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Abstract

The one-parameter family of triangles with common incircle and circum-
circle is called a porisitict system of triangles. The triangles of a poristic
system can be rotated freely about the common incircle. However this
motion is not a rigid body motion for the sidelengths of the triangle are
changing. Surprisingly many triangle centers associated with the trian-
gles of the poristic family trace circles while the triangle traverses the
poristic family. Other points move on conic sections, some points trace
more complicated curves. We shall describe the orbits of centers and
some other points. Thereby we are able to answer open questions and
verify some older results.
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1 Introduction

The family of poristic triangles has marginally attracted geometers interest.
There are only a few articles contributing to this particular topic of triangle
geometry: [3] is dedicated to perspective poristic triangles, [12] deals with the
existence of triangles with prescribed circumcircle, incircle, and an additional

The word poristic is deduced from the greek word porisma, which could be tranlated by
deduced theorem, cf. L. Mackensen: Neues Worterbuch der deutschen Sprache. 13. Auflage,
Manuscriptum Verlag, Miinchen, 2006.



element. Some more general appearances of porisms are investigated in [2, 4,
6, 9, 16] and especially [7] provides an overview on Poncelet's theorem which
is the projective version and thus more general notion of porism.

Nevertheless there are some results on poristic loci, /.e., the traces of triangle
centers and other points related to the triangle while the triangle is traversing
the poristic family. In [14] some invariant lines, circles, and conic sections
have been determined. Also triangles with common circumcircle and nine-
point circle have been studied by R. Crane in [5]. The poristic loci of triangle
centers have not undergone sincere study. For some centers the loci are given
in [11], especially the trace of the Gergonne point is treated in [1]. In [13] a
result by Welll is reproduced showing that the centroid X354 of the intouch
triangle is fixed while A traces its poristic family.

For most of the centers listed in [10] the respective poristic locus is unknown.
In the following we shall derive these loci, at least for some centers that
can easily be accessed with our method. For that purpose we impose a
Cartesian coordinate system in Sec. 2 which will henceforth be the system of
reference. Subsequently we derive paths of points which are not centers in
Sec. 3. Afterwards we pay our attention to triangle centers in Sec. 4. First
we focus on the centers on the line £; 3,% connecting the incenter X; with
the circumcenter Xs. It carries a lot of centers, some of them stay fixed
others do not. We only look at the fixed ones. Triangle centers which are
located on the incircle or circumcircle naturally trace these circles. None of
these remains fixed, except those on £; 3. Then we shall derive poristic loci
of some triangle centers and focus on those that traverse circles and conic
sections. The centers and radii or semiaxes of these poristic orbits are given
explicitly.

At this point we shall say a few words about techniques used in this work.
Computations are done with Maple. Equations of poristic loci mainly use the
framework of resultants. The computation of parametrizations of centers is
restricted somehow. This will be clear when we see parametrizations of the
circumcircle and incircle describing the vertices of A and its intouch trian-
gle, respectively. Deriving paths of orthocenters, centroids, circumcenters,
midpoints of a pair of triangle centers, as well as paths of triangle centers
which appear as intersections of central lines seems to be a very simple task
at first glance. But, however, parametrizations become larger and larger and

2Triangle centers are labelled according to C. Kimberlings list [10, 11]. Central lines, i.e.,
lines joining two centers with Kimberling number i and j shall be denonted by L; ;.



the computation of equations exceeds memory capacity and cannot be done
in an acceptable amount of time. Therefore centers like the incenter of the
intouch triangle (which is X;77 for the base triangle) cannot be reached with
our method.

2 Prerequisites

Let A be a triangle with vertices A, B, C. We denote its circumcircle and
incircle by u and 7, respectively. The circumcenter and the incenter shall be
denoted by X3 and Xi, see [10, 11]. The circumradius R, the radius of the
incircle r, and the distance d of X; and X3 are related by

d*> = R> - 2rR, (1)

see for example [11, p. 40]. The incircle and the circumcircle are circles in
a special position. To the best of the author's knowledge there is no english
word for that. In german we would say: “Kreise in SchlieBungslage”.

Any two circles u and i define a one-parameter family of triangles all of them
having u for the circumcircle and i for the incircle provided that Eq. (1) is
fulfilled, cf. Fig. 1. Any two triangles out of this family are said to form a
poristic pair of triangles.

In the following we want to study the traces of centers and other points related
to a triangle traversing its poristic family. For that purpose we use Cartesian
coordinates in order to represent points in the Euclidean plane. Without loss
of generality we can assume that X3 = [0, 0] and X; = [d, 0]. The equations
of the circumcircle and the incircle are thus

u: XP+y*’=R% i (x—d)P+y*=r’ (2)

Aiming at parametrizations of the traces of centers and other points related
to the triangle we assume that the line carrying A and B is given by

g: xcost+ysint=r+dcost with te[0,2m) (3)

since [A, B] has to be tangent to /. This allows to parametrize the circular
path of points A and B in a proper way. Note that these points are the
intersections of g and v and therefore they are given by

A=[rcost+dcos’t+Wsint,rsint+ dcostsint — W cos t], ()

B =|[rcost+dcos®t—Wsint,rsint+ dcostsint+ W cost],
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Figure 1: Triangle A with incircle i, circumcircle u, and the Cartesian coordi-
nate system imposed on it.

where W = \/R2 — (r + d cos t)2.3

Finally the two tangents from A and B to i which are different from the line
[A, B] intersect in A's third vertex C € u. This point reads

o _ [RRIR= (R + d)a) (>~ R*)Rs, -
N R2+d?2 —2dRc; 'R2+d?2—2dRc |’

whose trace is now described by the same parameter t. Here and in the
following ¢; and s; are short hand for cost and sin t, respectively.

The triangle A and thus any triangle in the poristic family defines some other
triangles: The medial triangle A,, is built by the midpoints of A’s sides. We
denote the anticomplementary triangle by A,, the excentral triangle by A,
the intouch triangle by A;, the tangent triangle by A;, the orthic triangle by
A,, and the extouch triangle by A,.

It is elementary to find the vertices of A,, A, Ay, Ay, and A;, if the para-
metric representation of A, B, and C is known. One vertex from A; is known
from the beginning: Bag = [rci+d, rs;], the point of contact of g and /. The
remaining vertices of A; can be obtained by reflecting the contact point Bag
of the line [A, B] with i in [A, X1] and [B, Xi], respectively. Though these

3Note that r, R, and d are related via Eq. (1). Sometimes we do not eliminate r in order
to shorten formulae.



operations are elementary we sketch them in order to make any computation
traceable.

Finally we point out that the computation of centers X; with
i€{1,2,3,4,56,7,8,9,10,11, 12,20}

among many others is elementary with these preparations. The shape of the
respective poristic loci will be discussed later in Sec. 4. At this point we should
confess that the computation of incenters needs normalization of direction
vectors. Luckily we have the incenter of A, but, unfortunately we cannot
reach incenters of A. and A;.

3 Traces of some points

We give the answer to the question raised in [11, p. 257] by proving the
following:

Theorem 3.1. The trace of the midpoint of any side of a triangle traversing

a poristic family is a Limacon of Pascal.

Proof. The midpoint M of AB is given as the arithmetic mean of the coor-
dinate vectors of the two points A and B from (4) and reads

M = [rcost+ dcos®t, rsint+ dcostsint]. (6)

The curve parametrized by (6) is called Limagon of Pascal, see [15]. Its
equations in terms of Cartesian coordinates is obtained by eliminating t and
reads

m: (xX*+y?)? = 2dx(x* +y?) — ((r* = d*)x* +r’y*) =0 (7)
for variable choices of r and d such that Eq. (1) is satisfied. (]
Fig. 2 shows different shapes of this curve: noded, cusped, or without visible
singularity. However, independent on the choice of R and d the point X3 is a

double point on m in any case. The quartic curve m has a cusp at U exactly
if |d| = |r|. If |d| <|r| Uis an isolated double point.

The quartic m touches i twice, i.e., precisely at points X446 = [d — r, 0] and
Xoasa7 = [d + r, 0]. If a midpoint of a side of A happens to coincide with one
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Figure 2: Different shapes of Pascal’s limacon which appears as trace of a
side's midpoint.

of these points then A is isosceles. Obviously there are two isosceles triangles
in the family of poristic triangles.

According to Bézout's theorem the total amount of intersection points of
m and / equals 8. The two real contact points Xsss6 and Xoss7 are each of
multiplicity two, the remaining four points are the absolute points of Euclidean
geometry (a pair of conjugate complex points on the ideal line) each of which
has multiplicity two on m and as a common point of m and /. Note that the
midpoints of the remaining two sides of A hound M on the same curve.

The traces of the excenters (see Fig. 3) of triangles in a poristic family have
been studied in [14] with slightly different methods. We observe:

Theorem 3.2. The three excenters of the triangles in a poristic family trace
the same circle e. Its center E is the reflection of X; in X5 and its radius
equals 2R.

Proof. The normals to [A, X1] and [B, Xi] at A and B, respectively, intersect
at A's excenter Az, opposite to C, for these lines are the internal bisectors at
A and B. An elementary computation using (4) and (5) yields

A3 = [QRCt - d, 2R5t]
which obviously parametrizes the circle e with equation
e: (x+d)?+y>=4R? (8)

Cyclically shifting A, B, and C vyields parametrizations of the loci of the other
excenters. These parametrizations annihilate Eq. (8). The center of e is
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Figure 3: The common path of all three excenters.

E =[—d, 0], i.e., the point X3 is the midpoint of E and X;. The radius of e
equals 2R. U]

Note that the point E is A's center X49, which is frequently called Bevan
point (cf. [10, 11]) and it remains fixed while A goes through the poristic
family. The excentral triangles A, together with the triangles A form another
poristic family of triangles with common circumcircle e and nine-point circle
u for A is the orthic triangle of A, see [5].

Similarly we can show:

Theorem 3.3. The vertices of the tangential triangle A; of A move on an
ellipse while A traverses the poristic family.

Proof. The vertices T4, Tg, Tc of A; are constructed as the intersections of
the tangents of the circumcircle u at A, B, C, respectively. The trace of the
vertex Tc opposite to C is parametrized by

2R3¢, 2R3s,

Te=\m_—gy 2dRc,' R2 — d? 1 2dRc, |

v



This is an ellipse with center [R?d/(R? — 2Rr — r?),0] and semiaxes a =
rR?/(r’+2Rr—R?), b = R?//r? + 2Rr — R2 which can be seen after implic-
itization. The traces of T4 and Tg have a more complicated parametrization,
but, however, they annihilate the same equation. [l

Fig. 4 shows the ellipse appearing as the poristic orbit of the vertices of A;.

Figure 4: The ellipse traced by the vertices of the tangential triangle.



4 Orbits of some centers

4.1 Centerson L3

On the central line £; 3 we find the triangle centers X; with

i€ {1,3,35,36,40,46, 55,56, 57,65, 165, 171, 241, 260, 354, 484,

517,559, 940, 942, 980, 982, 986, 988, 999, 1038, 1040, 1060, 1062,
1082, 1155, 1159, 1214, 1319, 1381, 1382, 1385, 1388, 1402, 1403,
1420, 1429, 1454, 1460, 1466, 1467, 1470, 1482, 1617, 1622, 1697,
1715,1735,1754,1758, 1764, 1771, 1936, 2061, 2077, 2078, 2093,
2095, 2098, 2099, 2223, 2283, 2352, 2446, . . ., 2449, 2556, 2557,

2564, 2565, 2572, 2573, 2646, 2662, 3057, 3072, 3075, 3245, 3256,
3295, 3303, 3304, 3333, 3336, . . ., 3340, 3359, 3361, 3428, 3503,

3513, 3514, 3550, 3576, 3579, 3587, 3601, 3612},

cf. [10]. The points X; and X3 are fixed anyway. The circumcenter of A's
excentral triangle is the point X4 and remains fixed as shown in Th. 3.2.
The triangle center Xs71 is the ideal point of the line £;3 and all parallel
lines, especially the central lines L4 and Ls 10.

For some of the centers on £ 3 we can give their precise position and state:
Theorem 4.1. The triangle centers X; of A with

i€ {1,3,35,36,40,46, 55,56, 57,65, 165, 354, 484,517,
942,999, 1155, 1159, 1319, 1381, 1382, 1385, 1388, 1420,
1454,1482,1697,2077,2078, 2093, 2095, 2098, 2099, 2446, (9)
2447,2646, 3057, 3245, 3256, 3295, 3303, 3304, 3336, . . .,
3340, 3576, 3579, 3587, 3601, 3612}

remain fixed while A traverses its poristic family.

Proof. There is nothing to be done for X; = [d, 0], X3 = [0,0], and Xs;7,
the ideal point of £; 3. The Bevan point Xy is the circumcenter of A, and
according to Th. 3.2 it is fixed.

The center Xgs = [d(R+r)/R, 0] ist the orthocenter of A;. Xgso = [d(2R +
r)/(2R), 0] is the midpoint of X; and Xss. The center Xzs = [R?/d, 0]
is the inverse of Xgss in the incircle and the 15t Evans perspector Xags =
[R(R+2r)/d, Q] is the reflection of X7 in X36. Then X35 = [dR/(R+2r), 0]
is the inverse of Xug4 in the circumcircle.
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Figure 5: Some centers on the line £ 3 mentioned in Th. 4.1: the circum-
center X9 of A, the orthocenter Xgs of A;, the centroid Xigs of Ae, the
centroid Xzsq4 (Welll point) of A;, the de Longchamps point X3ps7 of A;.

The centers Xss = [dR/(R + r),0] and Xs¢ = [dR/(R — r), 0] are the in-
and exsimilicenter of the incircle / and the circumcircle u. They are fixed
for u and i are fixed. As the reflection of X; in Xs6 we find X4 = [d(R +
r)/(R —r),0]. Xs; appears as the intersection of £;3 and £,7 and reads
Xs7 = [d(2R+r)/(2R—r), 0], which is obviously indpendent of t. The center
Xies = [—%d, 0] is computed as the centroid of Ae.

The Weill point Xss4 (cf. [10, 11]) is the centroid of A; and therefore X354 =
[d(B3R+r)/(3R),0]. The center Xg99 is the midpoint of centers X; and Xs;
and thus X999 = [2dR/(2R — d),O] The Schroder point X1155 = [R(R +
r)/d,0] (cf. [10]) is the inverse of Xsg in the circumcircle. The Greenhill
point X159 (see also [10]) is the intersection of £; 3 and the line parallel to
L1 5 through X7 and consequently Myi59 = [4d(R+r)/(4R + r), 0].

The Bevan-Schroder point Xi310 = [R(R —r)/d, 0] (cf. [10]) is the midpoint
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of X; and X36. The center Xi3g5 = [%d, 0] is the midpoint of X; and X3. The
triangle center Xi3gg = [d(R—2r)/(R—3r), 0] is computed as the intersection
of L1 3 and Lg 1317, with X317 being the reflection of the Feuerbach point X3,
in the incenter X;. The points Xi33; = [—R,0] and Xj3g = [R, 0] are the
common points of the circumcircle and the line £; 3.

Now we show that Xi400 = [d(2R —r)/(2R — 3r), 0] which is thus also fixed
and contained in £1'3: First we observe that X1420 = £1’3 N £84,104- Now X84
is the reflection of Xig90 In X3 and Xy490 = L£14 N L39. The triangle center
X104 Is the circumcircle-antipode of Xig9 and thus it is the reflection of X
in X3 with XlOO = £3,8 N £56’145, where X145 Is the reflection of Xg in Xl.

By the way we obtain X454 = [d(R + r)?/(R? + Rr — r?), 0] which lies on
L4145 and X480 = [2d, 0] is the reflection of the circumcenter in the incenter.
We find X1697 = £1’3 N £8,9 = [d(2R - I’)/(QR + r), O] Since X2077 is the
inverse of X4 in the circumcircle we have Xog77 = [-R?/d, 0]. Analagously
we find Xag7s = [R2(2R — r)/(d(2R + r)), 0] which is the inverse of Xs; in
the circumcircle.

The triangle center Xag93 = [d(2R+3r)/(2R—r), 0] is the reflection of X in
Xs7. The reflection of X3 in Xs7 yields Xoq95 = [2d(2R+7r)/(2R—r),0]. The
reflection of Xsg in the incenter X; leads to Xsges = [d(R —2r)/(R —r),0].
The point X5p99 can be obtained as reflection of Xs5 in Xj.

The centers Xoq46 = [d—r, 0] and Xa447 = [d+1, 0] are each others reflections
in X;1. Moreover they are the intersections of the incircle / with the line £; 3.
Xoaae is the center closer to X3, cf. [10].

Further X2646 = %(Xl + X35) = [d(R + r)/(R + 2/’), O] The center X3057 =
[d(R—r)/R, 0] is the de Longchamps point of A,. This fact is not mentioned
in [10]. There X3g57 only appears as the intersection of lines £ 3 and Lig11.

The center Xzps = [R(R + 4r)/d, 0] is found as the reflection of Xzg in
Xaga. Now we show that Xszos6 = [dR(2R + 3r)/(2R? + Rr + 2r?),0]: First
note that X3256 = £1'3 N £100,226- Where X226 is the reflection of X993 in
Xi1o5. The latter point X105 is the midpoint of X; and A's Spieker point
Xio. The first one, Xgos, is the reflection of X in X3, which is the reflection
of X147 in X19. The center of the Johnson-Yff circle X147g (cf. [10]) is given
by X147 = L1,.4 N Lo 36.

Intersecting £1'3 with £4'390 giVGS X3295 = [2dR/(2R + r), O], where X390
comes as a byproduct in a very early stage of the computation: Xzqq Is the
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reflection of the Gergonne point X7 in X;. We observe X3303 = £13NL12.497 =
[3dR/(3R + I’), O], with X12 = £1,5 N £2,56 and X497 = £1'4 N £2'11. Slmllarly
we find X3304 = £1'3 N £11'153 = [3dR/(3R — r),O] with X153 being the
reflection of X5g in Xigo.

We find the triangle centers X3336, ..., X3340, X3361 @S intersections of L 3
with lines ‘C7,4981 £7’499, ,C7'90, £7’10, £7'145, and £7'1125 and obtain X3336 =
[d(3R +2r)/(3R — 2r),0], Xss37 = [d(5R + 2r)/(5R — 2r),0], X333 =
[d(BR+r)/(BR—r),0], X3339 = [d(4R+3r)/(4R —r), 0], X3340 = [d(2R +
3r)/(2R 4+ r),0], and Xs361 = [d(4R + r)/(4R — 3r), 0], respectively. We
remark that Xssz3g Is also the reflection of X; in X3304.

We can easily find the centers Xssz6 = 3(X1 + Xig5) = [5d, 0] and Xzs79 =
2(X3+ Xa0) = [-3d,0]. The center X357 = [~d(2R + r)/(4R +r)),0] is
the intersection of £ 3 and Lg4 550, Where Xss50 = %(Xy, + X20). The center
Xsg01 = [d(2R+r)/(2R+3r), 0] is also located on Lg 51, where the Schiffler
point X5; can be found as intersection of A's Euler line with £ 56. Finally
X3612 = [d(R+r)/(R+3r), O] Is located on £21,90, where Xgo = £1,155ﬂ£40,80.
The center Xiss is the orthocenter of A; and Xgg = L£15N L2014 With X514 =
%(Xl + X100). Xgo can also be found as the reflection of X; in the Feuerbach
point Xi1. O

2095

2093 1155 484

Figure 6: Distribution of fixed centers on L 3.
Fig. 5 shows some triangle centers on the central line £; 3 which appear as

centers of central triangles. Fig. 6 shows the distribution of centers on £; 3
as described in Th. 4.1.
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4.2 Centers on the incircle and circumcircle

According to [10] the triangle centers X; with

i€ {11,1314,1315,1317,1354, ..., 1367, 2446, 2447,
3020, ..., 3028, 3317, ..., 3328}

are contained in the incircle. Here we can only verify the following result:

Theorem 4.2. The centers Xoa46 and Xoasq7 remain fixed while A is running
through the poristic family.

Proof. Actually there is nothing to be done: Xau6 = [d — r, 0] and Xoga7 =
[d+r, O] are the intersections of the incircle i with the line £; 3, see the proof
of Th. 4.1. O

Figure 7: The grey shaded annulus is the locus of all nine-point circles n of
triangles in the poristic family.

The point X717 known as Feuerbach point is the point of contact of the nine-
point circle with the incircle. Thus this point moves on the incircle given in
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(2). Since the circumradius R is the same for all triangles in the poristic family
the family of corresponding Feuerbach circles consists of congruent circles of
radius R/2. The nine-point circles of the poristic family are in contact with /
and enclose it at any instant. Beside X;; the Feuerbach antipode Xjig is the
second point of contact of any nine-point circle n with the outer boundary of
their envelope, see Fig. 7. So we can state:

Theorem 4.3. The nine-point circles of the triangles of a poristic family over
coat an annulus bounded by the incircle i and a concentric circle with radius
R—r.

From this we can deduce the following result:

Theorem 4.4. The poristic locus of X119 IS a circle centered at X; with radius
pi10 =R —r.

Among the huge amount of known triangle centers X; only those few with
indices

i€{74,98, ..., 112,399, 476,477,675, 681, 689, 697, 699, 701, 703, 705,
707,709,711, 713,715, 717,719,721,723,725, 727,729, 731, 733, 735, 737,
739,741,743,645, 747,753, 755,759, 761,767,769, 773,777,779, 781, 783,
785,787,789, 791,793,795, 797,803, 805, 807, 807, 813, 815, 817, 819, 825,
827,831, 833, 835, 839, 840, 841, 843, 900, 901, 917, 919, 925, 927,929, . . .,
935,953,972,1280, . . ., 1311, 1381, 1382, 1477, 2222, 2249, 2291, 2365, . . .,

2384, 2687, .. ., 2770,2855, .. ., 2868, 3222, 3563, 3565}

lie on the circumcircle. Here we have:

Theorem 4.5. Among the triangle centers on the circumcircle u only the
points Xi3g1 and Xizgo remain fixed while A traverses the poristic family.

Proof. We refer to the proof of Th. 4.1 where Xi331 = [—R, 0] and Xi3g =
[R, 0] are mentioned as the intersections of u with £ 3. O]

4.3 Centers with circular paths

In the following we describe the orbits of some triangle centers with circular
paths. Some of them are points on the circumcircle u, some lie on the incircle
i. We show:
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Theorem 4.6. Let A be a triangle traversing its poristic family. Then A's
triangle centers X; have circular paths for

i€{2,4,5,7,8,910,11,12,20,21,23,32,63,72,76, 78, 80, 84, 90, 94, 100,
104,105, 119, 120, 140, 142, ..., 145, 149, 153, 186, 191, 200, 210, 214, 226,
323,329, 347,355, 376, 381, 382, 388, 390, 392, 399, 442,495, . . ., 499, 501,
540, ..., 551, 631, 632, 759, 908, 920, 936, 938, 943, 944, 946, 950, 954, 956,
958, 960, 962,993, 997, 1001, 1004, 1005, 1007, 1125, 1145, 1156, 1158, 1210,
1292,1317, 1320, 1323, 1324, 1325, 1329, 1376, 1387, 1478, 1479, 1483, 1434,
1490, 1511, 1512, 1519, 1532, 1537, 1538, 1656, 1657, 1698, 1699, 1706, 1737,
1750, 1785, 1837, 1851, 1858, 1898, 1899, 2070, 2071, 2094, 2096, 2478, 2550,
2551, 2886, 2932, 2943, 3036, 3059, 3060, 3085, 3086, 3091, 3110, 3219, 3241,
3243, 3244,3254, 3305, 3322, 3328, 3358, 3419, 3421, 3434, 3452, 3473, 3474,
3475, 3485, 3486, 3522, 3534, 3543, 3555, 3582, . . ., 3586, 3589, 3600}.

Each of these centers traces its circular path three times while A performs
one full turn in the poristic family.

Proof. We demonstrate how to prove the above theorem by means of the
trace of X5: X5 is the centroid of A and therefore a parametrization of the
poristic orbit of X5 is given as the arithmetic mean of the coordinate vectors
of A, B, and C from Egs. (4) and (5), i.e., Xo(t) = £(A+ B+ C). Explicitly
we have
d(—4d?c2R? + 4d?c?R — d(R? + d?)c: + 2R?)

3R(R? + d? — 2dR¢;)

d?s(R? — d® + 4dRc; — 4R?c?)
3R(R? 4+ d? — 2dRc¢;)

Xo(t) = (10)

This parametrization tells us that X5 traces its path three times. In order to
obtain an equation of it and moreover in order to show that the orbit of X5
is a circle, we eliminate t by first substituting ¢; = (1 — v?)/(1 + v?) and
st = 2u/(1 + u?). Then we compute the resultant with respect to u of the
two polynomials

px = den(x2(u)) — x - num(xz2(v)), py := den(y2(u)) — y - num(ya(u)),

where x>(u) and y»(u) are the coordinate functions of X5(u) and den(f/g) =
g = num(g/f) give the denominator and numerator of a rational expression.
This yields

20d2RIS(R?2 — d?)*(4R%d? — 12xdR? 4+ 9y’ R? 4 9R?x? — d*)3
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and thus
&1 IR?(X? + y?) — 12dR?x + d?*(4R?> — d?) =0 (11)

is an equation of the desired circle. The fact that Eq. (11) appears three
times as a factor of the resultant also shows that this circle is traced three
times. The latter fact is caused by the so-called improper parametrization of
¢ given in Eq. (11). The circle ¢, is centered at M, = [5d, 0] and the radius
equals po = :(R—2r). Note that M, is a triangle center of A (not yet named
or labelled, cf. [10]) for it is the reflection of X3 = [0, 0] in X3s76 = [, O].

Figure 8: Poristic loci of some centroids: X5 is the centroid for A, A,, and
A, at the same time and moves on a circle ¢, cf. Th. 4.6. The Weill point
Xzs4 (centroid of A;) and the centroid Xie5 of A remain fixed according to
Th. 4.1. The centroids Xs; and X;s4 of A, and A;, respectively, trace conic
sections as stated in Th. 4.7.

The method shown so far applies to the orbit of any center listed above.
For all other centers we only show how they are related to the vertices of A
and its deduced triangles A,, Ae, A;, Ay, Ay, A¢, and A, in order to find a
parametrization of the central orbit.
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In the following the poristic path of the center X; will be denoted by ¢;. The
center and radius of ¢; shall be denoted by M; and p;.

X4 is the orthocenter of A and thus elementary to find. We have M, = Xisg0
and p, = R — 2r. The nine-point center Xs is the circumcenter of A,
and Ms = X; and ps = %p4. The Gergonne point X7 moves on ¢; with
M7 = Xi159 and p7 = rps /(4R + r). This fits to the results given in [8]. For
the trace of the Nagel point we have Mg = X3 and pg = ps. The Mittenpunkt
Xg leads to Mg = [d(2R — r)/(4R + r),0] and pg = 2Rps/(4R + r). The
trace of the Spieker point Xiq is centered at M;y = Xizss and has radius
P10 = %p4. The Feuerbach point is treated earlier, however, it moves on 1.
Since X12 = £1,5 N £2,56 we find M12 = Xl and P12 = rp4/(R + 2r) The de
Longchamps point Xy is the orthocenter of A, and we find Myy = [—2d, Q]
and pzo = p4.

Since the Schiffler point is given by X5 = L53 N L7555 we have My =
[2Rd/(3R +2r),0] and p>1 = Rp4/(3R + 2r). The Far-Out point X»3 is the
inverse of X5 in the circumcircle and so we find Mys = [6R3/(d(3R +2r)), 0]
and po3 = 3R?/(3R + 2r). The 3" power point X3, is the intersection of
L1 4 and Lgo3,1007. For the latter two points see below. We find M3, = X5g99
and p3 = rps/(R+7r).

€26

Figure 9: Poristic loci of some circumcenters: A's circumcenter X3 is fixed.
Xi is the circumcenter of A;. The circumcenter of A, is the orthocenter of
A which is moving on the circle ¢; (cf. Th. 4.6). The nine-point center Xs
is the circumcenter of both, A,, and A,. The circumcenter X5 of A; moves
on ey according to Th. 4.7. The Bevan point Xy is the circumcenter of A,
and is fixed as shown in Th. 3.2.
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The center X63 is the reflection of X1478 in XlO- Further X1478 = £1'4 N
£2,36 and therefore M1478 = X2099 and P1478 = pP32. Consequently M63 =
[—rd/(R+r),0] and ps3 = Rps/(R + r). The point X7, is found as the
reflection of Xes in Xip and so My, = [—rd/R,0] and p7» = ps. The 379
Brocard point X76 IS Computed as X76 = £3,98 N £4'69, with X98 being the
reflection of Xg in X3416 and Xss16 being the reflection of Xg in X;9. The
center Xgg is the symmedian point of A, and the reflection of Xg in X3416.
Thus we find M76 = X1482 and P76 = P4.

We note that X75 = L12 N L210058, Where X510 Is the centroid of A, and
X958 = £1,6 ﬁ£2,12. This leads to M78 = [—I’d/(R — r)], P78 = Rp4/(R— I’);
Moo = [d(R = r)/)3R),0], p210 = %PAJ and Mosg = [Rd/(2R + r),0],
Poss = Rps/(2R+r). The center Xgq appears as the reflection of A's incenter
X1 in A's Feuerbach point X;; and therefore Mgg = X; and pgg = 2r. We find
Xgq as the reflection of X490 in the circumcenter X3 with X1490 = £14NL30.
So we obtain M84 = [d(2R — r)/r, O]- Psa = 2Rp4/r and M1490 = [—d(2R —
r)/r. 0] prag0 = Psa-

The trace of Xgo = £1’155 N £40,80 Is centered at Mgo = [d(R - I’)2/(R2 -
2Rr—r?) and has radius pgg = 2rRps/(r?> —2Rr — R?). For the computation
of X490, Xgo, and Xiss (the latter being the orthocenter of A;) see the proof of
Th. 4.1. Since X94 = £4,143ﬂ£23,98 we compute X143 = %(X5+X52) with X52
being the orthocenter of the orthic triangle A,. Thus M43 = [d(R+2r)/R, Q]
and p143 = p3/(4R). Note that Xy43 is the nine-point center of A,, provided
that A is acute. We also have Mgy, = Xi48> and pgs = ps. The Tarry point
Xosg Is the reflection of the Steiner point Xgg in X3. Xgg is the common point
of u and the Steiner ellipse different from A, B, and C.

For the computation of X9 and X;o4 we refer to the proof of Th. 4.1. Then
it is easily verified that Xig9, X104 are points on the circumcircle u. Since
(X105, X1202) is a pair of antipodal centers on u, their poristic locus equals u.
For X119 see Th. 4.4. With X120 = %(X4 + X1292) we find M120 = M2 and
P120 = %94- Now Xis0 = %(Xax + Xs) and thus Mysg = Xy3gs and p1ao = %»04-
Note that X4 is also the nine-point center of A,,.

The Mittenpunkt of A, is denoted by Xi4o and appears as the midpoint of
X7 and Xg and consequently we have My = [3d(2R + r)/(4R + r), 0] and
p1a2 = (2R +r)ps/(2(4R + r)). X144 comes along as the reflection of X7 in
Xg and we find Myyq = [-6rd/(4R+r),0] and p1ssa = p4s(4R—r)/(4R+r).
The construction of Xi45 Is already mentioned in the proof of Th. 4.1. We
find Myi45 = X480 and pi45 = p4. The center Xi49 appears as the reflection
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of X20 in X104 and we observe M149 = X1482 and P149 = R+ 2r. X153 is the
reflection of X20 in XlOO and we find M153 = X1482 and P153 = 3R —2r.

Figure 10: Poristic loci of some orthocenters: A's orthocenter X, circles
along ¢;. The de Longchamps point X5y runs on the circle ¢ (cf. Th. 4.6).
X1, X3, and Xgs are the orthocenter A., A,,, and A,;. According to Th. 3.2
Xegs remains fixed. The orthocenters X5, and Xis5 of A, and A; travel along
conic sections eso and egss, respectively, c¢f. Th. 4.7.

The center Xjgg Is the inverse of X4 in the circumcircle and so it is no surprise
that its poristic path is a circle. It is centered at Mg = [2R3/(d(3R+2r)), 0]
and has radius pigg = %p23. We reflect the incenter X; in the Schiffler point
Xo1 and arrive at Xi91. This results in Myg; = [d(R —2r)/(3R + 2r), 0] and
P101 = 2021. The center Xogg Is the intersection of L1 > with L4964, Where Xeq
is the reflection of Xi49g In X3 and Xig9s = L1.84 N L46. Xooo traces a circle
centered at Magg = [—rd/(2R —r), 0] and with radius psg0 = 2Rp4/(2R—r).
Since X214 = %(Xl + XlOO) we have M214 = X1385 and Po14 = %R

Xoog IS the reflection of Xgg3 in Xi105. For the construction of the latter two
we refer to the proof of Th. 4.1. So we obtain the data of three poristic traces:
Moo = [d(2R +3r)/(2(R+71)), 0], pas = 3p32; Mooz = [dR/(2(R+)), 0],
P93 = %/363? and Myi05 = [%d, 0], p1125 = %04- Reflecting Xa3 in Xi10 gives
X323 moving on a circle with center Msys = [-6R3/(d(3R + 2r)), 0] and
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p323 = R(OR + 4r)/(3R + 2r). Reflecting Xape3 in the Spieker center Xig
we obtain Xz and then Maxg = [—4rd/(2R — r),0] and pspe = ps. With
X347 = 3(Xo + Xs) we find Mas7 = [2d, 0] and paa7 = 304.

For the Fuhrmann center Xsss = 3(X4 + X5) we find Msss = X1 and p3ss =
pa. Since Xzzg = %(Xz + Xo9) and Xzg; = %(Xg + X4) we find Mszg =
[—2d,0], ps7e = 2ps and Mzg; = [5d,0], pss1 = 5pa. The reflection of
the circumcenter in the orthocenter yields X3z, with Msg, = [4d,0] and
P382 = 204.

C143

Figure 11: Poristic loci of some nine-point centers: Xs moves on ¢s. The
centers Xy40 and Xy43 are the nine-point centers of A, and A,, respectively.
According to Th. 4.6 their poristic loci are the circles cy40 and cis3. The
nine-point center of A; is the point Xisg. Its poristic orbit is the conic section
eisg, cf. Th. 4.7. A's circumcenter X3 plays a double-role: It is the nine-point
center of A, and A.. The nine-point center of A; is the same point for all
triangles in the poristic system, i.e., Xoss is fixed, see Th. 4.1.

The center Xzgg = L14 N L7 runs on a circle with center Magg = [2d(R +
r)/(2R + r),0] and radius p3gg = rps/(2R + r). We reflect the Gergonne
point X7 in the incenter X; in order to obtain X399. So we have Mzqy =
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[2d(2R —r)/(4R + r)] and pzgo = p7. With X390 = L1 N Lo 11 We arrive at
Ms3g> = My and p3go = pg. The Parry reflection point Xzg9 is the reflection
of X3 in Xi19 therefore we have M399 = X3 and pz99 = 2R. The complement
of the Schiffler point is X4 = L£53 M L11214 and its trace is centered at
Myso = [2d(R+r)/(3R+2r), 0] and has radius pgso = (R+r)ps/(3R+2r).

The Johnson midpoint is computed as X495 = L15 N L4300 and we derive
M495 = Xl and Pso5 = %p32. For X496 = £1'5 N ['36,550 we determine X550 =
$(Xo + Xa0). This intermediate result yields Mssg = Xao, psso = 2pa and
Mags = X1, Page = rpa/(2p110). With Xaor = L14NLo 11, Xaog = L12NL3 12,
and X499 = £1’2 N £3,11 we find M497 = [2d(R — r)/(2R — r),O], Pao7 =
roa/(2R = r); Magg = [d(R + 2r)/(R + 3r),0], pass = rpa/(R + 3r); and
Mago = Xi3gs, Paso = rpa/(3r — R).

We compute Xso1 = Lo1214 N L3e58 With Xsg = L1217 N L36 which leads
to Mgsg1 = Moy and psg; = po1. The next five centers are midpoints of
centers: Xssg = %(X4 + Xs), Xsar = %(Xz + Xs), Xsag = %(X5 + X20),
Xsag = 3(Xo 4+ X3), and Xss1 = (X1 + X2). So we find Msss = [2d, 0],
Psa6 = 294? Msaz = Maaz, psaz %942 Msag = Xzs79, Psag = %»04; and
Msag = Xzs76, Mssi = Maaz, psag = pss1 = %04- Xe31 IS the reflection of
X4 In Xzp91. Therefore we have to determine Xzg91 = L£23 M L11153. This
gives Mez; = [%de]: Pe31 = %;04 and Msgo1 = [%d,O], P3001 = %»04- Then
Xe3o appears as the reflection of Xsg9; in the circumcenter X3 and we find
M632 = [gd, O] and Pe32 = %p4 With X759 = £10'21 N £58,65 we Can Verify
that X559 travels on u.

[N

The point Acubens Xgpg is the intersection of £ 7 and L15 960 SO We compute
Xoeo = %(Xl + X72). Since Xgog is the reflection of Xis15 in X119, we obtain
X1512 as reflection of Xgog in X119. Thus we have M960 = [d(R— r)/(QR), O],
Poso = %P4J Moo = [-3rR/d, 0], poos = p119; and Mis1o = [R(2R —r)/d, 0],
P1512 = P119- We find X920 = £1’21 N £4,46 and therefore we have M920 =
[d(R? + r?)/(R? — Rr — r?),0] and pgo = rRps/(R?> — Rr — r?). If we
intersect £ , with the lines £39 and £47 we find Xg36 and Xg3g, respectively.
The centers and radii of their paths are Mg3s = [d(2R — r)/(4R — r), 0],
poss = 2Rpa/(4R — r) and Mosg = [4dR/(4R — r), 0], poss = rps /(4R —r).
For X943 = £3’7 N £4’12 we find M943 = [4dR(R — r)/(4R2 + 7Rr + 2r2), O]
and posz = rRps/(4R? + TRr + 2r?).

The Hofstadter-Trapezoid point Xga4 is the midpoint in between X5o and Xi4s.
Therefore we have Moss = X3 and poss = pa. The center Xoss = 5(X1 + Xa)
traces a circle with center Mgss = Ms46 and radius pgsg = %,o4. As intercept
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Figure 12: Poristic loci of the Schiffler point X5, the Far-Out point Xs3, the
3" power point X3, the Fuhrmann center X355, the point Acubens Xggs, the
Hofstadter-Trapezoid point Xg44, the Longuet-Higgins point Xgg,, and the
Fermat crosssum Xjsi1.

of £1’4 and £8,9 we obtain the point X950 and M950 = [d(2R — r)/2R, O] and
Poso = rps/(2R). The central line L1 carries the three centers Xgs4 and
Xoss, Which also lie in the central lines £37 and L3g, respectively. We find
Moss = [4dR/(4R + r),0], posa = Rrps/(R+ r)(4R + r) and Moss = X3,
Pos6 = Pe3- | he Longuet-Higgins point is the reflection of the Nagel point
Xg in the orthocenter X4. This yleldS M962 = M382 and Pos2 = P4. The
midpoint Xg97 of X; and X5oo determines Mgg; = [d(R—r)/(2R —r), 0] and

_ 1
P97 = 5P200-

Since Xig01 = %(XH—Xg) we have Mgg; = [3Rd/(4R+r), 0] and p1go; = %,09.
For X100a = L23ML7 100 We compute Migos = [2Rd(R+r)/(3R?—Rr—r?), 0]
and P1o04 = R(R + I’)p4/(3R2 — Rr — 1’2). The centers X1005 and X1007 are
located on the Euler line and on the central lines Lg 100 and L4, 99, respectively.
We derive Mygos = [2Rd(2R — r)/(6R? + 5Rr + 2r?),0], p100s = R(2R —
r)p4/(6R2 + 5Rr + 2/’2) and M1007 = Mz, P1007 = %p4 The 3rd Ehrmann
point X1145 = %(Xs +X100) leads to M1145 = X3 and P1145 = P119- The center
Xi1s6 1s found as the midpoint of Xg and Xigg. Its circular path is centered at
Mi1s6 = Mago and has radius p1156 = 9rR/(4R+r). The circumcenter of the
extouch triangle A, is given by Xiis8 = %(X40 + Xags) and its poristic locus is
centered at M55 = [d(R — r)/r, 0] and has radius p1155 = %p84. The center
X210 = L1.2 N L3950 yields M1 = [d(2R — r)/(2R), 0] and p1210 = poas.

Since Xi317 is the reflection of X;; and X it is easy to find a parametrization
of its path which is the incircle. The path of the midpoint Xi30 = %(X145 +
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X149) is centered at M1320 = X1482 and is congruent to u for P1320 = R. The
Fletcher point Xi3»3 is the inverse of the Gergonne point X7 in the incircle
and its trace is centered at Mis; = [R(2R — r)/(2d),0] and has radius
01323 = %r. The inverse X304 of the Spieker point X in the incircle moves
on a circle centered at Mysps = [R3/(rd), 0] with radius pi304 = R?/r. The
inverse Xi3o5 of the Schiffler point X5; in the incircle has an orbit centered
at Mizos = [2R?/d, 0] with pi3o5s = R for its radius. The center Xizp =
%(XS + X2008), Where Xaggg is known from Th. 4.1 and its proof, respectively,
gives Mi309 = [d(R —2r)/(2(R — r), 0] and p132e = 2ps. The exsimilicenter
of the circumcircle and the Spieker circle is given by Xi376 = £310MNLg56. Its
poristic locus is centered at My37;6 = [Rd/(2R — r), 0] and has radius p1376 =
%pzoo. X1387 = %(Xl + Xll) has a circular path centered at M1387 = Xl
and P1387 — %r. From X1479 = £1'4 N £3,11 we derive M1479 = X2098 and

L1479 = 2P946.

The centers Xi483 and Xjass appear as reflections of X5 in X7 and X5 in X1,
respectively. We have Mgz = Misgs = X1, p1483 = %04, P14g4 = %,0149-
The Fermat crosssum Xisi; = %(X3 + Xi10) runs on a circle concentric
with v and thus M1511 = X3 and P1511 = %R The construction of X1519
produces a lot of useful byproducts since Xisi9 is the reflection of Xisso
in Xis38, Where Xissg is the reflection of Xis1o in Xisz7. Since Xiszz =
L4145MN L1165 and Xiszo = L23MN L2046 We find: Mys19 = [R(2R—3r)/d, 0],
Misso = [2R(R—r)/d, 0], Mis37 = Xiago, Mis3g = [R(4R —5r)/(2d), 0] and
P1519 = P1532 = P1537 — P1538 — P119- The center X1656 is the intersection of
the Euler line with £17 15. Without explicitly knowing the latter two points we
find Xig56 as the reflection of X5 in Xe3o and this gives Migs = [gd, 0] and
01656 = §p4. Reflecting the de Longchamps point X5g in the circumcenter X3
we find Xig57. Its trace has center Mygs; = [—4d, 0] and radius pi57 = 204.

The poristic locus of the center Xig9s = L1, N Ls 40 IS the circle with center
Mieos = Megzo and has radius pigos = §p4. Since Xiggo Shows up as the
reflection of X5 in the centroid X5 we find Migog = [%d, 0] and p1g90 = %,o4.
The exsimilicenter of the Bevan circle and the Spieker circle is the triangle
center Xi706 Which is the reflection of Xss5; in the Spieker point Xip. So
we compute Xossy = L4.9 N Lo 1o and find Mass; = [2d(R —r)/(4R —r), 0],
poss1 = pa(2R—r)/(4R—r) and Mi706 = [d(2R+r)/(4R—r), 0], p1706 = Po3s.

The midpoint of X35 and Xgg is labelled X737 and rotates about Mi737 = Xi319
at distance p;737 = r.The reflection of X; in X497 equals the point X35g56. This
enables us to construct X;759 as the reflection of Xssg6 In the orthocenter
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X4. From that we obtain M1750 = [d(6R — I’)/(QR — I’), O], P1750 = 2[)200
and Mzsgs = [d(2R — 3r)/(2R — 1), 0], p3sgs = 2pa97. The point Xizgs is
the inverse of Xg4e in the incircle. It is circling around Mi7g5 = X319 With
p17es = r. For the center Xigs; = Li15 M L465 We find Mgz = X3 and
P1s37 = 2Paas. 1he center Xigs1 = Lag N Los 105, Where Xos = L3N Lo 51
and with Xs; being the centroid of A, and Migs; = X148, pP1g51 = p4. With
Xigss = L1,00 N La g5 We get Migsg = [d(R* + r?)/R?,0)] and pigss = 200s0.
Reﬂecting X65 in X1837 gives X1898 and thus Mlggg = X3057 and P1898 — 4p496.
The point X1899 = £1,98 N £4'51 IS rotating about M1899 = X1482 at distance

P1899 = P4.

The inverse of X5 and Xs5q in the circumcircle yield X970 and Xsg71 which are
rotating about Mag7o = [4R3/(d(3R + 2r)), 0] at distance pyg70 = %,023 and
Mso7r = [-2R3/(d(3R + 2r)), 0] at distance pog71 = %p23. The reflection
of X5 and X4 in Xs7 yields Xsgosa and Xoggg, respectively. From that we
conclude that M2094 = [8d(R + r)/(3(2R - r)), O], 02004 = %p4 and M2096 =
[4rd/(2R — r),0], p2006 = pa. With X478 = L3N Lg210 We find Moyzg =
[2d(R—r)/(BR—r),0] and po478 = p4p110/(3R — r). The midpoint Xos59 of
the Gergonne and Nagel point determines Masso = [2d(R + r)/(4R + r), Q]
and pos50 = 2p140.

We find X2886 = %(Xl + X3419) with X3419 as the reflection of X55 in XlO-
This leads to M2886 = [d(R + 2r)/(2(R + r)), O], P2886 — %p4 and M3419 =
[rd/(R 4+ r),0], p3s19 = p4, respectively. The point Xsg3, is the inverse
of Xj145 In the circumcircle. It is rotating about Myg3, = X3 at distance
P2030 = R?/p119. The center Xogsg comes up as the reflection of Xzasg in the
Spieker center X;g. For that we determine Xsa4g as the reflection of Xs5g in
X74 with the latter being X754 = L2068 N L72.100, Where Xgg Is the reflection
of X5 in X155. We find M2948 = X40 and P2o48 = 2R.

With X3036 = %(X8+X11) we find M3036 = X1385 and P3036 — %(3F—R) Then
X359 = L75 N Lgs5 and we get Mzgsg = [—dr(R + r)/(R(4R + r)), 0] and
P3059 = 4p142. For X3060 = £2,51 N £4’52 we find the center and radius of its
circular path: M3060 = [4d(R+2r)/(3R), O)] and P3060 = %p143. We intersect
the line £, with £41> and £41; and get X3pg5 and Xspgg, respectively. The
centers and radii of the respective poristic loci are: Mspgs = [2d(R+7r)/(2R+
3r), 0], psogs = rpa/(2R+3r) and Mspge = [r(R—2r)/(2R —3r), 0], psogs =
ros/(2R — 3r). The center X311 is the inverse of Xzug6 in the circumcircle
and X3286 = ‘C3,6 N £7’21. So we have M3110 = X1385 and P3110 — %d We
compute X3219 = £2’7 ﬁﬁg,go and find M3219 = [2d(R — r)/(5R + 2r), O] and
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P3219 = 3Rp4/(5R+2I’) The center X3241 =
centered at M3241 = M381 with radius P3241 =

(X5 4 X145) moves on a circle
P4.

We reflect Xg in X142 and arrive at Xsoq3 With Maoss = [3d(2R+r)/(4R+r), 0]
and p3o43 = pg. The reflection of the Spieker center Xig in the incenter X is
named Xszz44 and circles around Mszos4 = Msge With 03044 = %p4. Now Xszos4
is the reflection of the Mittenpunkt Xg in the Feuerbach point X;; and we
get M3254 = M3243 and P3254 = 2(R + r)2/(4R + I’). The point X3305 =
L5700 Lo101001 traces a circle with center Msszgs = [d(4R — r)/(7TR + r), 0]
and radius p330s = 3Rp4/(7TR + r). The reflection of X338 in X; yields
X3322, where X3328 IS Computed as the reflection of X1155 in X1323. Note
that Xiis5 Is the reflection of X; in Xsz45. Now it is easily verified that X330
and Xszpg run on the incircle. The center Xazss = %(Xg + Xgs4) determines
Mazsg = [d(4R*—r?)/(r(4R+r)), 0] and p33ss = 2Rpa(2R+1)/(r(4R+r)).

1

2

1
3

The reflection of Xg in Xs419 Yyields Xss34 with circular orbit centered at
Magzs = [2rd/(R + r),0] and radius pss34 = p4. We construct Xzgsp as
the intersection of the central lines £, 7 and Ls 19 and find the center of the
circular orbit Massy = [d(2R—3r)/(2(2R—r)), 0] and the radius pssa> = 4.
This allows to compute Xzso; as the reflection of X; in X450 and we find
Magpy = [-2rd /(2R — r), 0] and pz401 = p4. From Xzuza = L4.46 N L7155 We
get M3474 = [2d(R + 2r)/(2R — I’), O] and P3474 = P4o7. On the central line
L1.4 we find the next four centers: We intersect with Lgsg, L7555, L£7.1, and
Lg 21 and obtain Xz473, X3475, Xa485, and Xazuge, respectively. Their poristic
orbits are centered at Mas73 = Xogg, Maazs = [2d(3R 4+ 2r)/(3(2R + r)), 0],
M3485 = [2d(R+2r)/(2R+3r), O], and M3486 = [2Rd/(2R+ r), O] and have

.. _ _ 1 _ _
radii 03472 = P497, P3a75 = 50388, L3485 = P3085, aNd P3486 = P3ss-

The reflection of X341 in the circumcenter X3 leads to Xzs00 with Mzg00 =
[—%d, O] and P3520 = %p4 The center X3534 is the reflection of X382 in X381
and rotates about Mssss = [—5d, 0] with pssss = 2ps. Reflecting X3sss in
Xs we find Xzss3 and Mzssz = [£d, 0] and pssa3 = 2ps. The Dosa point
Xzss5 1S the reflection of X75 in the incenter X; and circles about Msss5 =
[d(2R + r)/R,0] at distance pssss = p4. On the central line parallel to
the Euler line through the Feuerbach point X;; we find X3550 and X3sg3 by
intersecting with £, and Ly 4, respectively. This yields circular orbits with
centers M3582 = [R(3R—4I’)/(3d), O] and M3583 = [R(R—4r)/d, O] and radii
03580 = %r and ps3sg3 = 2r, respectively. Since Xssgqg = L£12 M L11 547 We find
Masgq = [d(3R+4r)/(3(R+2r)), 0] and p3sgs = %plz. On the central line £ 4
we find X3sg5 and Xzsgg as intersections with Ls36 and L3057, respectively.
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Their poristic paths are centered at Masgs = [d(R + 4r)/(R + 2r), 0] and
M3586 = [d(2R — 3/’)/(2R — I’), O] The respective radii are P3585 — 2p12 and
P3sg6 = 20497. For Xzsgg = La,5 M Lg 10 We find Mzsgg = Mo and p3sg9 = %,04-
Finally the center Xzg00 = L17 N Lgs7 circles around Mzgoog = [2d(2R +
r)/(4R — r), O] at distance P3600 = P938- U

4.4 Centers moving on conic sections

In this last section we focus on triangle centers that run on conic sections
while A is moving through its poristic family. We shall give the semiaxes and
center of the poristic paths only for some prominent centers and in the cases
where these (centers and axes) are relatively simple functions in R, r, and d.
We shall skip the lengthy discussion under which circumstances the poristic
loci of triangle centers mentioned here are ellipses or hyperbolae. We can
show:

Theorem 4.7. The triangle centers X; with

i €46,22,25,31,42,51,52,58, 64,81, 154, 155, 156, 182, 185, 374, 375,
378, 386, 387, 389, 500, 573, 575, 576, 609, 612, 948, 959, 961, 970, 975,
991, 1012, 1147, 1216, 1350, 1351, 1386, 1486, 1495, 1498, 1658, 1829,
1834, 1836, 1838, 1871, 1900, 1902, 2097, 2334, 2482, 3240, 3242,
3292, 3332, 3581}

trace conic sections while A makes a full turn in the poristic family. These
conic sections are centered at points on the central line L1 3. One of their
axes coincides with L 3.

Proof. The center Xj is the Lemoine point of A. Its trace has center Mg =
[3R%d/(3R?—2Rr+r?),0] and major and minor axes are ag = Rrps/(3R? —
2Rr + r?) and bs = R\/Tpa/+/p110(2R2 — 3Rr — r2).

We compute the Exeter point Xoo = L5353 M Ls51,182 With Xigo = %(X3 + Xs)
and Xs; being the centroid of A,. We find Ms; = [d(3R + 4r)/R,0] and
as1 = rps/(3R) and bs; = pspo0s/(3R). The center Xys is the intersection
of £L53 and Lgs1. The 274 Power point Xa; is collinear with the incenter X;
and Schiffler’s point X21 and lies on £940'1001 with X940 = £1’3 N £2,6- We
construct Xyo as L1 M L3558, Where Xsg appears as the intersection of the
central lines £1 21 and L3 4. The construction of Xg, is explained in the proof
of Th. 4.6.

26



The center Xs5 is the orthocenter of A,. It is moving on an ellipse centered at
Ms, = [d(R+4r)/R, 0] and with semiaxes asp = p4p119/R and bsy = rps/R.
The point Xs4 is the reflection of Xja9s in X3 and a construction of Xjags is
given in the proof of Th. 4.6.

On the central line joining the incenter X; with the Schiffler point X»; we find
Xg1 Which also lies on L5 6. Xis4 is the centroid of A, Xiss is the orthocenter
of A, and Xig6 = %(X% + Xis5) is the nine-point center of A;. The center
Xigs is the Nagel point of the orthic triangle A,. Its poristic locus is the ellipse
with center Migs = [-d(R —4r)/R, 0], its semiaxes are a;gs = (2R —r)ps/R
and b185 = (R+ r)p4/R

The triangle center X374 is the centroid of the pedal triangle of Xq. Its poristic
locus is the ellipse centered at Msz4 = [d(R+ r)(8R — r)/(3R(4R + r)), 0]
with semiaxes as7s = 4p4(R + r)/(3(4R + r)) and bszqs = 2Rp4/(4R + r),
respectively. The centroid of the pedal triangle of the Spieker point is denoted
by Xs7s. Its poristic trace has center Ms;s = [d(4R + 3r)/(6R),0] and its
semiaxes are ases = (2R + r)ps/(6R) and bsrs = (3R — r)ps/(6R). Xarg is
determined as the reflection of X2 in X3. We have X3ge = L1 MN L36 and
Xagr = L12N Lgg. With X359 = %(X:}, + Xs2) we find an ellipse with Msgg =
[d(R+4r)/(2R), 0], asgo = p4p110/(2R), and psgg = rps/R. The orthocenter
of the incentral triangle Xsqq leads to Msoo = [d(5R + 2r)/(2(3R = 2r)), 0]
and dsoo = P21, and b500 = \/FﬁQl/m With X573 = £3,6 N £4’9 we find
Mszs = [-4d(R + r)/(BR + 8r),0], as;3 = Rps/(5R + 8r), and bsrz =
04V TR/v/20R2 + 37Rr + 8r2. The center Xsz5 is the midpoint in between
X3 and Xs76, Where Xs76 Is the reflection of X155 In Xg. The triangle center
Xeoo Is the intersection of the central lines £33, and L 36.

The center Xg12 is found as intersection of L1, and Lg210. We find the
next three centers and thereby the parametrizations of their poristic paths as
intersection of central lines: Xgug = L£14 N Lg7, Xosg = L1573 N L2565, and
Xog1 = L£212 N Lg 959. The center of the Apollonius circle is found as Xg7¢0 =
L36MNLs 10. Its poristic trace is centered at Myz9 = [-d(R+4r)/(2r), 0] and
the semiaxes are agzg = P40119/(2r) and bg7g = %p4. Again three centers are
found as intersections of central lines: Xo75 = £1 2N Lo sg, Xgo1 = L17MN L3,
and X1012 = £2,6 N £1,84- The point X1147 is the mldelnt of X3 and X155.

The center Xis16 appears as the reflection of Xagg in Xi40 and its poristic
locus is centered at Myo16 = [d(R—4r)/(2R), 0] and the semiaxes are ajs16 =
(2R — r)p4/(2R) and biz16 = (R+ r)ps/(2R). The points Xi3s0 and Xizs;
are found as reflections of Xg in X3 and Xjsso in Xigo, respectively. Xizge
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Figure 13: Some ellipses being poristic loci of triangles, cf. Th. 4.7.

is the midpoint of X; and Xg. The perspector of A; and A; is the center
Xiags. The triangle center Xi495 = %(X23 + Xi110) moves on an ellipse with
center Mygos = [3R3/(d(3R + 2r)), 0], awaes = Rr/(3R + 2r), and byaes =
R(3R+r)/(3R+2r) We find X1498 = £1,84ﬂ£4,6 and X1658 = %(X:}, +X26).
Then we find three centers by intersecting central lines: Xig34 = L4.6MN L1240,
X1836 = £4,65 N £5'46, and X1838 = £1’4 N £5'1214. The center X1214 lies on
£1’3 and on £7'464, where X464 = £63,69-

On the central line £4,8 we find the centers X1829, X1871, and X19OO by inter-
secting with central lines L4 55, L5184, and Los 35, respectively. This yields
Migzg = [d(R® + 3Rr — r*)/R?,0], a1g20 = 2rpa/R, bigog = pa; Mgy =
[d(BR?+5Rr—r?)/(R(2R+7r)),0], aig71 = (R+3r)ps/(2R+7r), bigr1 = pa;
and M1900 = [d(R2+7Rr—r2)/(R(R+2r)), O], d1900 — 4p12, b1900 = Pa. Re-
flecting Xigo0 in X4 we arrive at Xygpo With Myogo = [d(3R?>—3Rr+r?)/R?,0],
a1002 = 204p110/ R, and p1o02 = p4.

The triangle center X597 is the reflection of Xg inX57 and Xo4e0 = %(Xz +
Xgg). We obtain Xps3z4 as the common point of the central lines £ 19 and
Ls210- The midpoint of Xgg and Xiys is identified as center Xszpg. The
point X329o is constructed as the reflection of Xijags in X110 and its poristic
trace is centered at Mz = [3R®/(d(3R + 2r)),0] and its semiaxes are
asagn = Rr/(3R + 2r) and bsxeo = R(BR 4+ r)/(3R + 2r). We find X333, =
L17 N L46. Finally the center X3sg1 C L34 lies on the Euler line and we
find M3581 = [6R3/(d(3R + 2r),0], disgy — 2R(3R + r)/(3R + 2r), and
b3581:2Rr/(3R+2r). O
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Fig. 4.4 shows that for certain values of R, r, and d ellipses, parabolae, and
hyperbolae appear as poristic trace of the same center.

Figure 14: Different shapes of the poristic trace of the Exeter point X»,.

5 Final remarks

All the centers mentioned in the proof of Ths. 4.6 and 4.7 are triangle centers
for A since for any fixed triangle R, r, and d are fixed and so is the relative
position of M; to X; and X3 on Ly 3.

The poristic traces of many centers have been parametrized during the com-
putation of the poristic path of all centers mentioned in the theorems. Some
of the centers which appear in the construction of centers do not have a
conic section for its poristic orbit. The center Xgg like many others traces an
algebraic curve. In most cases the algebraic degree is larger then 4.

In the previous section we skipped the discussion of the affine type of the
poristic paths of the centers investigated there. However, it is easy to show
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that the traces of X; with i € {22, 64, 154, 156, 609, 1498, 1658, 2482} can
be ellipses and hyperbolae as well.
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