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Abstract

The flecnodes Fi on a regular and non torsal ruling R0 of a ruled
surface R are the points where R’s asymptotic tangents along R0 hy-
perosculate the ruled surface. The name flecnode characterizes the
intersection curve ci of the tangent plane τi with R at Fi. It has a
double point (a node) at Fi and this node is an inflection point for
both linear branches of ci at Fi.
We show a way to parameterize the smooth one-parameter family of
flecnodes of R which in general forms a curve with two branches. For
that we derive the equation of the ruled quadric on three given lines
in terms of Plücker coordinates of the given lines.

1 Introduction

The curve of flecnodes or flecnodal curve has attracted not that much inter-
est to mathematicians compared to other geometric objects related to ruled
surfaces. One reason for that maybe the mere absence of parameterizations.
Another reason could be the following: Any curve can be considered as the
striction curve of a ruled surface and the ruled surface is still not determined
uniquely. So there is left plenty of freedom, which may be attractive for
design porposes. This is not the case for the two curves of flecnodes. They
cannot be chosen freely in order to find ruled surfaces passing through it, see
[7] and so they are not that flexible. The curve of flecnodes is related to a
ruled surface in a projectively invariant way [1, 2, 5, 8]. To the best of the
author’s knowledge the thesis [7] was the latest and maybe most exhaustive
and comprehensive work on flecnodal curves.
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In this note we want to show a way to parameterize the curves of flecnodes on
a ruled surface. Firstly, we give a very brief introduction to the differential
geometry of ruled surfaces in the Klein model of line space. In this section
we try to keep things as short as possible. An introduction to projective
differential geometry can be found for instance in the monographs [1, 2, 5, 10].
Secondly, we give the equation of a ruled quadric on three given lines in terms
of the Plücker coordinates of these lines. Then we show that the Plücker
coordinates of any three independent linear line complexes which carry the
regulus of the ruled quadric can be used to derive the equation of the quadric
carrying the regulus. Thereby we obtain a simple formula for the analytic
solution to the problem of finding the lines intersecting four arbitrarily given
lines in three-space. Thirdly, we are able to give a parameterization of the
curve of flecnodes. Finally we point at an approximation of the curve of
flecnodes, i.e., we show how to find a discrete model for it. This construction
is justified by the following observation: If the lines of a discrete ruled surface
are taken from a discretization of a sufficiently smooth ruled surface, then the
discrete version of the flecnodal curve will converge to the smooth flecnodal
curve, provided that the discretization of the ruled surface converges to the
smooth surface.

2 Projective differential geometry of ruled sur-

faces

2.1 Klein’s model of line space

In the following we use homogeneous Plücker coordinates L = (l, l) ∈ R6 in
order to describe a line L in projective three-space P3. We remark that the
coordinates (l, l) for L are unique only up to a non zero factor. Further they
satisfy

Ω(L,L) := 2〈l, l〉 = 0, (1)

with 〈·, ·〉 being the canonical scalar product in R3. This identity will hence-
forth be referred to as the Plücker identity. Any vector from R6 \ {o} that
satisfies Eq. (1) is a coordinate vector of a line in P3. For further reading on
Plücker coordinates and their properties, we strongly recommend the study
of [9, 14].

Since the coordinates (l, l) of a line are homogeneous, we can interpret them
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as homogeneous coordinates of points in a projective space P5 of five dimen-
sions. The mapping γ that assigns to each line in P3 a point in P5 is usually
called Klein mapping and it is one-to-one and onto, if considered as a map-
ping to the quadratic hypersurface M4

2 ⊂ P5 given by the equation (1). The
manifold M4

2 is called Klein’s quadric or Plücker’s quadric. It carries two
three-parameter families of planes corresponding to the stars of lines and
ruled planes in P3. The lines in M4

2 are the γ-images of pencils of lines in
projective three-space [9, 14].

Intersecting lines L and M in P3 are mapped to points which are polar with
regard to M4

2 . In terms of Plücker coordinates this is expressed by

Ω(L,M) = 〈l,m〉+ 〈l,m〉 = 0, (2)

i.e., the respective coordinate vectors of L and M annihilate the polarform
Ω of M4

2 . Points C = (c, c) /∈ M4
2 are the so called extended Klein images

of regular line complexes, see [9, 14]. The Plücker coordinates of the lines
of the complex C fulfill Ω(C,X) = 0. So their Klein images are contained
in a hyperplanar section of M4

2 . A tangential hyperplane intersects M4
2 in a

three-dimensional quadratic cone Γ, whose vertex is the Klein image of a line
A. A is met by all the lines of the so called singular linear line complex. A
is said to be the axis of the complex. Further information on axes of linear
line complexes, their computation, and their geometric meaning for singular
as well as regular linear line complexes can be found in [9].

2.2 Differential geometric properties of ruled surfaces

If a curve R ⊂M4
2 is a Ck-curve in M4

2 then its Klein preimage is said to be
a Ck-ruled surface. An algebraic ruled surface R is defined by an algebraic
curve in M4

2 and the algebraic degree of the curve and the ruled surface agree.
In the following we denote the ruled surface as well as the curve in Plücker’s
quadric by the same letter, say R. Confusions will not occur.

Assume now R : I ⊂ R → M4
2 is a Ck-ruled surface, where k is at least 3.

We can derive the first derivative points up to order 3 at a certain - and in
the following not specified - value t0 ∈ I and denote them by R0 := R(0), Ṙ,

R̈, and ˙̈R. We keep in mind that the independency of points in projective
space is equivalent to the linear independency of their respective coordinate
vectors.
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2.2.1 Properties of first order

The point R0 is either a regular or a singular point on R ∈ M4
2 , if R0

and Ṙ are independent or not. Likewise we can say that R0 is a regular
or singular ruling on R ⊂ P3. In the following [X1, . . . , Xk] denotes the
projective subspace spanned by k points X1, . . . , Xk. The line T := [R0, Ṙ] is
a tangent to both R and M4

2 at R0. If now T ⊂M4
2 , then R0 is called a torsal

ruling on R. For further details we refer the interested reader to [1, 5, 9, 10].
In the following we consider only those parts of ruled surfaces which are free
of singular and torsal rulings.

R0
T

R

R0

R

Figure 1: Left: Curve R and a line element (R0, T ) in the model space.
Right: Parabolic linear line congruence of surface tangents of R along R0.

2.2.2 Properties of second order

The plane S = [R0, Ṙ, R̈] is the osculating plane of R ⊂M4
2 at R0. In general

k := S ∩M4
2 is a conic section. Its γ-preimage is a regulus, i.e., one family of

generators on a ruled quadric L ⊂ P3. If S ⊂M4
2 , then S is either a plane of

the first kind (representing a star of lines in P3) or it is a plane of the second
kind (representing a ruled plane). In the first case γ−1(k) is a quadratic cone
and thus R0 is a torsal generator. In the second case γ−1(k) is the set of
tangents to a conic section. In both cases we have T ⊂ M4

2 and R0 is torsal
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which is excluded. So these two cases will not occur. Therefore in our case
L is a regular ruled quadric. It is called Lie’s osculating quadric. L and R
share the ruling R0, the set of tangent planes along R0, and the asymptotic
tangents along R0. The latter comprise the second family of rulings on Lie’s
osculating quadric L, cf. [1, 5, 9, 10].

R0

k = S ∩M4
2

R

R0

R
L

R0

R

Figure 2: Left: Curve R and the osculating conic section k at R0 in the Klein
model. Middle: Osculating quadric L ⊃ γ−1(k) of R at R0. Right: Common
asymptotic tangents of L and R.

Fig. 2 shows a linear image of the curve R ⊂M4
2 together with the osculating

conic section k = S∩M4
2 . The respective γ-preimages are also shown. Further

we see the common asymptotic tangents of L and R at R0, which comprise
the second family of lines on L.

As is the case for all ruled quadrics, Lie’s osculating quadric carries two
families of generators. The first family contains the line R0. The second
family consists of the set of asymptotic tangents of L as well as R at all
points of R0, see [1, 5, 6, 9, 10].

2.2.3 Properties of third order

The osculating three-space O := [R0, Ṙ, R̈,
˙̈R] of R at R0 meets Plücker’s

quadric M4
2 in a two-dimensional quadric Q. This quadric is the Klein image

of a linear line congruence C, see [9]. From S ⊂ O we deduce L ⊂ C.

There are four types of linear line congruences to be distinguished: If Q is
a regular ruled quadric, then C is usually called hyperbolic. Oval quadrics
represent elliptic linear line congruences, which are sometimes called spread,
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see for example [3]. If Q is a quadratic cone, then C is known as parabolic
linear line congruence. The case where Q consists of two planes (which
then intersect in a common line ⊂ M4

2 ) belongs to the singular linear line
congruence.

The hyperbolic as well as the elliptic linear line congruence can be generated
as set of lines intersecting a pair of skew lines, called the axes of the congru-
ence. In the hyperbolic case the axes are a pair of real and skew lines whereas
the axes of an elliptic linear line congruence are a pair of (skew) conjugate
complex lines. The parabolic linear line congruence somehow differs: There
is only one axis (belonging to the linear line congruence, which is not the case
for the other types). The lines of the parabolic linear line congruence can be
arranged in pencils of lines whose vertices are located at the axis and whose
planes (all of them passing through the axis) are mapped via a projective
map to the vertices. The singular linear line congruence is the union of a star
of lines with a ruled plane, where the star’s vertex is contained in the plane
in P3. Note that the surface tangents of any ruled surface R behave that way
at any regular and non-torsal ruling R0. Further details on line congruences,
especially linear ones can be found in [9, 14].

So O contains the Klein images of lines in a linear line congruence. As
outlined before, each linear line congruence, except the singular one, has at
least one axis A. An axis A has the property that it meets all the lines of
the linear congruence. If we are looking for the lines, meeting all the lines
in the congruence, we have to look for the intersection of M4

2 with O’s polar
space P 1 with regard to M4

2 . Obviously, these two points1 are contained in
the polar image k∗ of k, which is again a conic section of M4

2 . The conic
section k∗ is the Klein image of L’s regulus of the second kind, i.e., the set
of asymptotic tangents of R along R0. Consequently we have found two
osculating tangents of R along R0 which are in third order contact with R at
certain points Fi ∈ R0. The points Fi of contact are called the flecnodes of
R0.

Figure 3 shows a part of a ruled surface R together with parts of the curve
of flecnodes fi. The intersection curves si of R with the tangent planes τi at
the flecnodes Fi on a specific ruling are also shown.

The name flecnode is motivated by the following observation: The tangent
plane τi to R at Fi intersects R at a curve ci = si∪R0. As R0 is a straight line,

1These two points are obtained as the solutions of a quadratic equation. Therefore
they can be real, conjugate complex, or they can coincide, and the case P 1 ⊂M4

2 will be
ignored for the moment.
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F1

τ1

s1

f1

F2

τ2

s2 f2

R0

Figure 3: The two branches fi of the curve of flecnodes on R in a neighbour-
hood of the ruling R0 and the intersection curves ci = si∪R0 of both tangent
planes τi at the flecnodes Fi.

it carries only inflection points. The second branch si touches the asymptotic
tangent at Fi and has a point of inflection, if and only if, Fi is a flecnode. So
Fi is an inflection point for both linear branches of the planar intersection
curves. So the name flecnode which is usually and originally used for planar
curves (see e.g. [4, 12]) is carried over to the ruled surface. Fig. 4 displays
an example of a flecnode.

3 The ruled quadric on three lines

Assume now we are given three independent lines A = (a, a), B = (b,b),
and C = (c, c), i.e., the respective points in P5 are independent and thus
P := [A,B,C] ⊂ P5 is a plane. We exclude the cases where P ⊂ M4

2 , since
then A, B, and C do not span a uniquely defined regular ruled quadric. We
state and proof the following:
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F

Figure 4: A planar curve with flecnode F .

Lemma 3.1
Let A = (a, a), B = (b,b), and C = (c, c) be three independent lines belong-
ing to the same family of rulings on a regular ruled quadric Q ⊂ P3. Then
the equation of Q in terms of homogeneous point coordinates (x0, x1, x2, x3) =
(x0,x) can be written in the form

〈x, a〉 det(x,b, c) + 〈x,b〉 det(x, c, a) + 〈x, c〉 det(x, a,b)

+x0(〈x, a〉(〈b, c〉 − 〈b, c〉) + 〈x,b〉(〈c, a〉 − 〈c, a〉)

+〈x, c〉(〈a,b〉 − 〈a,b〉)) + x2
0 det(a,b, c) = 0.

(3)

Proof: At first we note that A, B, and C belong to one family of rulings
on Q. Thus they are pairwise skew, i.e., no pair of Klein images is polar
with regard to M4

2 . The other family of rulings is the set of lines L = (l, l)
intersecting all the three lines. So their Plücker coordinates have to fulfill

Ω(A,L) = Ω(B,L) = Ω(C,L) = Ω(L,L) = 0 (4)

for any L = λA + µB + νC with (λ : µ : ν) 6= (0 : 0 : 0). From these
three intersection conditions we derive a point representation of Q. Assume
a proper line L ⊂ Q is spanned by two points X = (x0,x) and Lu = (0, l),
where x0 6= 0, which can always be achieved by chosing an apropriate coor-
dinate frame. 2 The Plücker coordinates of L now read L = (x0l, l). Then
we can rewrite the intersection conditions (4) as

〈a× x + x0a, l〉 = 〈b× x + x0b, l〉 = 〈c× x + x0c, l〉 = 0. (5)

2At most two lines on Q are ideal lines (spanned by two ideal points), but they also
satisfy the intersection condition (4). Therefore it means no restriction to assume that L
is proper and the points X and Lu span L.
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From that we conclude that the vectors ax := a × x + x0a ∈ R3, bx :=
b× x + x0b ∈ R3, and cx := c× x + x0c ∈ R3 are linearly dependent. Thus
det(ax,bx, cx) = 0 which leads to (3) and proves the lemma. �

Remark: It is also possible to find the equation of the quadric on three lines in
terms of Plücker coordinates as the determinant of a 6× 6-matrix, see [15, Vol.
1, p. 332].

Obviously, Lemma 3.1 can also be used in order to determine the equation of
the ruled quadric Q carried by three independent linear line complexes, say
C0, C1 and C2. This is not clear from the above deduction of Q’s equation.
But we are able to show:

Lemma 3.2
Let C0 = (c0, c0), C1 = (c1, c1), and C2 = (c2, c2) be three independent points
in P5, which are not necessarily contained in M4

2 . Then the equation of the
ruled quadric Q whose generators of a certain kind are contained in all the
three complexes C0, C1, and C2 reads

〈x, c0〉 det(x, c1, c2) + 〈x, c1〉 det(x, c2, c0) + 〈x, c2〉 det(x, c0, c1)

+x0(〈x, c0〉(〈c1, c2〉 − 〈c1, c2〉) + 〈x, c1〉(〈c2, c0〉 − 〈c2, c0〉)
+〈x, c2〉(〈c0, c1〉 − 〈c0, c1〉)) + x2

0 det(c0, c1, c2) = 0.

(6)

Remark: The equation of a ruled quadric Q whose rulings of one specific kind
are contained in a two-parameter family of linear line complexes is given by Eq.
(6) whether Q carries real rulings or not. In the following we do not consider
the case of an oval quadric, since later when we compute the osculating quadric
L of a ruled surface R we can be sure that L contains at least one ruling of R.
Therefore it will be ruled or singular.

Proof: Following the remark we can assume that C0 ∈ M4
2 is a singular

linear line complex, i.e., a straight line in P3. Once we have found one point
C0 ∈M4

2 which is a point on the conic section k := [C0, C1, C2]∩M4
2 we can

use it for a base point of a (rational) parameterization of k. Therefore we
can assume that C1 is a further point on k and C2 is the intersection of the
tangents at C0 and C1, respectively. Now the two-parameter family of linear
line complexes is given by

K(λ, µ, ν) = C0λ+ C1µ+ C2ν. (7)

From Ω(K,K) = 0 we compute (λ : µ : ν). For sake of simplicity we define
Ω(Ci, Cj) := ΩC

01. We observe ΩC
00 = ΩC

11 = 0 since C0 and C1 are points in
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M4
2 . Further we have ΩC

02 = ΩC
12 since C2 is the common point of k’s tangents

at C0 and C2, respectively. Now the equation of k is 2λµΩC
01 +ν2ΩC

22 = 0 and
besides the points C0 and C1 we find P = −2Ω01C0 + Ω22C1 + 2Ω01C2 for a
further point on k.

Now we compute the ruled quadric on the three lines C0, C1, and P according
to Eq. (3). This yields Eq. (6) and completes the proof. �

Remark: The equation of Lie’s osculating quadric L of a ruled surface at R0 can
thus be derived by Eq. (6), if we let C0 = R0, C1 = Ṙ, and C2 = R̈. In [15, Vol.
2, p. 51] it is shown how to write Lie’s osculating quadric in terms of Plücker
coordinates as the determinant of a 6× 6-matrix.

The proof of Lemma 3.2 uses a rational parameterization of the conic section
of M4

2 and the plane spanned by three indpendent points C0, C1, and C2 in
order to make formula (3) applicable. An equivalent approach to rational
representations of conic sections can be found in [13].

4 The lines meeting four arbitrary lines

4.1 The classical point of view

In this section we describe a classical problem in line geometry. We reformu-
late this problem in order to see that it is related to the problem of finding
flecnodes. Then we see that solving this classical problem actually is the
same as looking for flecnodes.

Assume we are given four arbitrary independent and pairwise skew lines A,
B, C, and D in projective three space. How to find the lines L meeting the
four given ones?

The solution to this problem sees the following considerations. Three of the
lines, say A, B, and C span a ruled quadric Q. The fourth line D intersects
Q in two points S1 and S2, respectively. (Since Si are found as solutions of
a quadratic equation, they can either be a pair of real points, or a pair of
conjugate complex points, or one single real point with multiplicity two.) In
any ruled quadric there are two lines passing through any point. So there
are two generators Ti of Q passing through Si which are not from the same
family of generators like the lines A, B, and C. The lines Ti meet A, B, C,
and by construction they also meet D, and thus they are the solutions to the
problem. This is illustrated in Fig. 5.

10



Q
A

B C

D

S1
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T2

Figure 5: The lines Ti meeting A, B, C, and D and the ruled quadric on A,
B, C.

The computation Ti uses the following steps: Use Eq. (3) in order to derive
the equation of the quadric Q on the lines A, B, and C. Parameterize
D = (d,d) and insert it for x = (x0,x) into (3). This yields the intersection
points of D and Q, and from this place it is elementary to find the desired
lines.

On the other hand one can intersect M4
2 with the line P ⊂ P5 polar to

[A,B,C,D] with regard to M4
2 . This immediately gives the Plücker coordi-

nates of the lines intersecting the four given ones.

4.2 Another point of view

Let C0, C1, C2, and C3 be four independent linear complexes of lines. They
span a three-dimensional linear space of linear line complexes. Obviously
this three-space intersects M4

2 in a two-dimensional quadric whose points
corresponds to the lines in a linear line congruence. Therefore a more general
formulation of the above problem would read: Find the axes of a linear
line congruence spanned by four independent linear line complexes. These
complexes can be singular ones, i.e., straight lines in P3, but this is already
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discussed.

We find the axes of the linear line congruence K(κ, λ, µ, ν) = κC0 + λC1 +
µC2 + νC3 as those lines whose Klein images are the intersection points of
M4

2 with K’s polar line with regard to M4
2 .

5 The parameterization of the curve of flec-

nodes

Let R : I ⊂ R → M4
2 be a C3-curve, i.e., the Klein image of a C3-ruled

surface in P3. Assume further that R is free of singular and torsal rulings in

I, and further that dim[R0, Ṙ, R̈,
˙̈R] = 3 in I.

Now we are able to compute the flecnodes on any ruling R0 of R in I. For
that we solve the problem of finding axes of a linear line congruence spanned

by the linear line complexes R0, Ṙ, R̈, and ˙̈R. Note that R0 is a singular
linear line complex and T = [R0, Ṙ] is tangent to M4

2 .

At first we determine the ruled quadric Q contained in the linear line com-

plexes Ṙ, R̈, and ˙̈R. According to Lemma 3.2 its equation is given by (6).
Then we intersect with the ruling R with Q. This gives:

Theorem 5.1
Let R : I ⊂ R→M4

2 be a C3-curve being the Klein image of a ruled surface
R which is free of singular and torsal rulings in I. Then the flecnodes of the
ruled surface R at the ruling R0 are given by

〈x, ṙ〉 det(x, r̈, ˙̈r) + 〈x, r̈〉 det(x, ˙̈r, ṙ) + 〈x, ˙̈r〉 det(x, ṙ, r̈)

+x0(〈x, ṙ〉(〈r̈, ˙̈r〉 − 〈r̈, ˙̈r〉) + 〈x, r̈〉(〈 ˙̈r, ṙ〉 − 〈 ˙̈r, ṙ〉)

+〈x, ˙̈r〉(〈ṙ, r̈〉 − 〈ṙ, r̈〉)) + det(ṙ, r̈, ˙̈r) = 0,

(8)

where (x0,x) = λ(d1,0,d1) + µ(d2,0,d2) is a parameterization of R by means
of two directrices3 d1 and d2 in P3.

Eq. (8) is a quadratic form in the homogeneous parameter (λ : µ). Its
solutions (λ : µ) fix the flecnodes at R0. We assume now that R = R(t)

3Directrices can easily be obtained from the Plücker representation of R, see [9].
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depends on an affine parameter t. Consequently (λ : µ) = (λ(t) : µ(t))
depends on t. Thus

f(t) = λ(t)(d1,0,d1) + µ(t)(d2,0,d2)

is a parameterization of either branch of the curve of flecnodes, since (λ(t) :
µ(t)) is obtained as solutions ot the quadratic equation (8).

Fig. 6 shows an example of an algebraic ruled surface with an algebraic curve
of flecnodes. Both branches are shown.

6 A discrete version of the curve of flecnodes

In this final section we point at a discrete version of the curve of flecnodes.
Assume we are given a smooth ruled surface R : I ⊂ R → M4

2 . We further
want R to be analytic, i.e., the Taylor expansions for all coordinate functions
of the Plücker representation of R as well as a parameterization by means of
directrices converge in the interval I.

We evaluate R = R(t) at t0 ∈ I and further at t0−ε, t0+ε, and t0+2ε, where
ε > 0 is sufficently small such that the Taylor expansions of R converge in
[t0 − 2ε, t0 + 2ε].

The discrete analogues Fi,ε of the flecnodes can now be defined as the inter-
section of the ruled quadric Q on the lines R− := R(t0− ε), R+ := R(t0 + ε),
and R++ := R(t0 + 2ε) with the line R0 := R(t0). Since the three-space

[R0, R−, R+, R++] converges to the osculating space O = [R0, Ṙ, R̈,
˙̈R] of R

at R0 the points Fi,ε converge to the flecnodes on R0.

The convergence of Fi,ε → Fi is linear and can be improved. For that we
symmetrize the process of computing the flecnodes at R0. We let Q− be the
ruled quadric on the lines R−2ε, R−ε, and Rε. Further we define Q+ be the
ruled quadric on R−ε, Rε, and R2ε. We determine the intersection points
Fi,− and Fi,+ of Q− and Q+ with R0. Now we define

F approx
i :=

1

2
(Fi,− + Fi,+) (9)

and claim:

Corollary 6.1
Assume R0 is a regulra non-torsal ruling on an analytic ruled surface and in
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Figure 6: Closed algebraic ruled surface with its curve of flecnodes.
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a sufficiently large neighbourhood of R0 the points R0, Ṙ0, R̈0, ˙̈R0, and R
(iv)
0

are independent.

The approximation of either flecnode on R0 given by Eq. (9) has at least
quadratic convergence.

Proof: The points Fi,− computed as the intersection of Q− with R0 can be
written in terms of Taylor series and read

Fi,− = Fi − εḞi +
ε2

2
F̈i − . . . . (10)

Since Q+ can be obtained from Q− by replacing ε with −ε, the Taylor expan-
sion of Fi,+ is obtained from Fi,− by replacing ε with −ε. Thus the arithmetic
average of the series for Fi,− and Fi,+ sum up to

Fi,− + Fi,+ = Fi + ε2F̈i + . . . . (11)

Therefore the difference between Fi and F approx
i converges towards 0 with

quadratic precision, if ε→ 0. �

Remark: The technique of creating better approximations by means of linear
combinations of somehow symmetrized approximations allows further improve-
ments. Any even order convergence rate can by achieved with sufficiently many
Taylor series. This does not depend on the geometric problem to which it is
applied to. It is more or less a property of Taylor series.

Let f be real analytic in an ε-neighbourhood of 0 and let further Sk := 1
2
(f(kε)+

f(−kε)). Then we have

S2 − 4S1 = −3f +
1

2
f (iv) + . . . ,

S3 − 6S2 + 15S1 = 10f +
1

2
f (vi) + . . . ,

S4 − 8S3 + 28S2 − 56S1 = −35f +
1

2
f (viii) + . . . ,

S5 − 10S4 + 45S3 − 120S2 + 210S1 = 126f +
1

2
f (x) + . . . ,

...
...

Sl −
(

2l

1

)
Sl−1 +

(
2l

2

)
Sl−1 + . . . = (−1)l+1

(
2l − 2

l

)
f +

1

2
· f (2l) + . . . .

(12)

Generalizations and further improvements are straight forward, but the compu-
tational effort increases.
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[9] H. Pottmann, J. Wallner: Computational Line Geometry.
Springer-Verlag, Wien, 2001.

[10] R. Sauer: Projektive Liniengeometrie. De Gruyter, Berlin, 1937.

[11] R. Sauer: Differenzengeometrie. Springer-Verlag, Berlin, 1970.

[12] J.G: Semple, G.T. Kneebone: Algebraic curves. Oxford Univ. Press,
Oxford, 1959.

[13] G. Weiß: Ruled surfaces in affine space treated in the Klein model. In:
Geometry and topology of submanifolds VIII, Singapore World Scien-
tific, 361–376, ISBN 981-02-2776-0.
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