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Abstract. We study the transmission by two consecutive four-bar linkages with aligned frame
links. The paper focusses on so-called “reducible” examples on the sphere where the 4-4-corre-
spondance between the input angle of the first four-bar and the output-angle of the second one
splits. Also the question is discussed whether the components can equal the transmission of a
single four-bar. A new family of reducible compositions is the spherical analogue of compositions
involved at Burmester’s focal mechanism.
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1 Introduction

Let a spherical four-bar linkage be given by the quadrangleI10A1B1I20 (see Fig. 1)
with the frame linkI10I20, the couplerA1B1 and the driving armI10A1. We use the
output angleϕ2 of this linkage as the input angle of a second coupler motion with
verticesI20A2B2I30. The two frame links are assumed in aligned position as well as
the driven armI20B1 of the first four-bar and the driving armI20A2 of the second
one. This gives rise to the following

Questions:
(i) Can it happen that the relation between the input angleϕ1 of the armI10A1 and
the output angleϕ3 of I30B2 is reducible so that the composition admits two one-
parameter motions? In this case we call the compositionreducible.
(ii) Can one of these components produce a transmission which equals that of a
single four-bar linkage ?

A complete classification of such reducible compositions isstill open, but some
examples are known (see Sect. 3). For almost all of them existplanar counterparts.
We focus on a case where the planar analogue is involved at Burmester’s focal
mechanism [2, 5, 11, 4] (see Fig. 3a). It is not possible to transfer the complete
focal mechanism onto the sphere as it is essentially based onthe fact that the sum
of interior angles in a planar quadrangle equals 2π , and this is no longer true in
spherical geometry. Nevertheless, algebraic arguments show that the reducibility of
the included four-bar compositions can be transferred.
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Fig. 1 Composition of the two spherical four-barsI10A1B1I20 andI20A2B2I30 with spherical side
lengthsαi ,βi ,γi ,δi , i = 1,2

Remark: The problem under consideration is of importance for the classification
of flexible Kokotsakis meshes [7, 1, 10]. This results from the fact that the spherical
image of a flexible mesh consists of two compositions of spherical four-bars sharing
the transmissionϕ1 7→ ϕ3. All the examples known up to recent [6, 10] are based on
reducible compositions.

The geometry on the unit sphereS2 contains some ambiguities. Therefore we
introduce the followingnotations and conventions:

1. Each pointA onS2 has a diametrically opposed pointA, itsantipode. For any two
pointsA,B with B 6= A,A thespherical segmentor bar ABstands for the shorter
of the two connecting arcs on the great circle spanned byA andB. We denote this
great circle by[AB].

2. Thespherical distanceAB is defined as the arc length of the segmentAB on S2.
We require 0≤ AB≤ π thus including also the limiting casesB = A andB = A.

3. Theoriented angle<) ABC on S2 is the angle of the rotation about the axisOB
which carries the segmentBA into a position aligned with the segmentBC. This
angle is oriented in the mathematical sense, if looking fromoutside, and can be
bounded by−π < <) ABC≤ π .

2 Transmission by a spherical four-bar linkage

We start with the analysis of the first spherical four-bar linkage with the frame link
I10I20 and the couplerA1B1 (Fig. 1). We setα1 = I10A1 for the length of the driving
arm,β1 = I20B1 for the output arm,γ1 := A1B1, andδ1 := I10I20. We may suppose



Composition of spherical four-bar-mechanisms 3

0 < α1,β1,γ1,δ1 < π .

The movement of the coupler remains unchanged whenA1 is replaced by its an-
tipodeA1 and at the same timeα1 and γ1 are substituted byπ −α1 and π − γ1,
respectively. The same holds for the other vertices. WhenI10 is replaced by its
antipodeI10, then also the sense of orientation changes, when the rotation of the
driving barI10A1 is inspected from outside ofS2 either atI10 or at I10.

We use a cartesian coordinate frame withI10 on the positivex-axis andI10I20 in
thexy-plane such thatI20 has a positivey-coordinate (see Fig. 1). The input angle
ϕ1 is measured betweenI10I20 and the driving armI10A1 in mathematically positive
sense. The output angleϕ2 = <) I10I20B1 is the oriented exterior angle at vertexI20.
This results in the following coordinates:

A1 =




cα1
sα1 cϕ1
sα1 sϕ1


 and B1 =




cβ1 cδ1−sβ1 sδ1 cϕ2
cβ1 sδ1 +sβ1 cδ1 cϕ2

sβ1 sϕ2


.

Herein s and c are abbreviations for the sine and cosine function, respectively. In
these equations the lengthsα1, β1 andδ1 are signed. The coordinates would also be
valid for negative lengths. The constant lengthγ1 of the coupler implies

cα1cβ1cδ1−cα1sβ1sδ1cϕ2 +sα1cβ1sδ1 cϕ1

+sα1sβ1cδ1cϕ1cϕ2 +sα1sβ1sϕ1 sϕ2 = cγ1.
(1)

In comparison to [3] we emphasize algebraic aspects of this transmission. Hence we
express sϕi and cϕi in terms ofti := tan(ϕi/2) sincet1 is aprojective coordinateof
pointA1 on the circlea1. The same is true fort2 andB1 ∈ b1. From (1) we obtain

−K1(1+ t2
1)(1− t2

2)+L1(1− t2
1)(1+ t2

2)+M1(1− t2
1)(1− t2

2)
+4sα1sβ1 t1t2 +N1(1+ t2

1)(1+ t2
1) = 0,

K1 = cα1sβ1sδ1 , M1 = sα1 sβ1cδ1 ,
L1 = sα1 cβ1sδ1 , N1 = cα1 cβ1cδ1−cγ1 .

(2)

This biquadratic equation describes a2-2-correspondencebetween pointsA1 on
circlea1 = (I10;α1) andB1 onb1 = (I20;β1). It can be abbreviated by

c22t
2
1t2

2 +c20t
2
1 +c02t

2
2 +c11t1t2 +c00 = 0 (3)

setting

c00 = −K1 +L1+M1 +N1 , c11 = 4sα1 sβ1 , c02 = K1 +L1−M1 +N1 ,
c20 = −K1−L1−M1 +N1 , c22 = K1−L1 +M1+N1

(4)

underc11 6= 0. Alternative expressions can be found in [10].

Remark: Also at planar four-bar linkages mechanisms there is a 2-2-correspondance
of type (3).



4 G. Nawratil and H. Stachel

a) b)

 

I20 I30

A2

B2

a2

b2

B̃2

ϕ2 ϕ3

ψ2α2

β2

γ2

δ2

 

I10

I30

I20

A1

B1=A2

B2

ϕ1 ϕ2
ϕ3

α1

β 1
=

α 2

γ1

δ1

β2

γ2

Fig. 2 a) Opposite anglesϕ2 andψ2 at the second spherical four-barI20A2B2I30.
b) Composition of two orthogonal four-bar linkages withI30 = I10.

There are two particular cases:

Spherical isogram: Under the conditionsβ1 = α1 andδ1 = γ1 opposite sides of the
quadrangleI10A1B1I20 have equal lengths. In this case we havec00 = c22 = 0 in (3),
and eq. (1) converts into[s(α1− γ1)t2− (sα1 +sγ1)t1] [s(α1− γ1)t2− (sα1−sγ1)t1]
(for details see [10]).The 2-2-correspondance splits into two projectivities1 t1 7→

t2 =
sα1±sγ1

s(α1− γ1)
t1 , providedα1 6= γ1, π − γ1. Both projectivities keept1 = 0 and

t1 = ∞ fixed. These parameters belong to the two aligned positions of couplerA1B1

and frame linkI10I20. In these positions a bifurcation is possible between the two
one-parameter motions of the coupler against the frame link.

Orthogonal case: For a given pointA1 ∈ a1 the correspondingB1, B̃1 ∈ b1 are
the points of intersection between the circles(A1;γ1) andb1 = (I20;β1) (compare
Fig. 2a). Hence, the correspondingB1 andB̃1 are located on a great circle perpen-
dicular to the great circle[A1I20]. Under the condition cosα1 cosβ1 = cosγ1 cosδ1

which according to [10] is equivalent to det
(

c22 c02
c20 c00

)
= 0, the diagonals of the

spherical quadrangleI10A1B1I20 are orthogonal (Fig. 2b) as each of the products
equals the products of cosines of the four segments on the twodiagonals. Hence,B1

andB̃1 are always aligned withI10, but also conversely, the two pointsA1 andÃ1

corresponding toB1 are aligned withI20.

Note that the 2-2-correspondence (3) depends only on the ratio of the coefficients
c22 : · · · : c00. With the aid of a CA-system we can prove:

Lemma 1 For any spherical four-bar linkage the coefficients cik defined by(4) obey

c6
11+16

(
K2 +L2−2M2−1

)
c4

11+256
[
(M2−K2)(M2−L2)+2M2

]
c2

11−4096M4 = 0.

1 Since the vertices of the moving quadrangle can be replaced by their antipodes whithout changing
the motion, this case is equivalent toβ1 = π −α1 andδ1 = π − γ1 . We will not mention this in the
future but only refer to an ‘appropriate choice of orientations’ of the hinges.
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Conversely, in the complex extension any biquadratic equation of type(3) defines
the spherical four-bar linkage uniquely — up to replacementof vertices by their
antipodes. However, the vertices need not be real.

At the end of our analysis we focus on opposite angles in the spherical quadrangle
I20A2B2I30: The diagonalA2I30 divides the quadrangle into two triangles, and we
inspect the interior anglesϕ2 at I20 andψ2 at B2 (Fig. 2a). Also for non-convex
quadrangles, the spherical Cosine Theorem implies

cosA2I30 = cβ2cγ2 +sβ2sγ2cψ2 = cα2 cδ2 +sα2sδ2cϕ2 .

Hence there is a linear function

cψ2 = k2 + l2cϕ2 with k2 =
cα2 cδ2−cβ2cγ2

sβ2 sγ2
, l2 =

sα2 sδ2

sβ2 sγ2
. (5)

For later use it is necessary to define alsoψ2 as an oriented angle, hence

ψ2 = <) I30B2A2, ϕ2 = <) I30I20A2 under −π < ψ2,ϕ2 ≤ π .

We note that in general for givenϕ2 there are two positionsB2 andB̃2 on the circle
b1 obeying (5) (Fig. 2a). They are placed symmetrically with respect to the diagonal
A2I30; the signs of the corresponding oriented anglesψ2 are different.

Remark: Also Eq. (5) describes a 2-2-correspondance of type (3) betweenϕ1 and
ϕ2 , but withc11 = 0. A parameter count reveals that this 2-2-correspondance does
not characterize the underlying four-bar uniquely.

3 Composition of two spherical four-bar linkages

Now we use the output angleϕ2 of the first four-bar linkage as input angle of a
second coupler motion with verticesI20A2B2I30 and consecutive side lengthsα2, γ2,
β2, andδ2 (Fig. 1). The two frame links are assumed in aligned position. In the case
<) I10I20I30 = π the lengthδ2 is positive, otherwise negative. Analogously, a negative
α2 expresses the fact that the aligned barsI20B1 andI20A2 are pointing to opposite
sides. Changing the sign ofβ2 means replacing the output angleϕ3 by ϕ3−π . The
sign ofγ2 has no influence on the transmission.

Due to (3) the transmission between the anglesϕ1, ϕ2 and the output angleϕ3

of the second four-bar witht3 := tan(ϕ3/2) can be expressed by the two biquadratic
equations

c22t2
1t2

2 +c20t2
1 +c02t2

2 +c11t1t2 +c00 = 0,

d22t2
2t2

3 +d20t2
2 +d02t2

3 +d11t2t3 +d00 = 0.
(6)

The dik are defined by equations analogue to eqs. (4) and (2). We eliminatet2 by
computing theresultantof the two polynomials with respect tot2 and obtain
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det




c22t2
1 +c02 c11t1 c20t2

1 +c00 0
0 c22t2

1 +c02 c11t1 c20t2
1 +c00

d22t2
3 +d20 d11t3 d02t2

3 +d00 0
0 d22t2

3 +d20 d11t3 d02t2
3 +d00


 = 0. (7)

This biquartic equation expresses a4-4-correspondancebetween pointsA1 andB2

on the circlesa1 andb2, respectively (Fig. 1).

Up to recent, to the authors’ best knowledge the following examples of reducible
compositions are known. Under appropriate notation and orientation these are:

1. Isogonal type [7, 1]: At each four-bar opposite sides are congruent; the transmis-
sion ϕ1 → ϕ3 is the product of two projectivities and therefore again a projec-
tivity. Each of the 4 possibilities can be obtained by one single four-bar linkage.
This is the spherical image of a flexible octahedron of Type 3 (see, e.g., [8]):

2. Orthogonal type [10]: We combine two orthogonal four-bars such that they have
one diagonal in common (see Fig. 2b), i.e., underα2 = β1 andδ2 = −δ1, hence
I30 = I10. Then the 4-4-correspondance betweenA1 andB2 is the square of a
2-2-correspondance.

3. Symmetric type [10]: We specify the second four-bar linkage as mirror of the
first one after reflection in an angle bisector atI20 (see [10, Fig. 5b]). Thusϕ3

is congruent to the angle opposite toϕ1 in the first quadrangle. Hence the 4-4-
correspondance is reducible; the components are expressedby the linear relation
cϕ3 = ±(k1 + l1cϕ1) in analogy to (5).
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Fig. 3 a) Burmester’s focal mechanism and the second component of afour-bar composition. b)
Reducible spherical composition obeying Dixon’s angle condition for ψ1 — equally oriented

At the end we present a new family of reducible compositions:In Fig. 3a
Burmester’s focal mechanism is displayed, an overconstrained planar linkage (see
[2, 5, 11, 4]). The full lines in this figure show a planar composition of two four-
bar linkages with the additional property that the transmission ϕ1 → ϕ3 equals
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that of one single four-bar linkage with the couplerKL. Due to Dixon and Wun-
derlich this composition is characterized by congruent anglesψ1 = <) I10A1B1 and
<) LB2A2 which is adjacent toψ2 = <) I30B2A2 .2 However, this defines only one
component of the full motion of this composition. The secondcomponent is defined
by ψ1 = <) I10A1B1 = − <) LB2A2 (see Fig. 3a). For the sake of brevity, we call the
overall condition <) I10A1B1 = ± <) LB2A2 Dixon’s angle conditionand prove in
the sequel that also at the spherical analogue this defines reducible compositions.

Lemma 2 For the composition of two spherical four-bars Dixon’s angle condition
<) I10A1B1 = ± <) I30B2A2 is equivalent to

sα1 sγ1 : sβ1 sδ1 : (cα1 cγ1−cβ1 cδ1) = ±sβ2 sγ2 : sα2 sδ2 : (cα2 cδ2−cβ2 cγ2).

In terms of cik and dik it is equivalent to proportional polynomials

D1 = (c11t2)2−4(c22t2
2 +c20)(c02t2

2 +c00), D2 = (d11t2)2−4(d22t2
2 +d02)(d20t2

2 +d00).

Proof. In the notation of Fig. 3b Dixon’s angle condition is equivalent to cψ1 =
c(π −ψ2) = −cψ2 = −k2− l2cϕ2 by (5). At the first four-bar we have analogously

cψ1 = −k1− l1cϕ2 , k1 =
cα1 cγ1−cβ1 cδ1

sα1 sγ1
, l1 =

sβ1 sδ1

sα1 sγ1
. (8)

Hence, cψ1 = −cψ2 for all cϕ2 is equivalent tok1 = k2 andl1 = l2 . This gives the
first statement in Lemma 2. The± results from the fact that changing the sign ofγ2

has no influence on the 2-2-correspondanceϕ2 7→ ϕ3, but replacesψ2 by ψ2−π .
If the angle condition holds andψ1 = 0 or π , the distancesI10B1 andI30A2 are

extremal. For the corresponding anglesϕ2 there is just one correspondingϕ1 and
oneϕ3 . Hence, when for anyt2 the correspondingt1-values by (3) coincide, then
also the correspondingt3-values by (6) are coincident. Hence, the discriminantsD1

andD2 of the two equations in (6) — when solved fort2 — have the same real or
pairwise complex conjugate roots.

Conversely, proportional polynomialsD1 andD2 have equal zeros. Hence the
linear functions in (5) and (8) give the same cϕ2 for cψ1 = −cψ2 = ±1. Therefore
cψ1 = −cψ2 is true in all positions, and the composition of the two four-bars fulfills
Dixon’s angle condition.

The second characterization in Lemma 1 is also valid in the planar case. So, the
algebraic essence is the same on the sphere and in the plane. Since in the plane
the reducibility is guaranteed, the same must hold on the sphere. This can also be
confirmed with the aid of a CA-system: The resultant splits into two biquadratic
polynomials like the left hand side in (3). By Lemma 1 each component equals the
transmission by a spherical four-bar, but the length of the frame link differs from the
distanceI10I30 because otherwise this would contradict the classificationof flexible
octahedra. General results on conditions guaranteeing real four-bars have not yet
been found. We summarize:

2 This condition is invariant against exchanging the input and the output link. The compositions
along the other sides of the four-barI10KLI30 in Fig. 3a obey analogous angle conditions.
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Theorem 3 Any composition of two spherical four-bar linkages obeyingDixon’s
angle conditionψ1 = <) I10A1B1 = ± <) I30B2A2 (see Fig. 3b) is reducible. Each
component equals the transmissionϕ1 → ϕ3 of a single, but not necessarily real
spherical four-bar linkage.

Example: The dataα1 = 38.00◦, β1 = 26.00◦, γ1 = 41.50◦, δ1 = 58.00◦, α2 = −40.0400◦,

β2 = 123.1481◦, γ2 = −123.3729◦ , δ2 = 82.0736◦ yield a reducible 4-4-correspondence ac-

cording to Theorem 3. The components define spherical four-bars with lengthsα3 = 60.2053◦,

β3 = 53.5319◦ , γ3 = 8.6648◦, δ3 = 14.5330◦ or α4 = 24.7792◦ , β4 = 157.1453◦ , γ4 = 160.4852◦ ,

δ4 = 33.8081◦ .

4 Conclusions

We studied compositions of two spherical four-bar linkageswhere the 4-4-corre-
spondance between the input angleϕ1 and output angleϕ3 is reducible. We pre-
sented a new family of reducible compositions. However, a complete classification
is still open. It should also be interesting to apply the principle of transference (e.g.,
[9]) in order to study dual extensions of these spherical mechanisms.
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