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Abstract

In this paper isotropic congruences of lines in elliptic three-space
E? are parametrized explicitly. We additionally obtain a rational
parametrization of the set of oriented lines in E?. Assuming that
a congruence C of lines in E? is generated by a mapping joining the
left and right spherical kinematic image of C, we are able to assign an
energy to congruences and define minimal congruences. It turns out
that the isotropic congruences are minimal.
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1 Introduction

Two-parameter families of lines are called congruences of lines. They have
been studied since the second half of the nineteenth century, see [9, 12].

The geometry of elliptic three-space E* and especially the theory of line
congruences in E® was studied after the method of moving frames, exterior
differential calculus and the quaternionic representation of points in E?* have
been developed, see [1, 6, 25].

Elliptic three-space E? is a point model of the three-parametric group of rota-
tions about a fixed point O in Euclidean three-space R3. This fact was used
to study this group and elliptic three-space simultanously. Some theorems on
kinematics in the Euclidean bundle have counterparts in elliptic geometry,
see [1, 21, 25].



H. R. MULLER [18, 19, 20, 21] and W. BLASCHKE [2, 3| gave the foundations
for CH. LUBBERT’s work [13, 14, 17, 16] on ruled surfaces in elliptic three-
space E3.

The study of congruences of lines in elliptic three-space is motivated by the
following facts: Congruences of lines in E* admit a simple charactrization by
means of the properties of a mapping that assigns the left to the right spher-
ical kinematic image, as we will see in Sec. 3. Some of these constructions
can also be done in Euclidean three-space R®. Furthermore, the construc-
tions of isotropic congruences in E* admit discretizations that can be used
in numerical geometry in order to solve certain boundary value problems for
line congruences, see [22].

We pay attention to rational congruences of lines since they can be rewritten
as tensor product Bézier (or B-spline) volumes and thus they have a geo-
metrically favorable representation. Isotropic congruences of lines in elliptic
three-space and Euclidean three-space as well appear in the context of energy
minimizing congruences, see [22] and Sec. 4 of the present paper.

This paper is organized in the following way: In Sec. 2 we give a brief intro-
duction to quaternions, define the spherical kinematic mapping and show the
Klein model of line space. Afterwards we show how to treat congruences of
lines in E*. Sec. 3 is dedicated to the computation of a rational parametriza-
tion of the set of lines in elliptic space. For that end we use the preparations
from Sec. 2. Sec. 4 deals with a possibility of assigning an energy to congru-
ences of lines. Finally Sec. 5 gives some simple examples and Sec. 6 gives
ideas for future research.

2 Line geometry in elliptic three-space E*

2.1 Quaternions

Let {1,4,7,k} be a basis in R*. Any vector z = (x¢, 1, 2o, 3) € R* allows
the unique representation x = z¢ + ix1 + jro + kx3. Leaving the addition of
vectors in R? the usual one and defining a multiplication for vectors in R*
by defining it for the basis vectors as

P==k=-1,ij=—ji=k jk=—kj=1i, ki=—ik=j, (1)

R* becomes the skew field H of quaternions. The element z € R* is called
quaternion. The quaternion x := xy — iz, — jzo — kx3 is called the conjugate



quaternion to x. The norm N(z) of x reads
N(z) := 2T = 2} + 2} + 25 + 73. (2)

A quaternion z satisfying N(z) = 1 is called unit quaternion. The norm
is multiplicative since N(zy) = zyry = zyyr = zN(y)r = N(z)N(y). If
N(z) # 0, we can compute the inverse quaternion ! of z as 7! = Z/N(z).
The one-dimensional subspaces =R of R* are the points X in projective space
P3. Now we coordinatize the points of P? by unit quaternions and endow P?
with the metric

cosd = |ToYo + T1Y1 + Toye + x3ys| =: (X, Y)e, (3)

where x and y are unit quaternions representing the points X and Y in
P3. The thus obtained metric space is called three-dimensional elliptic space
E3. The real value 0 < d < 7/2 is called elliptic distance of X and Y.
Two points X and Y are said to be orthogonal, if (X,Y). = 0. A standard
model of elliptic three-space E? is the Euclidean unit sphere S® € R* where
antipodal points are identified.

The elliptic metric (3) also allows a quaternionic representation
1, o 1.
(X, Y)e = 52y +ya) = 5 (@Y + ). (4)

Elliptic space E? is a CAYLEY-KLEIN space with absolute quadric
Q: 25+ 27 +25+ 15 =0. (5)

Points being conjugate with respect to {2 are said to be orthogonal in the
sense of elliptic geometry and have elliptic distance /2. The group of mo-
tions in elliptic three-space isomE? is induced by the group of automorphic
collineations of Q, see [1, 8, 21].

2.2 The spherical kinematic mapping

An oriented straight line L in elliptic three-space E* can be spanned by an
ordered pair of orthogonal points, say X and Y. Here and in the following we
distinguish between the oriented lines X VY and Y'V.X. The unit quaternions
x and y representing orthogonal points X and Y help to parametrize the set
of points incident with L as

L(t) = xcost + ysint, (6)
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where ¢ € [0,7). Since X and Y are orthogonal, we have zy = —yz and
Ty = —yx, see (4). Now we define the left and right spherical kinematic
image L' and L™ of L by

L'=%y and L™ =y7. (7)

It can easily be verified that L! and L™ are contained in the three-dimensional
subspace imH := iR + jR + kR of R*. Furthermore, they are unit vectors
which is an immediate consequence of the multiplicativity of the norm (2)
for quaternions. L' and L™ do not depend on the choice of X and Y on L:
Changing X to X' = xcost — ysint and Y to Y’ = xsint + ycost, we find
that L' and L" remain unchanged. Reversing the orientation of L = X VY
reverses the orientation of L! and L".

Thus we have a mapping from the set L of oriented lines in elliptic three-
space to pairs of points in the Euclidean unit sphere S?. This mapping is
called spherical kinematic mapping and was first given by W. K. CLIFFORD
in 1873, sce [6]. The spherical kinematic mapping from the set £ — S2 x 52
is one-to-one and onto.

The group isomE? of elliptic motions consists of elements ' = gzp, where
p and ¢ are unit quaternions. The image L' of an oriented line L under
B € isomE?® has L" = pL'p and L™ = §L"q for its left and right image,
respectively. This shows that 8 € isomE? induces Euclidean motions in the
spherical kinematic images. Thus we can say: The group isomE? of motions
in elliptic three-space E? is the free product of SO3 and SOs.

2.3 Klein model of line space

In order to represent lines in projective or elliptic three-space one can use
Pliicker coordinates of lines. These coordinates are assigned to lines in the
folllowing way: Let a line L be spanned by two points X and Y in P3. We
collect their coordinate vectors in a 2 X 4-matrix

{xo T1 o 31'3:| (8)

Yo Y1 Y2 Y3

and compute the determinantes [; ; of the 2 x 2-submatrices built from the
i-th and j-th columns of (8). The vector

6‘19; ﬁ):': (L17L27L3;L47L5aL6) = (50,1,50,2,50,3;52,3, l3,1,l1,2)

comprises the Pliicker coordinates of L. In order to simplify the computa-
tions, we define the vectors [ := (L, Lo, L3) and l :== (L4, Ls, Lg).
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Obviously, the Pliicker coordinates are independent on the choice of X and
Y on L. Since the coordinates of X and Y are homogeneous, the Pliicker
coordinates of L are homogeneous too. The Pliicker coordinates of L can be
interpreted as coordinates of points in projective five-space P°.

The mapping v : £ — P° is called Klein mapping and maps lines L in
projective three-space to points in projective five-space P°. The coordinates
of L satisfy the relation

My : (1) = LiLy+ LyLs + LyLs = 0, 9)

where (-, -) denotes the canonical scalar product in Euclidean three-space R3.
Equation (9) is the equation of a regular quadric of dimension four and index
two and is called Klein quadric or Pliicker quadric. It is a point model for
the set £ of lines in P3.

Since 7 is linear in both arguments x and ¥, pencils of lines in P® correspond
to lines in M and bundles and fields of lines correspond to the planes in M.
Thus M3 carries two three-parameter families of planes, where planes of the
same kind share a point and planes of different kind are either skew or share
a line.

Now we assume that P? is endowed with the metric (3) and the points X and
Y spanning L are orthogonal. With (7) we can compute the left and right
spherical kinematic image L' and L" of L and find

L'=1—1 and L"=1+I. (10)

The spherical kinematic mapping is linear in the normalized Pliicker coordi-
nates of a line, it is called a linear line mapping, see [4, 10, 15, 23, 24].

Applying the polarity with regard to Q to L the left vector L' reverses its
orientation while the right keeps its orientation. This is easily sean since (I, [)
change ist roles while changing from line coordinates to dual line coordinates,

L.e. aris coordinates, see [24, 26]. Consequently we have for the reciprocal
polar L* of L: I* =]l —l=—L'and L*" =1+1=L".

Since L' and L™ are unit vectors contained in imH, we additionally have
(LY, LY, = (1,1) — 2(I,1) + (I,1) = 1. Comparing with (9), we observe that

LY+ {10 =1, (11)

is valid for the left and right image of a line L in elliptic three-space. Equa-
tions (9) and (11) are the necessary and sufficient constraints to a vector in
R® to be the coordinate vector of a line in elliptic three-space E3.

A point model of the manifold of lines in E? thus is the intersection of two
quadrics in R®. This algebraic manifold of degree four admits a rational
parametrization as we will see later.



2.4 Congruences of lines in F?

A congruence C of lines in elliptic space E? is a two-parameter manifold of
lines. We assume that z and y are unit quaternions representing orthogonal
points. With (6) we can parametrize a congruence C' of lines, if we assume
z = z(u',v?) and y = y(u', u?) depend on two parameters u' and u?, varying
in some domain D C R?. The points on lines L of C now read

L(u',v?;t) = z(u', u?) cost + y(u', u?) sint, (12)

where ¢ € [0,7). In the following we assume that the involved functions are
smooth.

Py

P,

Figure 1: Polar simplex attached to a line L € C.

In order to discuss line congruences in E? we attach a simplex ¥ to each line
L of C. The vertices P;, i € {0,1,2,3,} of ¥ are pairwise orthogonal and we
let Py and P;5 be the orthogonal points spanning L, see Fig. 1.

The edges F; := PyV P; of X are polar with regard to € from (5) to the edges
E} := P; V P, with cyclic ordering of 7,5,k € {1,2,3}. Since X is a polar
simplex of Q from (5), we have

(P, Pj)e = ij. (13)

Now we try to express the differentials of P; as linear combinations of P;. We
assume

dP; = wiP,, (14)

differentiate (13) and find that (14) is skew-symmetric: w/ = —w}. The dif-
ferential forms w] can be found as w] = (dP;, P;).. Exteriorly differentiating
equation (14) together with (13) leads to the conditions of integrability

dw! + wf Awl =0, (15)
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with ¢, j € {0,1, 2, 3}.
We use (7) in order to compute the left and right images of the edges E;. The

left and right spherical kinematic images of E; build an orthonormal frame.
This is easily shown, if we compute

—~——

1, = - = ~
(El, B = i(Popipopj + Popipopi) = po{Ls, Pj)epo = dij, (16)

where pj are the unit quaternions representing the points P;. The same is
true for £ .

The differentials of E! and ET can be expressed as linear combinations of E!
and E}, respectively and we have

dE! = pFEL. and dE! = oFE]. (17)
The p} and o] can be computed as p] = (El dE!), and o} = (E!,dEY)..
And obviously, the systems of linear differential equations (17) are skew-

symmetric. Exterior differentiation leads to the integrability conditions
dol +pl Ap¥ =0 and dol + pl Ao¥ =0, (18)

with 4,7,k € {1,2,3}. The differential forms wzj , z-' and af are not indepen-
dent. Besides of the integrability conditions (15) and (18) their are additional
relations to be satisfied. These relations show the equivalence of (14) and
(17).

In order to find these additional relations, we compute for example
dE! = d(pop1) = wyPep1 + wiPspr + wiPops + wipops = pi b + piEL,  (19)

where we used the definition (2) of the norm and the fact that wj = —w?. The
middle term of (19) can now be simplified by inserting E! = pyp;, 7 € {1, 2}.
Recalling EX = P; V P, and thus having Bt = pkpj and EY" = p,py, with
cyclic ordering of i, j and k, equation (19) can finally be written as

~wW3EY — W3EY 4+ WPEY + W3EL = pIEL + p3EL. (20)

In the latter equation we used that changing E; to Ef results in E =
—FE! and the right image vectors remain unchanged. Performing the above
calculations for all combinations of indices and analogously for the right
vectors E;, we finally obtain

1_ 1 3 1 _ 1 3
py =Wy + Wy, 03 =Wy — Wy,
3_ .3 2 3,3 2
P} =w) +wj, 0] =w)—wg, (21)

2 _ 2 1 —
p3 = w3 +wy, 03 =wW;— Wy



Now we are going to characterize congruences C of lines in E? by character-
izing the correspondence between the left and right image of C', respectively.
For that it turned out to be useful to study the spherical image (in the sense
of elementary differential geometry of surfaces) of the spherical kinematic
image of a line L, see [1, 21].

We pay our attention to congruences of lines where the left and right spherical
kinematic image is joined by a mapping X' = (M, X*) : L! — L". For the
following investigations we define:

Definition 2.1

Let C: D CR? = L be a congruence of lines in elliptic three-space E* and
C': DCR = 82andC": D C R — S? be its left and right image,
respectively. Further, assume that there exists a mapping N : S? — S? with
C" = XN oC'. Then, we say C is generated by \.

We assume that the spherical kinematic mapping provides an orientation
preserving conformal mapping X' joining the left and right spherical kinematic
image of a congruence C' of lines. Taking the third equation of (17)

dE: = pyE! + piE, and dEj = 03F] + 03 Ey, (22)
we can build the complex differential forms
p:=ps+ipy; and o := 0 +iog, (23)
where i is the imaginary unit with > = —1. The mapping E} — E% is con-
formal, if the differential forms (23) are linearly dependent. The differential
forms (23) are R-linear dependent if and only if
pAO=p3 Aoy —py Aoy +i(py Aos +p3 Aog) =0, (24)

which is identically equal to zero, if the real and imaginary part are equal to
zero. This characterizes isotropic congruences in elliptic space E?, see [21].
Thus we define:

Definition 2.2
A congruence C of lines in elliptic space is called isotropic, if the differential
form p A o from (24) vanishes identically for all u = (u',u?) € D C R®.

The linear dependence of p and o in case of a conformal mapping X : E} —
E} results in the existence of a complex number f := f! +if? # 0 with
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g
CT —T= O-(CT)

-
DCRR—=CCCL N A

ol — = o(CY
g

Table 1: Action of mappings C, ", !, o, A, \.

p = fo. In [21] it is shown that the distribution parameter of ruled surfaces
in an isotropic congruence of lines C' is independent on the direction in the
congruence C at any line L.

The striction points of the ruled surfaces contained in an isotropic congruence
C in elliptic space E? are independent on the direction in C. The two striction
points of any ruled surface through a fixed line L in C coincide with the two
central points of L, see [21].

At last we remark that an orientation reversing conformal mapping X : E4 —
E% generates a congruence C' that is obtained by applying the polarity with
regard to €2 to a certain elliptic isotropic congruence C of lines. It is known
that there exists a counterpart in Euclidean space R?, see [11].

3 Parametrization of isotropic congruences

In this section we attack the main problem of computing a parametrization
for congruences of lines be means of mappings that assign the left image
of the congruence lines to right image. For the convenience of the reader
we briefly summarize our concept: The mapping C : D — L defines the
congruence of lines. Applying ! and " to C according to (10) we obtain the
left and right image C" and C', respectively. These are actually domains in
the Euclidean unit sphere S?. The stereographic projection o : S?\ S — R?
results in two domains in R? & C. Now the generation of C can easily be
described by a mapping A : o(C') — o(CT). Table 1 shows the action of
involved mappings.

In order to find a parametrization of a congruence of lines generated by a
mapping A’ joining the left and right spherical kinematic image, we apply



the stereographic projection o : >\ S — Cand A: D C C — C is the
mapping joining o o C* and o o C". We let S = (0,0, —1) be the center of o.
We let u := u; + iuy be coordinates in o o C'. Note that u’ are not the ones
mentinoed in (12). If 0 o C7 is the A-image of o o C!, then X := A' + i\? are
coordinates in o o C". On the other hand, with (10) we have

Ll = (L1 — L4, L2 —_— L5, L3 - Lﬁ), Lr == (L1 + L4, L2 + L5, L3 + Ls) (25)

for the left and right image of the congruence lines. Applying the stereo-
graphic projection o : S?\ P — C to L! and L", the left and right image of
C is parametrized by

Li— 1L, . Lo—1Ls
T4 Ls—Le "1+ Ls — Le
L+l . L+l
1+ Ls + Lg 1+ Ls + Ly

o(LlY) = = ul+i? = u,

(26)

o(L") AL +id?2 = A
Equations (26) are linear in L;, Lo, L, and Ls, if we separate real and
imaginary part. The coordinates L, Lo, L4 and L5 can thus be expressed in
terms of v and \ as

ul A
L= 5(1 + L3 — Lg) + 5(1 + L3 + L),
u? A2
L2 = 5(1 +L3 _— Lﬁ) + E(]_ +L3 +L6)7
(27)
Al ul
L4 - 5(1 +L3 +L6) - 5(1 +L3 - L(;),
A2 u?

To eliminate L3 and Lg from (27) we use the normalization (11) and the
PLUCKER condition (9). First of which together with (27) reads

M1+ Ly + Lg)? +uti(1 + Ly — Lg)? + 2(L2 4+ L2 — 1) = 0. (28)
Inserting (27) into the PLUCKER condition (9) we get
M1+ L3 + Lg)? — uti(1 + L3 — Lg)? + 4L3Lg = 0. (29)

Equations (28) and (29) are linear in the squared norms of u and A. These
squared norms are

1—Ls—Lg

M= -—7"7 — BT
1+L3+L6 1+L3_L6



By multiplying both of these equations with the denominator of their respec-
tive right hand sides, we obtain a system of two linear equations in the two
unknowns Lz and Lg. The solutions of this system are
1 — uuAX T — A\
Ly = o L L= — . (30)
(142N (1 + ua) (14 2N (1 + va)

Finally we have a parametrization of a congruence C of lines with help of a
function A : D C C — C such that the left image is mapped to the right.
We only have to collect the L; in a vector and arrive at

_ ’U,l )\1 -
— + =
1+wuw 14+ M)
u? A2
=+ —
1+wuu 142\
1 — umAX
1+ um)(1+ A\
) = | (0D @)
1+ Ay l4+wu
2 u?
14\ l4uz
U — A\
| (14 wm)(1+ AN)

Thus we can state the following theorem:

Theorem 3.1
Congruences C of lines in elliptic space E* which are generated by a mapping
A: C — C can be parametrized by (31).

The above computations used the normalization condition (11) and Pliicker
condition (9). Viewing the real-valued functions \* : D C R? - R (1 €
{1,2}) as two independent real parameters, we can say:

Theorem 3.2
The four-dimensional manifold of lines in elliptic three-space can be rationally
parametrized by (31).

Remark:
It is not surprising that the set £ of lines in projective three-space P* admits
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a rational parametrization since the Klein quadric is a point model of it and
quadrics always admit rational parametrizations. The set L of oriented lines
in elliptic three-space is described by normalized Pliicker coordinates. At
this point we leave the projective space P° and enter the vector space R®.
The Pliicker coordinates of lines are normalized according to (11) and have
to satisfy (9) and thus L is the set of points lying in the intersection of two
quadrics in RS. Such intersections are at most of algebraic degree four and
do not always admit rational parametrizations. ¢

Remark:

The set of oriented lines in Euclidean three-space R® does also admit a ra-
tional parametrization. It is easily found, if we assume that [ = (L1, Lo, L3)
is parametrized rationally. With help of the stereographic projection from
R? — S?\ S, we obtain [ = 1/U(2u!, 2u?, (1 — (u')? — (u?)?)), with U =
1+ (u')?+ (u?)? and S = (0,0, —1). Inserting this into the Pliicker condition
(9), we can express for example Lg by means of u!, u?, while leaving L, = u?
and Ls = u* as remaining two paramters. Thus, we obtain a parametrization
of £in R? as

I ( 2u! 202 1— (uh)? - (u2)2)T
1+ (ul)Q + (u2)2’ 1+ (u1)2 + (u2)2’ 1+ (U1)2 + (U2)2 ’

1,3 2,4 T
= ut,— 2(u'v® + uu?) ,
1— (uh)? — (u?)?

where the Euclidean constraints (I,1) =1 and (l,1) = 0 are satisfied. ¢

Furthermore, we can say that the special choice of the generating function A
results in special congruences which can now easily be studied.

Assuming that A\’ depend on two real parameters u' and u?, respectively
and assuming further S? is parametrized by isothermal coordinates, then
conformal mappings ) : S2 — S? can be characterized by the differential
equations

Ni=N% & V==X (32)

These equations are known as the CAUCHY-RIEMANN equations for holo-
morphic functions A := A\' + A2 : D C C — C. Further it is known that
(anti-)conformal mappings S? — S? are induced by the (anti-)conformal
mappings D C C — C. Thus it makes no difference whether a congruence
C of oriented lines is said to be generated by a mapping D C C — C or a
mapping S? — S2.

We are able to state and prove the following result:
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Theorem 3.3
The congruences of lines in elliptic three-space E? generated by holomorphic
functions A : D C C — C are isotropic congruences.

Proof: We have to show that the differential form (24) vanishes identically.
For that end we compare the spherical kinematic images of a congruence C'
parametrized by (31). With (10) we find

1 2u! 1 2!
L'= = 2u? and L=+ 2)? , (33)
1— (u1)2 _ (U2)2 1— ()\1)2 _ ()\2)2

where U := 1+ (u')? + (¢v?)? and A := 1+ (A\1)? + (\?)?. Comparing (7) and
(10) we find that L' = EL and L™ = E}. Differentiating E% and E} from (33)
we get

dL' = L' du' + LYdu? and  dL" = L7d\' + Lyd)?, (34)

where ; indicates partial differentiation with respect to u' and ., indicates
partial differentiation with respect to \°.

Furthermore, we have \' = \;(u', u?) and A\? = \y(u', u?), since we assume
C is generated by A = A! + i\2. Consequently, we have

dA' = Ajdu' + Nydu® and  dA® = Nidu' + Ndu®. (35)
With the definition of p} and o7 from (17) and with
(dL',dLY) = ®6ydu’du’ and (dL",dL") = U8,;d\'dN, (36)

where ® : D - R, ® =4U 2 and ¥ : D — R, U = 4A~2 are smooth
real-valued functions, we have

pE = —V®dul, pl = VOdu? and o2 = —VTVd\, o = VTN (37)
Repeating the computations done in (24) and using (35) we find
pAT=VOU(N] + Ny +i(AN) — A\%))du' A du®. (38)

The differential form (38) is identically zero, if A satisfies the CAUCHY-
RIEMANN equations (32) for holomorphic functions A : D C C — C. O
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4 Harmonically generated congruences of
lines

In section 3 it turned out that a holomorphic function A : D C C —
C generates isotropic congruences of lines. The generating function A is a
harmonic one. Its real and imaginary part satisfy the LAPLACE equation

with 4 € {1,2}. This is also true for anti-holomorphic functions A.

Now we consider R? as a Riemannian manifold with the constant metric
g = diag(1,1). Then, A can be considered as a mapping from one Riemannian
manifold into an other one: \: (R? g) — (R?, g). We can assign an energy
density e(\) to A. Following [7], we have

o) = 5 (R + ) + ()2 + (3)2) (10)

The energy E()\) of A then is the integral

E(\) = /De()\) X1, (41)

with %1 being the Riemannian volume element of R?, see also [7].

Equations (39) are the EULER-LAGRANGE equation for the variational prob-
lem F()\) — min. and thus the solutions of (39) make E()) from (41) sta-
tionary.

So we can say that the energy of the holomorphic (and anti-holomorphic)
functions A is minimal (or at least stationary) in the class of mappings C —
C. This fact could be used to define minimal congruences in elliptic three-
space [E3.

Definition 4.1

A congruence C of oriented lines in elliptic three-space E® defined over a
domain D C C 1is called minimal congruence, if the generating function
A D — C is harmonic.

In order to clarify in which sense these minimal congruences are minimal, we
define:

Definition 4.2

Assume C is a congruence of oriented lines in B2 generated by a function
A: D C C— C. Then, the energy density e(C) of C is the energy density
e(A) of A and its energy E(C) is the energy E()\) of A.
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The congruences of lines parametrized by (31) are minimal in the sense of the
above definition, if they are generated by harmonic functions A : D — C:
The stereographic projection o : S?\ S — C is conformal and harmonicity
preserving. It therefore maps the harmonically joined domains o o C' and
o o C" to harmonically joined domains in the unit sphere. The harmonic
correspondence between the left and right spherical kinematic image is not
effected. So we can state:

Theorem 4.1

The congruences of lines in elliptic three-space B® parametrized by (31) are
minimal congruences in the sense of definition 4.1, if the generating functions
are harmonic (conformal or anti-conformal) functions C — C.

Comparing theorem 3.3 and definition 4.1, we have:

Theorem 4.2
The minimal congruences in elliptic three-space &3 are isotropic, if they are
generated by a holomorphic A.

Remark:
The minimal congruences are rational congruences of lines in F?, if they are
generated by rational functions A. ¢

As outlined in subsection 2.2 the group isomE? of motions in elliptic three-
space induces Euclidean motions in the spherical kinematic image. Any
B € isomE? induces a pair of rotations in the unit sphere S2. The conformal
correspondence between two domains C! and C” is invariant under these
rotations. Therefore we have the following theorem:

Theorem 4.3
The generation of minimal congruences in E® is invariant under elliptic mo-
tions.

5 Examples

This section is to give some simple examples of minimal congruences.

A(u) = 0: Since d\ = 0, A is not holomorphic. The lines of the congruence
C generated A = 0 are parametrized by

1

L) = Ty @
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Observing that L, + Ly = Lo+ L5, we have an elliptic linear line congruence.
Its Klein image is the oval quadric

Li+Ly=1Ly+Ls=L3+ L5 — L3Lg = 0.

It is not an isotropic congruence in the sense of definition 2.2, since A is not
conformal (dA = 0). It is of course minimal since it has vanishing energy.

A(u) = u = id¢ : The identity mapping defines the bundle of lines with
vertex (1,0,0,0)R:

_ 1
T+ @)+ (u2)

L(u', u?) 5 (2u!, 20,1 — (u')? — (u?)?,0,0, 0)7.
The bundle and thus any bundle is an isotropic and a minimal congruence
of lines. There are no principal directions in it.

A(u) = @ : Note that A(u) = @ is not holomorphic. The last simple example
given here leads to the set of lines in a plane, i.e. a field of lines parametrized
by

1

L(UI,UZ) = 1+ (’U,l)2 + (ug)

5 (2u',0,1 — (u')® — (u?)?,0,2u%,0)".

This field of lines and thus any field of lines is minimal but not an isotropic
congruence.

6 Conclusion and future research

We have shown a way to parametrize the manifold of lines in elliptic three-
space rationally. We also gave an explicit parametrization of isotropic con-
gruences in E3. An energy is assigned to congruences. This energy is in close
relation to the generation of the congruence, it comes from it.

An open problem is the geometric interpretation of the energy density and
energy as defined above. Is it possible to express the energy density in terms
of the coeficients of the fundamental forms of a congruence? Does the energy
of a congruence C of oriented lines in elliptic three-spcae E* have a geometric
meaning for two-parametric motions in spherical kinematics?

Is it possible to characterize congruences which are generated by special
conformal or anti-conformal mappings, especially MOBIUS transformations?
Do these congruences have remarkable properties?

16



References

[1] BLAscHKE, W.: Kinematik und Quaternionen. VEB Dt. Verlag der Wis-
senschaften, Berlin 1960.

[2] BLAscHKE, W.: Differentialgeometrie der geradlinigen Fléchen im ellip-
tischen Raum. Math. Zeitsch. 15 (1922), 309-320.

[3] BLAsCHKE, W.: Nicht-euklidische Geometrie und Mechanik I, II, II.
Hamburger Mathematische Einzelschriften 34 (1942).

[4] BRAUNER, H.: Eine geometrische Kennzeichnung linearer Geradenab-
bildungen. Mh. Math. 77 (1973), 10-20.

[6] CAYLEY, A.: A sixth memoir upon quantics. Phil. Trans. Royal Irish
Acad. 159, (1859), 61-90.

[6] CLiFFORD, W. K.: Preliminary sketch on biquaternions. Proc. London
Math. Soc. 4 (1873), 381-395.

[7] EELLS, J., SAMPSON, J. H.: Harmonic mappings of Riemannian mani-
folds. American J. of Math. 86 (1964), 109-164.

[8] GIERING, O.: Vorlesungen iiber hohere Geometrie. Vieweg, Braun-
schweig 1982.

[9] HAMILTON, W. R.: Theory of systems of rays. Phil. Trans. Royal Irish
Acad. 15 (1828).

[10] Haviicek, H.:  Die linearen Geradenabbildungen aus drei-
dimensionalen projektiven PAPPOS-Raumen. Sb. Oster. Akad. Wiss.
(math.-naturw. K1.) 192 (1983), 99-111.

[11] HOSCHEK, J.: Liniengeometrie. Bibliographische Institut, Ziirich 1971.

[12] KuMMER, E. E.: Allgemeine Theorie der gradlinigen Strahlensysteme.
J. Reine u. Angew. Math. 57 (1860), 189-230.

[13] LUBBERT, CH.: Uber geschlossene Regelflichen elliptischen Raum. J.
of Geom. 11/1 (1978), 35-54.

[14] LUBBERT, CH.: Uber Regelfliichen konstanter Striktion oder konstan-
ten Dralls im elliptischen Raum. Sb. Oster. Akad. Wiss.(math.-naturw.
Kl.) 184 (1975), 11-28.

17



[15] LUBBERT, CH.: Uber eine Klasse von linearen Geradenabbildungen.
Preprint No. 341, TH Darmstadt, 1977.

[16] LUBBERT, CH.: Die Boschungsflichen des elliptischen Raumes. Abh.
Braunschweigischen Wiss. Ges. 28 (1977), 89-100.

[17] LUBBERT, CH.: Ube}‘ Regelfichen mit speziellen Schmiegquadriken im
elliptischen Raum. Sb. Oster. Akad. Wiss. (math.-naturw. K1.) 184 (1975),
257-268.

[18] MULLER, H. R.: Uber Striktionslinien von Kurven- und Geraden-
scharen. Mh. Math. 50 (1941), 101-110.

[19] MULLER, H. R.: Uber Striktionslinien von Kurven- und Geraden-
scharen im elliptischen Raum. Mh. Math. 52 (1948), 138-161.

[20] MULLER, H. R: Der Drall einer Regelfliche im elliptischen Raum. Mh.
Math. 52 (1948), 181-188.

[21] MULLER, H. R.: Sphirische Kinematik. VEB Dt. Verlag der Wis-
senschaften, Berlin 1962.

[22] ODEHNAL, B.: Geometric optimization methods for line congruences.
Thesis, TU Wien, 2002.

[23] ODEHNAL, B.: Zur geometrischen Erzeugung linearer Geradenabbil-
dungen. To appear in: Sb. Oster. Akad. Wiss. (math.-naturw. KI.).

[24] PoTTMANN, H., WALLNER, J.: Computational line geometry. Springer
Verlag, Berlin-Heidelberg-New York 2001.

[25] STEPHANOS, K.: Sur la théorie des quaternions. Math. Ann. 22 (1883),
589-592.

[26] WEIss, E. A.: Einfiihrung in die Liniengeometrie und Kinematik, B.
G. Teubner, Berlin 1935.

Author’s Address:

Institut fiir Diskrete Mathematik und Geometrie,
Technische Universitat Wien,

Wiedner HauptstraBle 8-10,

1040 Wien,

Austria.

18



