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Abstract

In this paper we show that the Gergonne point G of a triangle ∆ in
the Euclidean plane can in fact be seen from the more general point of
view, i.e., from the viewpoint of projective geometry. So it turns out
that there are up to four Gergonne points associated with ∆. The
Gergonne and Nagel point are isotomic conjugates of each other
and thus we find up to four Nagel points associated with a generic
triangle. We reformulate the problems in a more general setting and
illustrate the different appearances of Gergonne points in different
affine geometries. Darboux’s cubic can also be found in the more
general setting and finally a projective version of Feuerbach’s circle
appears.
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1 Introduction

Assume ∆ = {A, B, C} is a triangle with vertices A, B, and C and the
incircle i. Gergonne’s point is the locus of concurrency of the three cevians
connecting the contact points of i and ∆ with the opposite vertices. The
Gergonne point, which can also be labelled with X7 according to [10, 11]
has frequently attracted mathematician’s interest. Some generalizations have
been given. So, for example, one can replace the incircle with a concentric
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circle and replace the contact points of the incircle and the sides of ∆ with
their reflections with regard to the incenter as done in [2]. Replacing the
contact points of i and ∆’s sides with other points on the diameter of contact
also results in cocurrent cevians, see [9].

Gergonne points of tetrahedra are investigated in [7, 8]. There it turned out
that a tetrahedron has to fulfill some conditions in order to have a Geronne

point and so the classical definition of this particular point cannot be carried
over to the tetrahedron and therefore its definition has to be modified. The
Geronne and Nagel points for n-simplices are also studied in [12].

In this paper we shall not treat n-dimensional analogues of phenomena which
came from triangle geometry. We shall study the planar case in a more gen-
eral setting, i.e., we formulate everything in terms of projective geometry.
This allows to state theorems in some Cayley-Klein geometries, e.g., Eu-
clidean or Minkowskian geometry. There is, to the best of the author’s knowl-
edge, only one paper dealing with Gergonne’s point and Nagel’s point (to-
gether with some other phenomena of triangle geometry) in a Minkowskian
plane. In [1] the authors translated things in an elementary way without
leaving affine geometry.

This paper discloses the relation of Gergonne’s point and Brianchon’s
theorem which directly leads to three more Gergonne points, see Sec. 2.
Thereby further Nagel points appear in a natural way as the isotomic con-
jugates of Gergonne points. Furthermore, it is possible to reformulate a lot
of results in a projectively invariant way which is the content of Sec. 3. Then
we pay our attention to Darboux’s cubic in Sec. 4. Finally, we give the
trilinear coordinates of the three additional Gergonne and Nagel points
in Sec. 5.

2 Gergonne points and Brianchon’s theo-

rem

Assume we are given a triangle ∆ := {A, B, C} in the Euclidean plane R
2.

The incircle is labelled with i and its center shall be denoted by I. This
circle is one of those touching the sides of ∆. There are three further circles
sharing this property with the incircle. These are called excircles and will be
denoted by i1, i2, and i3 and their respective centers by I1, I2, and I3.

While the incircle touches ∆’s sides from the inside and is thus entirely
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contained in ∆, the excircles touch from the outside. In order to ovoid
confusions we denote the excircle touching the side BC in between B and C,
by i1. So i1 lies opposite to A, i2 is opposite to B, and i3 is opposite to C,
cf. Fig. 1.

A B

C

I1

I2

I3

i1

i2

i3

I

i

Figure 1: A triangle ∆ = {A, B, C} with its incircle i and excircles i1, i2, i3.

The incircle is tangent to ∆’s sides at the points IAB, IBC , and ICA. Now
the following statement is well known:

Theorem 2.1

The three lines [A, IBC ], [B, ICA], and [C, IAB] are concurrent.

The common point G of [A, IBC ], [B, ICA], and [C, IAB] is usually referred to
as Gergonne’s point. Fig. 2 shows a triangle with its Gergonne point G.

One can easily give a proof of Th. 2.1, using Brianchon’s theorem.
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Figure 2: Gergonne’s point as the intersection of three lines.

Let k be a conic section in a projective plane (which is henceforth assumed
to be Pappian) and let further t1, . . . , t6 be tangents of k. If their points of
intersection are denoted by Tij := [ti, tj] then we can build the three lines
[T12, T34], [T23, T56], and [T34, T61]. Brianchon’s theorem says:

T34

T12

T23

T61

T45

T56

T1 = T2 = T12

T3 = T4 = T34

T5 = T6

= T56

T23

T61

T45

Figure 3: Brianchon figures of different kinds: six tangents of a conic section
(left), three line elements of a conic section (right).

Theorem 2.2

The three lines [T12, T34], [T23, T56], and [T34, T61] are concurrent.

Th. 2.2 is valid, even if two consecutive lines, for instance the lines t1 and t2,
coincide. (It is always possible to number five lines with integers 1, . . . , 6 such
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that one line is labelled twice, and with a pair of consecutive numbers.) In
case of t1 = t2 the point T12 is replaced by the contact point T1 = T2 of t1 = t2
with the conic section k. Even if two pairs of consecutive tangents coincide,
e.g., t1 = t2 and t3 = t4, Th. 2.2 holds true. Surprisingly, Brianchon’s
theorem is also valid in the case of t1 = t2, t3 = t4, and t5 = t6. This is
illustrated in Fig. 3. Consequently, one can check, if three line elements are
line elements of one conic section.

Now it is obvious that the lines mentioned in Th. 2.1 are concurrent and that
the point G exists:

Proof: (Proof of Th. 2.1) Apply Brianchon’s theorem 2.2 to the three line
elements ([B, C], IBC), ([C, A], ICA), and ([A, B], IAB). �

The contact points of the excircles with the sides of ∆ shall be labelled in
the following way: The i-th excircle ii touches the lines [A, B], [B, C], and
[C, A] at Ii,AB, Ii,BC , and Ii,CA, respectively. Now it is easily seen that each
excircle determines its own Gergonne point with respect to ∆:

Theorem 2.3

Any triangle ∆ has four Gergonne points.

The three lines [A, IBC ], [B, ICA], and [C, IAB] are concurrent.

The three lines [A, Ii,BC ], [B, Ii,CA], and [C, Ii,AB] are concurrent. This holds
true for all i ∈ {1, 2, 3}.

Proof: We immediately recognize three Brianchon figures consisting of the
tangents [A, B], [B, C], [C, A] and the respective contact points Ii,AB, Ii,BC ,
Ii,CA of the excircles. The fourth Brianchon figure is formed by the lines
[A, B], [B, C], [C, A] and the contact points IAB, IBC , and ICA of the incircle.
�

The Gergonne point associated with the i-th excircle shall be denoted by
Gi, according to Fig. 4.

Note that Nagel’s point N - or X8 according to [10, 11] - is not a general-
ized Gergonne point since it is found as the intersection of lines connecting
∆’s vertices with contact points of different conic section, namely the three
different excircles. Nevertheless, Nagel’s point is closely related to Ger-

gonne’s point since X7 and X8 are isotomic conjugates of each other, cf.
[11]. Moreover we observe:
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Figure 4: A triangle ∆ = {A, B, C} and its four Gergonne points G, G1,
G2, G3 and its Nagel point N .

Lemma 2.1

The three lines [G1, A], [G2, B], and [G3, C] are concurrent at Nagel’s point.

Proof: It is well known that Nagel’s point is the common point of the cevians
[I1,BC , A], [I2,CA, B], and [I3,AB, C]. Since G1 ∈ [I1,BC , A], G2 ∈ [I2,CA, B],
and G3 ∈ [I3,AB, C] we are done. �

Since Gergonne’s point and Nagel’s point are isotomic conujate we find
further Nagel points:

Theorem 2.4

Any triangle ∆ = {A, B, C} has four Nagel points.
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Figure 5: A triangle ∆ = {A, B, C} with its four Gergonne points G, G1,
G2, G3 and its four Nagel points N , N1, N2, N3.

The lines [A, G], [B, G3], [C, G2] share the point N1.

The lines [B, G], [C, G1], [A, G3] share the point N2.

The lines [C, G], [A, G2], [B, G1] share the point N3.

The points Ni are the isotomic conjugates of Gi for all i ∈ {1, 2, 3}.

Proof: We construct the isotomic conjugate of G1 in order to show the ex-
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istence of the point N1: The cevians through G1 meet AB, BC, and CA at
I1,AB, I1,BC , and I1,CA. The latter points are reflected at the midpoints of
AB, BC, and CA and map thus to I2,AB, IBC , and I3,CA. Since the isotomic
mapping is well defined off the triangle, the cevians through I2,AB, IBC , and
I3,CA are concurrent in the isotomic conjugate N1 of G1. Furthermore we
have G2 ∈ [C, I2,AB], G3 ∈ [B, I3,CA], and G ∈ [A, IBC ].

Analogously we can show that the remaining triplets of lines belong to pencils
of lines and that the points N2 and N3 are the isotomic conjugates of G2 and
G3, respectively. �

Fig. 5 shows the four Nagel points of a given triangle together with the four
Gergonne points.

So far we discovered that there is not a single Gergonne point. To each
Gergonne point Gi there exist exactly one isotomic conjugate point Ni.
We call the points Ni also Nagel points since they can be found in a similar
way compared to the point X8.

The construction of the three Gergonne points G1, G2, G3, uses a theorem
from projective geometry. This motivates the question: Is it possible to
generalize the notion of Gergonne points in a way that it becomes a matter
of projective geometry? A positive answer to this question would imply that
Gergonne points also exist in other geometries, for example in pseudo-
Euclidean (Minkowskian) geometry.

3 Generalized Gergonne points

In order to find Gergonne points in a more general setting we perform the
projective closure of ∆’s plane. We add the ideal line ω as the set of all
ideal points. When ever necessary we extend the concept of real geometry
by adding complex elements. Note that a pair of conjugate complex points
is connected by a real line. So in the complex extension of the projectively
closed Euclidean plane each circle has a pair of conjugate complex ideal points
(I, I) and any conic section through these points is a circle.

The points I, I are frequently called absolute points of the Euclidean plane,
see [6]. They are the fixed points of the absolute polarity ι on ω. Any pair
of points (G, H) ⊂ ω with ι(G) = H are the ideal points of orthogonal lines
and the quadrupel (I, I, G, H) is harmonic.
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The lines of the two pencils of lines through I and I are called isotropic.
When considering Euclidean geometry as a Cayley-Klein geometry, the
line ω together with the quadric (I, I) ⊂ ω is the absolute figure of this
geometry, see [6].

Now we replace the above absolute figure (ω, (I, I)) by another one (ω, (U, U))
and obtain different geometries, with their own notion of circles and their
own notion of Gergonne points. Independent of the choice of the absolute
points, we define a circle as a conic section passing through U and U .

Since any (real) conic section (in the projectively closed and complex ex-
tended plane) that contains U and U is a circle (and since any circle goes
through U and U), it makes no difference, if we assign the Gergonne points
to ∆ and its in- and excircles or to ∆ and the pair (U, U) of points. Therefore
one possible generalization of the Gergonne points reads:

A B

C

U

U G1

G2

G3

G4

Figure 6: Four conic sections sharing three tangents and two points determine
four Gergonne points.

Theorem 3.1

Any triangle ∆ = {A, B, C} and any pair of distinct points (U, U) (neither
U nor U is located on the sides of ∆) determine a quadrupel of Gergonne

points.

Proof: In general there are four conic sections on three given tangents and
two given points.
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A conic section tangent to the lines [A, B], [B, C], and [C, A] and passing
through U and U touches the given lines at IAB, IBC , and ICA. By completing
the Brianchon figure, we find the associated Gergonne point. �

Remark: Note that degenerate cases, i.e., situations may occur where two or
more Gergonne points coincide. This depends on the choice of (U, U) and
neads a separate treatment. In the following we exclude special cases. We do
neither allow [U, U ] to pass through a vertex of ∆ nor U or U to be contained
in any side of ∆. We shall not discuss special cases since this leads to far.

A

B

C

G

k U = U

k1

k1

k2 k2

k3 k3k4

G1

G2
G3

G4

A

B

C

U

U

Figure 7: The unique Gergonne point in an isotropic plane (left), the four
Gergonne points in a Minkowskian plane (right).

Since any three line elements of a conic section determine a Brianchon

figure and a unique Brianchon point, we can say:

Theorem 3.2

Any conic tangent to three lines determines a unique Gergonne point. The
two parameter-family of conic sections tangent to three lines determines a
two-parameter family of Gergonne points.

The set of Gergonne points of the two-parameter family of conic section
mentioned in Th. 3.2 lies dense in the plane of the triangle, when we remove
the three given lines. This holds true as long as the lines are not concurrent
and as long as the conic section does not degenerate.
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O H

Figure 8: Darboux’s cubic associated with ∆.

The two apparently different cases of a pair of real points (U, U) and a pair
of conjuagte complex cases allow a unifying generalization. The points U

and U can be seen as the fixed points of a hyperbolic or an elliptic involutive
projective mapping ι : ω → ω. The mapping ι is induced by the polarity
with regard to k on ω = [U, U ]. We call a line g and an involutive projective
mapping ι : g → g admissable, if g does not pass through any vertex of ∆
and no fixed point of ι is contained in any side of ∆. Thus the notion of
Gergonne points allows a further generalization:

Theorem 3.3

Any triangle ∆ = {A, B, C} and any admissable involutive projective map-
ping ι : g → g on a line g in admissable position determine four Gergonne

points.

Proof: The involutive mapping ι : g → g together with the lines [A, B],
[B, C], and [C, A] defines four conics such that they touch the given lines and
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their respective polar systems induce ι on g. The four Gergonne points are
the Brianchon points of the four resulting Brianchon figures. �

Remark: If we choose ω = [U, U ] as the ideal line and the points U and U is the
absolute quadric in the sense of a Cayley-Klein geometry, we can find two
different (affine) versions of Gergonne points:

In case of a pair of conjugate complex points we rediscover the well known
Euclidean version. It is illustrated in Fig. 4 and Fig. 6.

If we choose a pair of real points (U, U), we obtain the Gergonne points to a
triangle in a pseudo-Euclidean or Minkowskian plane. An example is illustrated
in Fig. 7.

Remark: An isotropic plane has a double point U = U ∈ ω at infinity for its
absolute quadric. There appears to be only one isotropic circle tangent to three
lines, since three tangents and one line element (ω, U) determine exactly one
conic section, assumed that the four lines form a quadrilateral and the given
point is located at exactly one of the lines.

From the view point of affine geometry the isotropic circle is a parabola. The
isotropic normals of the parabola are parallel and concurrent in U . Since there is
only one isotropic circle tangent to three lines, there is also only one Gergonne

point. Fig. 7 gives an idea how the isotropic situation looks like.

4 Darboux’s cubic

Now we return to Euclidean plane. Assume a triangle ∆ = {A, B, C} is given.
We have seen that the incenter I and the excenters Ii have the following
property: The cevians through the orthogonal projections to ∆’s sides are
concurrent. The orthogonal projections of I and Ii are the contact points of
the incircle and the excircles with ∆’s sides, respectively.

The incenter and excenters share this property with the orthocenter H and
the circumcenter O.

Consider now a point X in ∆’s plane. Denote the orthogonal projections of
X to the sides [A, B], [B, C], and [C, A] of ∆ by X3, X1, and X2, respectiv-
ley. The set of all points X in ∆’s plane with the property that the three
lines [A, X1], [B, X2], and [C, X3] are concurrent is an elliptic cubic curve c

provided that ∆ is neither isosceles, nor equilateral, nor right angled. The
curve c is called Darboux’s cubic (cf. [5]). It is symmetric with respect to
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the circumcenter O. The bisectors of ∆’s edges are c’s asymptotes, which
are concurrent in O. The latter one is an inflection point of c, see Fig. 8.

So far it seems that Darboux’s cubic is a term of Euclidean geometry. In
the following we will show that this cubic can be found in arbitrary projective
planes. For that purpose we return to the assumption we have made earlier.
Let (U, U) be a pair of different points such that ω := [U, U ] is a real line,
i.e., U and U can be real points or a pair of conjugate complex points.

A B

C

11ι

2

2ι

3

3ι T1

T2

T3

ω
Ω

k

n1 n2n3

U

U

Figure 9: Projective normals of a conic.

Now we have to clarify, what are the projective orthogonal projections of a
point X to the sides of ∆.

The involutive mapping ι : ω → ω assignes a unique point X ι to any point
X. We say X is the ideal point of a pencil of lines and so X ι is the ideal point
of all lines ι-orthogonal to the lines of the pencil. In this way the ι-normals
can be assigned to all points of k. Note that the points k ∩ ω = (U, U)
(whether they are real or not) are self-adjoint and thus the lines through U

and U are ι-self-orthogonal. Obviously, the ι-normals of k are concurrent in
ω’s pole Ω with regard to k, i.e., Ω can be seen as a kind of center of k.

This allows the projective generalization of the construction of Darboux’s
cubic. We ask for all points X in ∆’s plane with the property that for their
ι-orthogonal-projections Xi to the sides of ∆ the lines

[A, X1], [B, X2], [C, X3]
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are concurrent. The locus of all points X with this property will from now
on be called generalized Darboux cubic. An example is displayed in Fig.
10.

We can summarize:

Theorem 4.1

Given a triangle ∆ and two points U and U in admissabble position (cf. Th.
3.3). U and U can be considered as the fixed points of an involutive projective
mapping ι : ω → ω, with ω := [U, U ].

There is a cubic curve c as locus of points X in ∆’s plane with the property
that for the cevians through the ι-orthogonal projections Xi of X to ∆’s sides
are concurrent.

Remark: Such cubics exist in pseudo-Euclidean and Euclidean planes but not in
isotropic ones.

We note that another object of elementary Euclidean geometry appears in the
more general setting. The midpoints of any side of ∆ are the fourth harmonic
points of the ideal lines of ∆’s sides. Obviously we can define midpoints
with help of any line ω. The generalization of pedals of ∆’s altitudes is
straight foreward as well as the construction of midpoints on those parts of
the altitudes which lie in between the vertices and the orthocenter of ∆. So
we end up with nine points lying on one conic section f , which can be called
the Feuerbach conic. This is illustrated in Fig. 11.

Finally we observe that the generalized Gergonne points of ∆ determine
its own Nagel points:

Theorem 4.2

The incidences given in Theorem 2.4 hold true in the generalized case.

Proof: The isotomic transformation can be performed in the general setting.
In order to find the isotomic conjugate of a point P (which is not contained
in ∆’s sides) we first project P from ∆’s vertices to the opposite edges and
obtain PAB, PBC , and PCA. Then we reflect these points about the midpoints
of AB, BC, CA, i.e., we apply the harmonic (involutive) projective mapping
on each side of ∆ that fixes the ideal point on the side (side’s intersection
with ω) and its harmonic conugate. We obtain points P ′

AB, P ′

BC , and P ′

CA.
The cevians through the latter points are concurrent. �
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A
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U

d

d

d

Figure 10: Projective version of Darboux’s cubic d.

In Fig. 12 the generalized Nagel points as well as the generalized Ger-

gonne points are displayed.

5 Trilinear coordinates

For sake of completeness we give the trilinear coordinates of the Gergonne

points1 G1, G2, and G3 for triangles ∆ in a Euclidean plane. The lengths of
the sides of ∆ shall be |AB| = c, |BC| = a, |CA| = b and the coordinates
are sorted in the same order. So we have

G1 =

[

ab

a − b + c
:

−bc

a + b + c
:

ac

a + b − c

]

,

G2 =

[

ab

−a + b + c
:

bc

a + b − c
:

−ac

a + b + c

]

,

G3 =

[

−ab

a + b + c
:

bc

a − b + c
:

ac

a + b − c

]

.

According to Th. 2.4 the Nagel points Ni are the isotomic conjugates of
the Gergonne points Gi for i ∈ {1, 2, 3}. So we compute the trilinear

1It is not necessary to give the coordinates of G = X7. they can be found in [10, 11].
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A B
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f

f

U

U

S ω

H

Figure 11: Feuerbach’s nine point conic f together with the projective
versions of the barycenter S and the orthocenter H .

coordinates of the Ni from those of Gi. For a point X with trilinear coordi-
nates (ξ0 : ξ1 : ξ2) the trilinear coordinates of its isotomic conjugate X ′ are
(c−2ξ−1

0
: a−2ξ−1

1
: b−2ξ−1

2
), cf. [11]. Therefore the trilinear coordinates of the

Nagel points2 N1, N2, and N3 are

N1 =

[

a − b + c

−c
:

a + b + c

a
:

a + b − c

−b

]

,

N2 =

[

−a + b + c

−c
:

a + b − c

−a
:

a + b + c

b

]

,

N3 =

[

a + b + c

c
:

a − b + c

−a
:

a + b − c

−b

]

.

2The trilinear coordinates of the Nagel point N = X8 can also be found [10, 11].
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Figure 12: The generalized Nagel points together with the generalized Ger-

gonne points.
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