line.

1.1 Notation

Definition 1. Parallel manipulators which are singular with respect to the Schönflies
motion group X(a) are called Schönflies-singular, or more precisely X(a)-singular.

For proving the so-called main theorem on Schönflies-singular planar Stewart
Gough platforms we use the notation introduced in [4]. We denote the determinant
of certain j× j matrices as follows:

|X,y, . . . ,Xy|(i1,i2,...,i j) := det(X(i1,i2,...,i j),y(i1,i2,...,i j), . . . ,Xy(i1,i2,...,i j)) (2)

with X(i1,i2,...,i j) =


Xi1
Xi2
...

Xi j

 , y(i1,i2,...,i j) =


yi1
yi2
...

yi j

 , Xy(i1,i2,...,i j) =


Xi1yi1
Xi2yi2

...
Xi j yi j

 (3)

and (i1, i2, . . . , i j)∈{1, . . . ,6} and pairwise distinct. Moreover it should be noted that
we write |X,y, . . . ,Xy|i j

i1
if i1 < i2 < .. . < i j with ik+1 = ik + 1 for k = 1, . . . , j− 1

hold. Moreover the algebraic condition that Mi,M j,Mk or mi,m j,mk are collinear is
denoted by C(i, j,k) := |1,A,B|(i, j,k) = 0 and c(i, j,k) := |1,a,b|(i, j,k) = 0, respectively.

It should also be said that in the later done case study we always factor out the
homogenizing factor K if possible. Moreover we give the number n of terms of not
explicitly given polynomials F in square brackets, i.e. F [n].

1.2 Related work

Special Schönflies-singular manipulators are the architecturally singular ones (cf.
[5]) because they are singular with respect to any Schönflies group. As archi-
tecturally singular manipulators are already classified we are only interested in
Schönflies-singular manipulators which are not architecturally singular.

For the characterization of architecturally singular planar SG platforms we refer
to Karger [6, 7], Nawratil [8], Röschel and Mick [9] as well as Wohlhart [10]. For
the non-planar case we refer to Karger [11] and Nawratil [12].

For the determination of X(a)-singular planar parallel manipulators we distin-
guish the following cases depending on the angle α ∈ [0,π/2] enclosed by a and the
carrier plane Φ of the base anchor points and the angle β ∈ [0,π/2] between a and
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the carrier plane ϕ of the platform anchor points. Every X(a)-singular manipulator
belongs to one of the following 5 cases (after exchanging platform and base):

1. α 6= β : (a) α = π/2, β ∈ [0,π/2[ (b) α,β ∈ [0,π/2[
2. α = β : (a) α = π/2 (b) α =]0,π/2[ (c) α = 0

According to [4] the solution set of case (1a) can be characterized as follows:

Theorem 1. A non-architecturally singular planar manipulator is X(a)-singular,
where a is orthogonal to Φ and orthogonal to the x-axis of the moving frame if
and only if rk(1,A,B,Bb,a,b,Ab)6

1 = 4 holds.

It should be noted that this solution set does not depend on the angle β due to the
following lemma given by Mick and Röschel [13]:

Lemma 1. If the connecting lines of Mi ∈ Φ and mi ∈ ϕ of two intersecting planes
Φ and ϕ belong to a linear line complex, then this property remains unchanged
under rotations of the planes about their intersection line.

For more details on the self-motional behavior of the solution set of case (1a) as
well as a geometric interpretation of the given rank condition we refer to [4].

In the following Sections 2 and 3 we prove that the manipulators of Theorem 1
are the only X(a)-singular ones with α 6= β which are not architecturally singular.

2 Main Theorem for the general case

Theorem 2. @ non-architecturally singular planar SG platforms with no 4 collinear
anchor points which are X(a)-singular if α 6= β and a not orthogonal to Φ or ϕ .

Proof. Without loss of generality (w.l.o.g.) we can assume that α > β and there-
fore Φ cannot be parallel to a. Then we can choose coordinate systems such that
a2A2B3B4B5c(3,4,5)(a3−a4)(b3−b4) 6= 0 hold (cf. [6, 4]). Moreover, due to α > β

we can always rotate the platform about a such that the common line of Φ and ϕ

is parallel to [M1,M2]. 1 This yields the following coordinatization: Mi = (Ai,Bi,0)
and mi = (ai,bi cosδ ,bi sinδ ) with A1 = B1 = B2 = a1 = b1 = 0. As sinδ = 0 yields
α = β we can assume sinδ 6= 0.

As no four anchor points are collinear we can apply the elementary matrix
manipulations given by Karger [6] to the Jacobian Q. We end up with l6 :=
(v1,v2,v3,0,−w3,w2) with

vi := ri1K1 +(ri3 sinδ + ri2 cosδ )K2, w j := r j1K3 +(r j3 sinδ + r j2 cosδ )K4

and

K1 := |A,B,Ba,Bb,a|62, K3 := |A,B,Ba,Bb,Aa|62,
K2 := |A,B,Ba,Bb,b|62, K4 := |A,B,Ba,Bb,Ab|62.

(4)

1 Note that the common line of Φ and ϕ is no ideal line due to α 6= β .
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Due to Lemma 1 this manipulator must also be X(s)-singular where s denotes the
direction of the common line of Φ and ϕ .

In the first step we will use this property to show that K1 = K2 = 0 must hold.
Therefore we can set e2 = e3 = δ = 0 and compute Q[4224] in its general form.
The necessity of K1 = K2 = 0 follows immediately from Q42

101 + Q24
101 = K2 and

Q51
002 +Q33

002 +Q15
002 = K1, where Quv

i jk denotes the coefficient of t i
1t j

2tk
3eu

0ev
1 of Q.

Now we go back to the general case. We replace the sixth line of the Jacobian
Q by (v1,v2,v3,0,−w3,w2) under consideration of K1 = K2 = 0. In the following
we prove by contradiction that also K3 = K4 = 0 must hold. This finishes the proof
because K1 = K2 = K3 = K4 = 0 are the four necessary and sufficient conditions for
a planar manipulators with no four points on a line to be architecturally singular (cf.
Karger [6]).

Part [A] e2 = 0
We set e1 = e4 cos µ and e3 = e4 sin µ , where e4 is the homogenizing factor. More-
over sin µ cos µ 6= 0 must hold. Then we compute Q[35346] in dependency of K3

and K4 and denote the coefficients of t i
1t j

2tk
3eu

0ev
4 of Q by Quv

i jk.
First we prove by contradiction that K4 must also vanish. Assuming K4 6= 0 we

get b2 = 0 from Q80
100 = 0. Then the resultant of Q71

100 and Q51
200 with respect to B3

can only vanish without contradiction (w.c.) for:

1. bi = 0: Then Q51
200 = 0 implies B j = Bk (with i, j,k ∈ {3,4,5} and pairwise dis-

tinct) and Q33
200 = 0 yields the contradiction.

2. B4 = B5, b3b4b5 6= 0: Then Q51
200 = 0 can only vanish w.c. for B3 = B5 or b4 = b5.

a. B3 = B5: We get the contradiction from Q33
200 = 0.

b. b4 = b5, B3 6= B5: In this case Q71
100 = 0 yields the contradiction.

Now we can set K4 = 0 and compute Q = A2e4K3F [15090]. We distinguish between
the following two cases for proving that F cannot vanish w.c.:

1. b2 6= 0: W.l.o.g. we can compute a5 from F41
110 = 0 and A5 from F50

101 = 0.

a. Assuming b3 6= b5 6= b4 we can express A4 from F70
100 = 0. Then F61

100 = 0
yields the contradiction.

b. W.l.o.g. we set b4 = b5. Now F70
100 can only vanish w.c. for b5(b2 − b5) = 0.

In both cases F61
100 = 0 yields the contradiction.

2. b2 = 0: Now F61
100 can only vanish w.c. for b3b4b5C(3,4,5) = 0:

a. bi = 0: Then F32
200 = 0 implies B j = Bk and F52

100 = 0 yields A j = Ak (with
i, j,k ∈ {3,4,5} and pairwise distinct). Finally F43

100 cannot vanish w.c..
b. C(3,4,5) = 0, b3b4b5 6= 0: Assuming B3 6= B4 we can compute A5 from the

collinearity condition and a5 from F41
020 = 0. Now F32

200 can only vanish w.c.
for |B,b,Bb|53 = 0. W.l.o.g. we can compute b4 from this condition. Then
F52

100 = 0 yields the contradiction.
In the special case B3 = B4 = B5 we can compute A5 from F52

100 = 0 w.l.o.g..
Then F14

200 = 0 already yields the contradiction.
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Part [B] e2 6= 0
We set e1 = e4 cos µ , e3 = e4 sin µ and e2 = e4n, where nsin µ 6= 0 holds. More-
over for ncosδ + sin µ sinδ = 0 we can assume cos µ 6= 0 because otherwise a is
orthogonal to the platform. Again we prove by contradiction that K4 must vanish.

Assuming K4 6= 0 we get b2 = 0 from Q80
100 = 0. Then the resultant of Q60

110 and
Q80

020 with respect to B3 can only vanish w.c. in the following cases:

1. A2 = a2: In this case Q60
110 = 0 implies |b,B,Bb|53 = 0:

a. For the special case B3 = B4 = B5 we get µ = ζ with ζ := −arcsin(ncotδ )
from Q42

200 = 0. Then Q33
200 = 0 yields the contradiction.

b. W.l.o.g. we can solve |b,B,Bb|53 = 0 for b5. Due to Q42
200 = 0 we must distin-

guish the following two cases:
i. b4 = b3B4/B3: W.l.o.g. we can express a5 from the only non-contradicting

factor of Q60
020 = 0. Then Q51

020 = 0 implies a4 = A4 + B4(a3 −A3)/B3.
Now we can solve K1 = K2 = 0 for A6 and b6 w.l.o.g.. Moreover, sub-
stitution of these expressions into K4 shows that it is fulfilled identically
and this contradicts the assumption.

ii. µ = ζ , b4 6= b3B4/B3: Then Q33
200 = 0 already implies the contradiction.

2. b3b4b5 = 0, A2 6= a2: W.l.o.g. we set b3 = 0. Now Q51
200 = 0 implies two cases:

a. B4 = B5: Then Q42
200 = 0 yields µ = ζ . Q33

200 = 0 yields the contradiction.
b. µ = ζ , B4 6= B5: Q60

020 = 0 yields A3 = a3A2/a2 and Q42
200 = 0 the contradiction.

3. B4 = B5, b3b4b5(A2−a2) 6= 0: Due to Q51
200 = 0 we must distinguish two cases:

a. B3 = B5: Now Q42
200 = 0 implies µ = ζ . Q33

200 = 0 yields the contradiction.
b. b4 = b5, B3 6= B5: Then Q80

010 = 0 cannot vanish w.c..
c. µ = ζ , (b4−b5)(B3−B5) 6= 0: Q42

200 = 0 yields the contradiction.

Now we can set K4 = 0 and compute Q = A2e4K3F [57528]. We prove by contra-
diction that K3 = 0 must hold, i.e. we assume K3 6= 0. Then we distinguish again
between the following two cases for proving that F cannot vanish w.c.:

1. b2 6= 0: Now we can solve F50
110 = 0 for a5. From F32

200 = 0 we can express a4. From
F50

020 = 0 we get A5. F41
020 = 0 yields an expression for A4. W.l.o.g. we can solve

K1 = K2 = 0 for A6 and b6. Then b2K3−a2K4 = 0 holds. This is a contradiction
as K4 = 0 implies K3 = 0.

2. b2 = 0: Now F50
200 implies |b,B,Bb|53 = 0. Again we start with the special case:

a. B3 = B4 = B5: F41
110 = 0 already yields the contradiction.

b. W.l.o.g. we can compute b5 from |b,B,Bb|53 = 0. Now F32
200 can only vanish

w.c. in the following 2 cases:
i. b4 = b3B4/B3: An accurate case study shows that we only end up with

contradictions. For the detailed discussion we refer to [14]. Moreover it
should be noted that this case implies solutions for the the special case
α = β ∈]0,π/2[.

ii. µ = ζ , b4 6= b3B4/B3: Then F23
200 = 0 implies the contradiction. �
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3 Main Theorem for the special case

Theorem 3. @ non-architecturally singular planar SG platforms with 4 collinear
anchor points which are X(a)-singular if α 6= β and a not orthogonal to Φ or ϕ .

Proof. In order to prove this theorem efficiently we need a good choice for the co-
ordinate systems in Σ and Σ0. Based on some geometric considerations such a coor-
dinatization can be done as follows: W.l.o.g. we can assume that the four collinear
points are on the platform, i.e. m1, . . . ,m4 are situated on the line g. Now we must
distinguish again two cases, depending on the property if γ ≥ α or γ < α holds with
γ := ∠(g,a) ∈ [0,π/2].

3.1 γ ≥ α

In this case we translate ϕ and Φ such that M1 = m1 holds. As γ ≥ α there exist
at least one position by rotating of ϕ about a such that g ∈ Φ holds. This is the
starting configuration of the following coordinatization: Mi = (Ai,Bi,0) and mi =
(ai,bi cosδ ,bi sinδ ) with A1 = B1 = a1 = b1 = b2 = b3 = b4 = 0 and sinδ 6= 0.

Moreover we set e1 = e4 cos µ , e3 = e4 sin µ and e2 = e4n, where n = cos µ = 0,
n = sin µ = 0 or cos µ = ncosδ + sin µ sinδ = 0 yield contradictions.

Part [A] sin µ 6= 0
Firstly, we show that we can assume M5 6= M6 and that no 5 platform anchor points
are collinear because these two cases yield a contradiction:

1. b5 = 0: We give those 5 coefficients which imply rk(A,a,B,Aa,Ba)5
2 ≤ 3. This

yields a contradiction due to [9]. We distinguish 3 cases:

a. n = 0: Four conditions are given by Q13
201 = Q15

200 = Q22
021 = Q24

020 = 0. For
B6 6= 0 we get the fifth condition from Q62

001 = 0. For B6 = 0 and A6 6= 0 we
get it from Q53

001 = 0. For the case M1 = M6 it is given by Q33
101 = 0.

b. n = ν := −sin µ tanδ : Four conditions are given by Q13
201 = Q24

200 = Q31
021 =

Q42
020 = 0. For B6 6= 0 we get the fifth condition from Q71

001 = 0. For B6 = 0 and
A6 6= 0 we get it from Q53

001 = 0. For the case M1 = M6 it is given by Q51
002 = 0.

c. ν 6= n 6= 0: Four conditions are given by Q22
201 = Q33

200 = Q31
021 = Q42

020 = 0. For
B6 6= 0 we get the fifth condition from Q71

001 = 0. For B6 = 0 and A6 6= 0 we get
it from Q62

001 = 0. For the case M1 = M6 and cosδ 6= 0 it is given by Q51
002 = 0.

If additionally cosδ = 0 hold we get the last condition from Q42
101 = 0.

2. M5 = M6: We give the 4 necessary and sufficient conditions indicating the de-
generated cases of architecturally singular planar parallel manipulators (cf. [8]):

a. n = 0: Q22
021 = Q24

020 = Q13
201 = Q15

200 = 0.
b. n = ν : Q31

021 = Q42
020 = Q13

201 = Q24
200 = 0.

c. ν 6= n 6= 0: Q31
021 = Q42

020 = Q22
201 = Q33

200 = 0.
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Moreover, w.l.o.g. we can assume that if 3 points of M1, . . . ,M4 are collinear and
pairwise distinct they are M1,M2,M3. We can also assume that if 2 points of
M1, . . . ,M4 coincide, they are M2 and M3.

Now Q40
111 = 0 and Q40

021 = 0 imply |a,A,B|42 = 0. W.l.o.g. we can express a2 from
this condition. In the next step we prove by contradiction that W must vanish with

W := a3(A2B4−A4B2)(B2−B3)+a4(A3B2−A2B3)(B2−B4).

From Q60
101 = 0 we get B5 = B6. Now Q42

200 can only vanish w.c. under consideration
of Q60

011 = 0 for n = 0 or n = ν . In both cases Q33
200 = 0 yields the contradiction.

Part [B] (B2−B3)sin µ 6= 0
Under this assumption we can express a3 from W = 0. Then Q22

102 = 0 together with
Q31

021 = 0 imply an expression for a5. Now Q71
100 can only vanish w.c. for:

1. n = 0: Now Q62
100 = 0 implies B5 = B6 or B2B3B4 = 0.

a. B5 = B6: Assuming B2B3 6= 0 we can express A4 from Q42
101 = 0. From Q33

101 =
0 we get A6 and Q53

100 = 0 yields the contradiction. For the special case B2B3 =
0 we can set B2 = 0 w.l.o.g.. Then Q42

101 = 0 implies B3 = B4. From Q33
101 = 0

we get b5 = b6 and Q53
010 = 0 yields the contradiction.

b. B2B3B4 = 0, B5 6= B6: In all 3 cases we get the contradiction from Q51
101 = 0.

2. B5 6= B6, n 6= 0: Now Q42
020 = 0 and Q42

110 = 0 can only hold if the common factor
G[48] vanishes or for H1[6] = H2[6] = 0. As the latter case yield easy contradic-
tions we set G = 0 and introduce the following notation:

R := A2B3B4(B4−B3)(B2−B6)−A3B2B4(B4−B2)(B3−B6)+A4B2B3(B3−B2)(B4−B6).

a. R 6= 0: Now we can compute A6 from G = 0. Then Q62
100 can only vanish w.c.

for n = µ , but in this case Q53
100 = 0 yields the contradiction.

b. R = 0, B2B3(B6 −B4) 6= 0: Under this assumption we can compute A4 from
R = 0. Now G = 0 can only vanish w.c. for b5 = b6. Then Q42

101 = 0 implies
n = ν and Q44

100 = 0 yields the contradiction.
c. R = 0, B2B3 = 0: W.l.o.g. we set B2 = 0. Then R = 0 can only vanish w.c. for:

i. B6 = 0: Due to Q53
100 = 0 we must distinguish two cases: For B3 = B4 we

get n = ν from Q62
010 = 0 and Q53

010 = 0 yields the contradiction. For the
second case n = ν , B3 6= B4 we get the contradiction from Q35

100 = 0.
ii. B3 = B4, B6 6= 0: Due to Q33

110 = 0 we must distinguish 3 cases: For the
cases b5 = b6 and B4 = B6 we get n = ν from Q51

011 = 0 and the contra-
diction from Q42

011 = 0. For the third case n = ν , (B4−B6)(b5−b6) 6= 0
we get the contradiction from Q24

110 = 0.
d. R = 0, B4 = B6, B2B3 6= 0: Now R can only vanish w.c. for:

i. B6 = 0: Q53
100 = 0 implies n = ν and Q35

100 = 0 yields the contradiction.
ii. B2 = B6 6= 0: Q42

101 = 0 yields n = ν and Q24
101 = 0 the contradiction.

3. B4 = 0, n(B5−B6) 6= 0: We get the contradiction from Q51
110 = 0.

4. B2B3 = 0, nB4(B5 − B6) 6= 0: W.l.o.g. we set B2 = 0. Now Q51
110 = 0 implies

B3 = B4 and then Q71
010 = 0 yields the contradiction.
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Part [C] B2 = B3, sin µ 6= 0
Now W can only vanish w.c. in the following 2 cases:

1. a4 = 0: Now Q22
102 = 0 and Q31

021 = 0 imply |a,b,A,B|63 = 0. W.l.o.g. we can solve
this condition for a5. Due to Q71

100 = 0 we must distinguish four cases:

a. n = 0: Then Q62
100 = 0 can only vanish w.c. in the following 2 cases: For B5 =

B6 we get B4 = 0 from Q42
101 = 0 and Q53

010 = 0 yields the contradiction. For the
2nd case Bi = 0, B5 6= B6 for i = 3,4 we get the contradiction from Q51

101 = 0.
b. B5 = B6, n 6= 0: Now Q42

020 and Q42
110 can only vanish w.c. for:

i. B3 = B4: Due to Q51
011 = 0 we must distinguish 2 cases: For A4 = B4(A3−

a3)/B6 we get n = ν from Q42
101 = 0 and the contradiction from Q24

101 = 0.
In the second case n = µ we get the contradiction from Q42

011 = 0.
ii. b6(A4B5−B4A5)+b5(A6B4−A4B6) = 0, B3 6= B4: Assuming B4 6= 0 we

can express A6 from this condition. Then Q62
100 = 0 implies n = ν and

Q53
100 = 0 yields the contradiction. For the special case B4 = 0 the above

condition can only vanish w.c. for B6(b5−b6) = 0. In both cases Q51
011 = 0

implies n = ν and Q42
011 = 0 yields the contradiction.

c. B3 = 0, n(B5−B6) 6= 0: We get immediately the contradiction from Q51
110 = 0.

d. B4 = 0, nB3(B5 −B6) 6= 0: In this case Q42
110 = 0 implies n = ν and finally

Q33
110 = 0 yields the contradiction.

2. B3 = 0, a4 6= 0: Now Q22
102 = 0 and Q31

021 = 0 imply again |a,b,A,B|63 = 0. W.l.o.g.
we can solve this condition for a5. Then Q51

110 = 0 can only vanish w.c. for:

a. n = 0: Q51
101 = 0 implies B5 = B6 and Q42

101 = 0 yields the contradiction.
b. B5 = B6, n 6= 0: Now Q42

110 = 0 implies an expression for A6. From Q62
100 = 0

we get n = ν and Q53
100 = 0 yields the contradiction.

Now only the discussion of the special case sin µ = 0 (⇔ Φ ‖ a) is missing. This
case study can exactly be done as the one for sin µ 6= 0. The only differences are
that we always get cosδ = 0 instead of n = ν and that n = 0 yields a contradiction.
This finishes the case study of γ ≥ α .

3.2 γ < α

In this case we translate ϕ and Φ such that M1 = m1 holds. As γ < α there exist
two positions by rotating of ϕ about a such that [M1,M2] ∈ ϕ holds. This reasons
the following coordinatization: Mi = (Ai,Bi,0) and mi = (ai,bi cosδ ,bi sinδ ) with
A1 = B1 = B2 = a1 = b1 = 0, ai = bia2/b2 for i = 3,4 and b2 sinδ 6= 0.

Again we set e1 = e4 cos µ , e3 = e4 sin µ and e2 = e4n. As β ≤ γ < α holds,
sin µ = 0 yields a contradiction as well as n = cos µ = 0 or cos µ = ncosδ +
sin µ sinδ = 0.

Moreover, due to the result of Sec. 3.1 we can stop the case study if 4 base anchor
points are collinear or if b5 = b6 = bi = b j holds with i, j ∈ {1, . . . ,4} and i 6= j.
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Part [A]

We show that M5 = M6 or ai = bia2/b2 for i ∈ {5,6} yields a contradiction:

1. a5 = b5a2/b2: We distinguish the following three subcases:

a. If m1, . . . ,m5 are pairwise distinct Q60
110 = 0 and Q40

111 = 0 indicate item 10 of
Karger’s list of architecturally singular manipulators (cf. [11]).

b. If 3 of the 5 collinear platform points coincide (w.l.o.g. m1 = m4 = m5)
Q40

111 = 0 and Q40
021 = 0 yield the contradiction.

c. Only 2 of the 5 collinear platform points coincide (w.l.o.g. b3 = 0). Now
Q60

110 = 0 and Q60
020 = 0 imply C(2,4,5) = 0 and Q40

111 = 0 indicates the special
case of item 10 of Karger’s list.

2. M5 = M6: The four conditions Q60
110 = Q60

020 = Q40
111 = Q40

021 = 0 imply the degen-
erated cases of architecturally singular planar parallel manipulators (cf. [8]).

Therefore we can assume for the remaining discussion that no 5 platform anchor
points are collinear and that M5 6= M6 holds. Now we compute the resultant of Q80

100
and Q60

110 with respect to a2 which yields (B5−B6)|a,b|65I5I6 with

Ii := B3B4bi(b3−b4)(Ai−A2)+B3Bib4(b3−bi)(A2−A4)+B4Bib3(b4−bi)(A3−A2).

As a consequence we must distinguish the following three parts:

Part [B] B5 = B6

1. Assuming I j 6= 0 we can compute ai from Q60
110 = 0 for i, j ∈ {5,6} and i 6= j.

W.l.o.g. we set i = 5. Then Q42
200 = 0 can only vanish w.c. for:

a. n = 0: Assuming B6B jbi(b5 − b j) 6= 0 we solve Q71
100 = 0 for Ai with i, j ∈

{3,4} and i 6= j. W.l.o.g. we set i = 3. Then Q40
111 = 0 cannot vanish w.c..

It is an easy task to verify that all cases in which Q71
100 = 0 cannot be solved

for A3 and A4 yield a contradiction.
b. B3B4 = 0, n 6= 0: W.l.o.g. we set B3 = 0. Then Q71

100 can only vanish w.c. for
n = ν . If we assume Jl := A2b3(b2−bl)−A3b2(b3−bl) 6= 0 we can compute
Ak from Q40

021 = 0 with k, l ∈ {5,6} and k 6= l. W.l.o.g. we set k = 5. Then Q31
021

can only vanish w.c. for A3 = b3A2/b2. Now Q24
101 = 0 yields the contradiction.

The special case J5 = J6 = 0 implies b5 = b6 = b2b3(A2 −A3)/|A,b|32. But
then Q31

021 = 0 yields the contradiction.
c. b3 = b4, B3B4n 6= 0: Then Q71

100 can only vanish w.c. for n = ν and Q62
100 = 0

implies the contradiction.
d. n = ν , B3B4n(b3−b4) 6= 0: Now Q51

110 = 0 already yields the contradiction.

2. We remain with the discussion of the special case I j = 0. We express Ai from
I j = 0 with j ∈ {5,6} and i ∈ {3,4}. W.l.o.g. we set j = 6 and i = 3. Then
Q60

110 = 0 can only vanish w.c. in the following cases:

a. B3 = 0: Then Q60
101 = 0 implies an expression for a5.

i. b5 6= 0: Now we can compute A5 from Q40
021 = 0. Then Q31

021 can only
vanish w.c. for n = 0. Finally Q22

021 = 0 yields the contradiction.
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ii. b5 = 0: Now Q40
021 can only vanish w.c. for b6 = 0. Then Q31

021 = 0 implies
n = 0 and Q22

021 = 0 yields the contradiction.
b. b3 = b4, B3 6= 0: This case can exactly be done as item a.
c. T := b4b5C(2,4,5)−b4b6C(2,4,6) +b5b6B4(A5−A6) = 0, B3(b3−b4) 6= 0:

i. b5 6= 0: Under this assumption we can compute A5 from T = 0. Then Q71
100

can only vanish w.c. for n = 0. Finally Q33
200 = 0 yields the contradiction.

ii. b5 = 0: Now T can only vanish w.c. for b6 = 0. Then Q71
100 = 0 implies

n = 0 and Q33
200 = 0 yields the contradiction.

3. It is impossible to solve I j = 0 for Ai with i ∈ {5,6} and j ∈ {3,4} for:

a. Bl = 0, bk = b5 = b6 with l,k ∈ {3,4}, l 6= k: W.l.o.g. we set l = 3.
i. J5,6 6= 0: Under this assumption we can express a2 from Q40

021 = 0. Then
Q31

021 = 0 can only vanish w.c. for n|A,b|32 = 0. For A3 = b3A2/b2 we get
n = µ from Q42

101 = 0 and finally Q53
100 = 0 yields the contradiction.

For n = 0, |A,b|32 6= 0 we get the contradiction from Q22
021 = 0.

ii. J5,6 = 0: W.l.o.g. we can express A3 from J5,6 = 0. Now Q60
110 = 0 can

only vanish w.c. for (a5−a6)(B4−B6) = 0. In both cases Q31
021 = 0 yields

n = 0 and Q22
021 = 0 the contradiction.

b. b3 = b4 = 0: Now Q40
021 = 0 implies |a,b,Ab|(2,5,6) = 0 which can be solved

for A6 w.l.o.g.. Then Q31
021 = 0 yields n = 0 and Q22

021 = 0 the contradiction.

Part [C] I5I6 = 0, B5 6= B6

We express Ai from I j = 0 with j ∈ {5,6} and i ∈ {3,4}. W.l.o.g. we set j = 6 and
i = 3. Then Q60

110 = 0 can only vanish w.c. for B3(b3−b4)L = 0 with

L := B4B5b6(b4−b5)(A6−A2)+B4B6b5(b4−b6)(A2−A5)+B5B6b4(b5−b6)(A4−A2).

1. B3 = 0: Then Q60
101 = 0 implies an expression for a5.

a. b5 6= 0: Under this assumption we can compute A5 from Q40
021 = 0. Then Q31

021
can only vanish w.c. for nb4G[14] = 0.

i. b4 = 0: We get n = ν from Q51
101 = 0 and the contradiction from Q42

101 = 0.
ii. G = 0, b4 6= 0: Assuming b5 6= b6 we can express A6 from G = 0. Then

Q51
110 = 0 implies n = ν and Q42

110 = 0 yields the contradiction.
For the remaining case b5 = b6 we get A2 = A4 from G = 0. Then Q31

021 =
0 implies n = ν and Q22

021 = 0 yields the contradiction.
iii. n = 0, b4G 6= 0: We get the contradiction from Q22

021 = 0.
b. b5 = 0: We distinguish again two cases:

i. b6 6= 0: Now we can express A6 from Q40
021 = 0. Then Q31

021 can only
vanish w.c. for (A5−A6)n = 0. For A5 = A6 we get the contradiction from
Q40

111 = 0. For the remaining case n = 0, A5 6= A6 we get the contradiction
from Q22

021 = 0.
ii. b6 = 0: Q40

021 = 0 implies A2 = A4. Now Q31
021 = 0 can only vanish w.c.

for (A5−A6)n = 0. We can construct the same contradiction as in case i.
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2. b3 = b4, B3 6= 0: Now Q60
101 can only vanish w.c. for B5[a2b4(b6−b5)+a5b2(b4−

b6) + a6b2(b5 − b4)] = 0. In both cases Q31
201 = 0 implies n = ν and Q22

201 = 0
yields the contradiction.

3. L = 0, B3(b3−b4) 6= 0: We distinguish the following two cases:

a. b5 6= 0: Under this assumption we can express A5 from L = 0. Then we get
Q80

010 = b4b6C(2,4,6)R[162]. As all 3 cases b4b6C(2,4,6) = 0 yield easy contra-
dictions we compute R+Q60

101 which cannot vanish w.c..
b. b5 = 0: In this case L can only vanish w.c. in the following 3 cases:

i. b4 6= 0: Now Q42
200 = 0 implies n = 0 or n = ν . In both cases Q33

200 = 0
yields the contradiction.

ii. B5 = 0, b4 6= 0: In this case the conditions Q42
200 = 0 and Q33

200 = 0 show
that b4(A4B6 − A6B4 + A5B4 − A2B6) + b6B4(A2 − A5) = 0 must hold.
W.l.o.g. we can express A5 from this condition. Then Q60

101 = 0. implies
an expression for A6 and Q80

010 can only vanish w.c. for b6 = 0. Finally
Q80

001 = 0 yields the contradiction.
iii. b6 = 0, b4B5 6= 0: Now Q71

100 = 0 can only vanish w.c. for nC(2,5,6) = 0.
Firstly, we express A6 from the collinearity condition. Then Q62

100 = 0
can only vanish w.c. for n = 0 or n = ν . In both cases Q53

100 = 0 yields
the contradiction. In the remaining case n = 0, C(2,5,6) 6= 0 we get the
contradiction from Q62

100 = 0.

It is impossible to solve I j = 0 for Ai with i ∈ {5,6} and j ∈ {3,4} for:

1. Bl = 0, bk = b5 = b6 with l,k ∈ {3,4}, l 6= k: W.l.o.g. we set l = 3.

a. J5,6 6= 0: Under this assumption we can express A5 from Q40
021 = 0. W.l.o.g. we

can solve Q80
010 = 0 for A6. Then Q71

100 can only vanish w.c. for n = ν . Finally
Q62

100 = 0 yields the contradiction.
b. J5,6 = 0: As |A,b|32 = 0 yields together with J5,6 = 0 a contradiction we can

solve J5,6 = 0 for b6 w.l.o.g.. Then we can express a2 from Q40
021 = 0. Now

we get a5 from the only non-contradicting factor of Q80
010 = 0. Then Q71

100 can
only vanish w.c. for n = ν . Finally Q62

100 = 0 yields the contradiction.

2. b3 = b4 = 0: W.l.o.g. we can be solved for A5 and B5 from Q40
021 = 0 and Q40

111 = 0.
Then Q31

021 = 0 can only vanish w.c. for (A2−A6)n = 0. For A2 = A6 we get n = 0
from Q31

111 = 0 and Q22
111 = 0 yields the contradiction.

For the remaining case n = 0, A2 6= A6 we get the contradiction from Q22
021 = 0.

Part [D] |a,b|65 = 0, (B5−B6)I5I6 6= 0

1. We start with the special case b5 = b6 = 0. In this case Q80
100 = 0 implies a5 = a6.

Then Q60
110 = 0 already yields the contradiction.

2. Therefore we can assume w.l.o.g. that b6 6= 0. We set a5 = b5a6/b6. Then the
resultant of Q80

100 and Q60
110 with respect to A6 can only vanish w.c. for B3B4(b3−

b4) = 0. For all cases we get the contradiction from Q80
100 = 0 and Q60

110 = 0. �
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4 Conclusion

In this article we proved the following main theorem (cf. Theorem 2 and 3):

Main Theorem. X(a)-singular planar Stewart Gough platforms with α 6= β and
where a is not orthogonal to Φ or ϕ are necessarily architecturally singular.

Consequences of this main theorem are the following:

• The manipulators given in Theorem 1 are the only non-architecturally singular
planar SG platforms with α 6= β which are Schönflies-singular.
Moreover it should be noted, that the missing special cases (i.e. α = β ) of
Schönflies-singular planar Stewart Gough platforms are given in [14]. Therefore
paper [14] also finishes the discussion of Schönflies-singular planar parallel ma-
nipulators which was started by Wohlhart [16] by giving an example for a X(a)-
singular planar SG platform of case (2a).
The presented example was the so-called polygon platform, i.e. a manipulator
where the platform and base anchor points are related by an inversion. This ma-
nipulator even possesses a Schönflies self-motion because it is a special case
of a parallel manipulator with Schönflies Borel-Bricard motions (cf. Husty and
Zsombor-Murray [17]) listed by Borel [18]. That Borel’s list is complete was
proven by Husty and Karger in [19].
Therefore the only open problem in this context is the determination of all non-
planar Schönflies-singular Stewart Gough platforms.

• Mick and Röschel proved in Theorem 4.1 of [13] that a planar SG platform is
architecturally singular if and only if it is singular with respect to a special 5-
parametric set of displacements. Due to the given main theorem for Schönflies-
singular manipulators we can improve this statement even to 4-parametric sets of
displacements, namely the Schönflies motion groups for which Theorem 2 and 3,
respectively, hold.
Note that this is a new characterization of architecturally singular planar SG plat-
forms beside the already existing ones (cf. Karger [6, 7], Nawratil [8], Röschel
and Mick [9] as well as Wohlhart [10]).
The question remains open, if this statement can further be improved to an even
3-dimensional Lie subgroup of SE(3), which are SO(3) and H(d)oR2 (cf. [20]).
The latter is composed of translations on a plane and a helical motion (with pitch
p) along the normal direction d of the plane. H(d)oR2 also includes the Cartesian
motion group T(3) (p = ∞) and the planar motion group SE(2) (p = 0) as special
cases. Due to the presented main theorem and the results given in [4, 14] we can
restrict H(d)o R2 to p ∈ [0,∞[ with ∠(Φ ,d) 6= ∠(ϕ,d) and d not orthogonal to
Φ or ϕ .
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