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Abstract. We study the transmission by two consecutive four-bar fjelsawith aligned frame
links. The paper focusses on so-called “reducible” examplethe sphere where the 4-4-corre-
spondance between the input angle of the first four-bar amdtitput-angle of the second one
splits. Also the question is discussed whether the comgerzan equal the transmission of a
single four-bar. A new family of reducible compositionshe tspherical analogue of compositions
involved at Burmester's focal mechanism.

Key words. spherical four-bar linkage, overconstrained linkage, ¢tslkis mesh, Burmester's
focal mechanism, 4-4-correspondance

1 Introduction

Let a spherical four-bar linkage be given by the quadrahghe; B1l»0 (see Fig. 1)
with the frame linkl1ol20, the coupled;B; and the driving armi;pA;. We use the
output anglep, of this linkage as the input angle of a second coupler motiih w
verticesl,0A2B2l30. The two frame links are assumed in aligned position as veell a
the driven arml,oB; of the first four-bar and the driving arigA, of the second
one. This gives rise to the following

Questions:

(i) Can it happen that the relation between the input aglef the arml;pA; and
the output anglebs of 130B; is reducible so that the composition admits two one-
parameter motions? In this case we call the composiédacible

(i) Can one of these components produce a transmissionhwagoals that of a
single four-bar linkage ?

A complete classification of such reducible compositiorstilsopen, but some
examples are known (see Sect. 3). For almost all of them pbestar counterparts.
We focus on a case where the planar analogue is involved ahéxter's focal
mechanism [2, 5, 11, 4] (see Fig. 3a). It is not possible todfier the complete
focal mechanism onto the sphere as it is essentially baséediact that the sum
of interior angles in a planar quadrangle equafs @nd this is no longer true in
spherical geometry. Nevertheless, algebraic arguments stat the reducibility of
the included four-bar compositions can be transferred.
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Fig. 1 Composition of the two spherical four-bargA;B1l20 andl20A2B2l30 with spherical side
lengthsai, B, y,&,1=1,2

Remark: The problem under consideration is of importance for thesifecation

of flexible Kokotsakis meshes [7, 1, 10]. This results fromfiact that the spherical
image of a flexible mesh consists of two compositions of SphEfour-bars sharing
the transmissiog; — ¢3. All the examples known up to recent [6, 10] are based on
reducible compositions.

The geometry on the unit sphe8 contains some ambiguities. Therefore we
introduce the followinghotations and conventions:

1. Each poinAon$? has a diametrically opposed poftits antipode For any two
pointsA, B with B £ A A the spherical segmerdr bar ABstands for the shorter
of the two connecting arcs on the great circle spannedldéydB. We denote this
great circle by{AB].

2. Thespherical distanc@B is defined as the arc length of the segm&Bion 2.
We require 0< AB < mrthus including also the limiting cas@= A andB = A.

3. Theoriented anglexABCon  is the angle of the rotation about the agi8
which carries the segmeB#into a position aligned with the segmeBIiE. This
angle is oriented in the mathematical sense, if looking fourtside, and can be
bounded by-m< $4ABC< 1.

2 Transmission by a spherical four-bar linkage

We start with the analysis of the first spherical four-bakdige with the frame link
I10l20 @and the coupleA;B; (Fig. 1). We seti; = 1041 for the length of the driving
arm, 31 = lp0B; for the output army; := A1B1, andd; := l1olzo. We may suppose
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0<ay,B1,11,01 < TL.

The movement of the coupler remains unchanged wheis replaced by its an-
tipode A; and at the same time; and y; are substituted byr— a; and m— yi,
respectively. The same holds for the other vertices. Whgris replaced by its
antipodel 1o, then also the sense of orientation changes, when theawtafithe
driving barl10A; is inspected from outside & either atl1g or atl1o.

We use a cartesian coordinate frame withon the positivex-axis andl1gl2g in
the xy-plane such thalbg has a positive/-coordinate (see Fig. 1). The input angle
¢1 is measured betweeiylo and the driving arni A in mathematically positive
sense. The output angte = < 110l20Bs is the oriented exterior angle at vertey.
This results in the following coordinates:

coy CB1CO1 — SB1 501 CP2
Ay = [ saicgs | and By = | cf1sd +sBicdicds |.
sa1 sy SB1 SP2

Herein s and c are abbreviations for the sine and cosineifumaespectively. In
these equations the lengths, 31 andd, are signed. The coordinates would also be
valid for negative lengths. The constant lenggtof the coupler implies

ca1¢f1¢o1 — cag SBr 1 P2 + Sa1.CP1 S0 Ch1 )
+ 501501 ¢ Ch1 CP2 + Sa1SP1 SP1SP2 = CyA.

In comparison to [3] we emphasize algebraic aspects ofrdnismission. Hence we
express ¢ and @; in terms oft; := tan(¢i/2) sincet; is aprojective coordinat®f
pointA; on the circlea;. The same is true fdp andB; € b;. From (1) we obtain

Ky (1+)(1—1t3) + Ly(1—t))(1+1t3) + My (1 —t2)(1 - t3)
+4s018Bitaty + Ny (1+12)(1+12) =0,

K1 =ca1sB150; , M; = sa1sB1 ¢y,

2
L1 =sa1¢B1801, Ny = caycficd —cyr. @)

This biguadratic equation describe2&-correspondencbetween point#\; on
circlea; = (l1p; a1) andB; onby = (lp; B1). It can be abbreviated by

sztftzz + Czot% + Cozt22 +Ccitato +Ccogo=0 (3)
setting

Coo=—Ki+Li+M1+Ni, cCip=4s01861, Cop=Ki+Li—Mi+Ng, @)
Coo= —K1—L1 =M1+ Ng, Coo =Ky —L1+M1+Ng

undercy1 # 0. Alternative expressions can be found in [10].

Remark: Also at planar four-bar linkages mechanisms there is a @r2spondance
of type (3).
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Fig. 2 a) Opposite angleg, and s, at the second spherical four-bagA>B;I30.
b) Composition of two orthogonal four-bar linkages wigh = 11¢.

There are two particular cases:

Spherical isogram: Under the conditionf; = a1 andd; = y1 opposite sides of the
quadrangle;pA1B1l20 have equal lengths. In this case we heye= c2 = 0in (3),
and eq. (1) converts inf(a1 — y1)tz — (sa1 + sya)ta] [s(a1 — ya )tz — (so1 — sya)ta]
(for details see [10])The 2-2-correspondance splits into two projectivifies —

th = Ssgxlisf) t1, provideda: # yi, T— yi. Both projectivities keep; = 0 and
1—Nn

t1 = o fixed. These parameters belong to the two aligned positibosuplerA; B,

and frame linklqgl2o. In these positions a bifurcation is possible between the tw

one-parameter motions of the coupler against the frame link

Orthogonal case: For a given pointA; € a; the correspondingy,B; € by are
the points of intersection between the circlég; y1) andby = (l20; B1) (compare
Fig. 2a). Hence, the correspondiBg andB; are located on a great circle perpen-
dicular to the great circlfA1l20]. Under the condition ca®; cosB; = cosy; cosdy

which according to [10] is equivalent to egis ggs = 0, the diagonals of the

spherical quadranglaoA;1Bilyo are orthogonal (Fig. 2b) as each of the products
equals the products of cosines of the four segments on thdiagonals. Hencds;
andB; are always aligned witly, but also conversely, the two poirdg and Ay
corresponding t®; are aligned witH .

Note that the 2-2-correspondence (3) depends only on tiseofahe coefficients
Co2: -+ Cpo. With the aid of a CA-system we can prove:

Lemma 1l Forany spherical four-bar linkage the coefficienjsdefined by4) obey
¢, +16(K2+ L2 —2M2 — 1) cf; +256[(M? — K?)(M? — L?) + 2M?| ¢, — 4096M* = 0.

1 Since the vertices of the moving quadrangle can be replac#telr antipodes whithout changing
the motion, this case is equivalent@p= 11— a; andd; = m— y1 . We will not mention this in the
future but only refer to an ‘appropriate choice of orierda8’ of the hinges.
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Conversely, in the complex extension any biquadratic eqguatf type(3) defines
the spherical four-bar linkage uniquely — up to replacemaivertices by their
antipodes. However, the vertices need not be real.

Atthe end of our analysis we focus on opposite angles in thersgal quadrangle
120A2B2l30: The diagonalAyl3g divides the quadrangle into two triangles, and we
inspect the interior angleg, at l,o and Y5 at B, (Fig. 2a). Also for non-convex
quadrangles, the spherical Cosine Theorem implies

COSAzl30 = CP2CYo + B2 SY2 CY2 = CA2CO + SO2 SO CP2 -

Hence there is a linear function

Caz0% —ChpCly | _ SU2S% 5)
SBzsys ’ sBasy.

For later use it is necessary to define aJsoas an oriented angle, hence

cPr = ko +1ocpp with ky =

Yo = Jl30B2A2, 2 = S l30l20A2 under — < o, o < 1.

We note that in general for givepp there are two position8, andB; on the circle
by obeying (5) (Fig. 2a). They are placed symmetrically witpect to the diagonal
Aol3p; the signs of the corresponding oriented anglgsire different.

Remark: Also Eqg. (5) describes a 2-2-correspondance of type (3)dxmtd; and
¢, but withcy1 = 0. A parameter count reveals that this 2-2-correspondaoes d
not characterize the underlying four-bar uniquely.

3 Composition of two spherical four-bar linkages

Now we use the output anglf, of the first four-bar linkage as input angle of a
second coupler motion with verticegA,B,l30 and consecutive side lengtbis, v,
B2, andd, (Fig. 1). The two frame links are assumed in aligned positiothe case
J l10l20l30 = 1Tthe lengthd, is positive, otherwise negative. Analogously, a negative
o, expresses the fact that the aligned HagB; andlpA; are pointing to opposite
sides. Changing the sign 8§ means replacing the output angleby ¢3 — . The
sign of y» has no influence on the transmission.
Due to (3) the transmission between the anglgsg, and the output anglés
of the second four-bar witty := tan(¢3/2) can be expressed by the two biquadratic
equations
Coot?t2 + Coot? + Coat2 + Cratata + Coo = O,
Oot2t3 + doot? + doot3 + daitots + doo = 0.

The di are defined by equations analogue to egs. (4) and (2). Wenglietp by
computing theesultantof the two polynomials with respect tg and obtain

(6)
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Coot? + Coz C%1t1 Coot? + Coo 20
0 Cootf +Co2  Cuati  Cootf + Coo
det 221 1 =0. 7
oot +dpo  diats  doot3 +doo 0 (7)
0 dzztez, +d2o diit3 dozt% +doo

This biquartic equation expressed-#@-correspondancbetween pointé\; andB;
on the circlesa; andby, respectively (Fig. 1).

Up to recent, to the authors’ best knowledge the followingregles of reducible
compositions are known. Under appropriate notation arehtation these are:

1. Isogonal type [7, 1]: At each four-bar opposite sides are congrubetitransmis-
sion ¢1 — ¢3 is the product of two projectivities and therefore again @jgu-
tivity. Each of the 4 possibilities can be obtained by ongl&riour-bar linkage.
This is the spherical image of a flexible octahedron of Typse®(e.g., [8]):

2. Orthogonal type [10]: We combine two orthogonal four-bars such thay teve
one diagonal in common (see Fig. 2b), i.e., undge B; andd, = —d;, hence
I30 = l10. Then the 4-4-correspondance betwégnand B; is the square of a
2-2-correspondance.

3. Symmetric type [10]: We specify the second four-bar linkage as mirrfothe
first one after reflection in an angle bisectod af (see [10, Fig. 5b]). Thugs
is congruent to the angle oppositedig in the first quadrangle. Hence the 4-4-
correspondance is reducible; the components are expriegsiee linear relation
cp3 = +(ky+11c¢1) in analogy to (5).

Fig. 3 a) Burmester’s focal mechanism and the second componentooirdar composition. b)
Reducible spherical composition obeying Dixon’s angleditbon for ; — equally oriented

At the end we present a new family of reducible compositidnsFig. 3a
Burmester’s focal mechanism is displayed, an overcom&ttaplanar linkage (see
[2, 5, 11, 4]). The full lines in this figure show a planar corsjtion of two four-
bar linkages with the additional property that the transiois ¢; — ¢3 equals
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that of one single four-bar linkage with the coupl€t. Due to Dixon and Wun-
derlich this composition is characterized by congruentesw; = < 110A:B; and
JLByA; which is adjacent tal, = <I|3082A2.2 However, this defines only one
component of the full motion of this composition. The secoathponentis defined
by Y1 = 4110A1B1 = — S LBA; (see Fig. 3a). For the sake of brevity, we call the
overall condition < 1;0A1B; = + < LByA, Dixon’s angle conditiorand prove in
the sequel that also at the spherical analogue this defidasitde compositions.

Lemma 2 For the composition of two spherical four-bars Dixon’s amgbndition
J110A1B1 = £ S 130B2Az is equivalent to
Sa1Syr - SP1SO : (CaiCyr —CPB1CA) = £SBoSys 1 SO28 : (Ca2Cdy — CPaCYs).
In terms of g and d it is equivalent to proportional polynomials
D1 = (C11t2)? — 4(Co2t5 + C20) (Cozts +Coo), D2 = (d1tz)? — 4(d2at5 + doz) (d2ot3 + doo)-

Proof. In the notation of Fig. 3b Dixon’s angle condition is equiai to aJ; =
c(rm— yr) = —cypr = —ky — Iocd7 by (5). At the first four-bar we have analogously

k]_ _ Ca;Cy; — CBl C61 Il —_ SBl Sél (8)

cyp = —ki—1Iic .
Y1 1= lhchz, Sa1SYa ' Sa1Sy1

Hence, @i = —cy, for all ¢, is equivalent tck; = ky andl; = I». This gives the
first statement in Lemma 2. Thieresults from the fact that changing the sigryef
has no influence on the 2-2-correspondapice- ¢3, but replaceg, by y» — .

If the angle condition holds angl; = O or 71, the distance$;oB; andlzgA; are
extremal. For the corresponding angliesthere is just one correspondigg and
one ¢3. Hence, when for antp the corresponding-values by (3) coincide, then
also the correspondintg-values by (6) are coincident. Hence, the discrimin@nts
andD, of the two equations in (6) — when solved fior— have the same real or
pairwise complex conjugate roots.

Conversely, proportional polynomial3; and D, have equal zeros. Hence the
linear functions in (5) and (8) give the samg,dor cy; = —cy, = +1. Therefore
cyYn = —cyr is true in all positions, and the composition of the two ftars fulfills
Dixon’s angle condition. O

The second characterization in Lemma 1 is also valid in thagnl case. So, the
algebraic essence is the same on the sphere and in the place.is the plane
the reducibility is guaranteed, the same must hold on thergpfThis can also be
confirmed with the aid of a CA-system: The resultant splite itwo biquadratic
polynomials like the left hand side in (3). By Lemma 1 each porent equals the
transmission by a spherical four-bar, but the length of tame link differs from the
distancd 10l3p because otherwise this would contradict the classificaifdlexible
octahedra. General results on conditions guaranteeindaeabars have not yet
been found. We summarize:

2 This condition is invariant against exchanging the input &re output link. The compositions
along the other sides of the four-blagKLI3g in Fig. 3a obey analogous angle conditions.
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Theorem 3 Any composition of two spherical four-bar linkages obeyibigon’s
angle conditionyn = 4 110A1B; = + J130B2A; (see Fig. 3b) is reducible. Each
component equals the transmissigpn— ¢3 of a single, but not necessarily real
spherical four-bar linkage.

Example: The dataa; = 38.00°, 1 = 26.00°, y; = 41.50°, & = 58.00°, a, = —40.0400,

Bo = 123148, y» = —1233729, &, = 820736 yield a reducible 4-4-correspondence ac-
cording to Theorem 3. The components define spherical fats-ith lengthsaz = 60.2053,

B3 =535319, y3 = 8.6648, 03 = 14.5330 or a4 = 24.7792, 34 = 157.1453, y, = 1604852,

0y = 33.808L.

4 Conclusions

We studied compositions of two spherical four-bar linkagé®re the 4-4-corre-
spondance between the input angleand output angles is reducible. We pre-
sented a new family of reducible compositions. However,raggete classification
is still open. It should also be interesting to apply the gipie of transference (e.g.,
[9]) in order to study dual extensions of these sphericalhmasms.
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