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EQUIOPTIC POINTS OF A TRIANGLE

Boris ODEHNAL
Vienna University of Technology, Austria

ABSTRACT: The locus of points where two non-concentric circles c1 and c2 are seen under equal
angles is the equioptic circle e. The equioptic circles of the excircles of a triangle ∆ have a common
radical axis r. Therefore the excircles of a triangle share up to two real points, i.e., the equioptic
points of ∆ from which the circles can be seen under equal angles. The line r carries a lot of known
triangle centers. Further we find that any triplet of circles tangent to the sides of ∆ has up to two real
equioptic points. The three radical axes of triplets of circles containing the incircle are concurrent in
a new triangle center.
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1. INTRODUCTION
Let there be given a triangle ∆ with vertices

A, B, and C. The incenter shall be denoted
by I , the incircle by Γ. The excenters are la-
beled with I1, I2, and I3. We assume that I1 is
opposite to A, i.e., it is the center of the excir-
cle Γ1 touching the line [B, C] from the outside
of ∆, cf. Fig. 1. Sometimes it is convenient to
number vertices as well as sides of ∆: The side
(lines) [B, C], [C, A], [A, B] shall be the first,
second, third side (line) and A, B, C shall be
the first, second, third vertex, respectively. Ac-
cording to [1, 2] we denote the centers of ∆
with Xi. For example the incenter I is labeled
with X1.

The set of points where two curves can be
seen under equal angles is called equioptic
curve, see [3]. It is shown that any pair (c1, c2)
of non-concentric circles has a circle e for its
equioptic curve [3]. The circle e is the Thales
circle of the segment bounded by the inter-
nal and external centers of similitude of either
given circle, i.e., the center of e is the midpoint
of the two centers of similitude, see Fig. 2. In
case of two congruent circles e becomes the bi-
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Figure 1: Notations in and around the triangle ∆.

sector of the centers of c1 and c2, provided that
c1 and c2 are not concentric.

The four circles Γ, Γi (with i ∈ {1, 2, 3})
tangent to the sides of a triangle ∆ can be ar-
ranged in six pairs and thus they define that
much equioptic circles. Among them we find
four triplets of equioptic circles which have a



common radical axis instead of a radical cen-
ter, i.e., the three circles of such a triplet form
a pencil of circles. These shall be the contents
of Sec. 2 and Sec. 3.
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Figure 2: Equioptic circle ofc1 andc2.

We use homogeneous trilinear coordinates
of points and lines, respectively. The ho-
mogeneous triplet of real (complex) numbers
(x0 : x1 : x2) are said to be the homoge-
neous trilinear coordinates of a pointX if xi

are the oriented distances ofX with respect
to the sides[B, C], [C, A], and[A, B] up to a
common non vanishing factor, see. [1]. When
we deal with trilinear coordinates of points ex-
pressed in terms of homogeneous polynomials
in ∆’s side lengthsa = ‖BC‖, b = ‖CA‖,
andc = ‖AB‖ we need to have a functionζ
which produces a homogeneous function out of
a homogeneous function by cyclically replac-
ing a → b, b → c, andc → a. However,ζ
is more powerful. It also applies to homoge-
neous polynomials depending onxi and does
xi → xi+1 (indices mod 3). It also changes
sin A to sin B and similar for other trigonomet-
ric functions.

Another function which frequently appears
will be denoted byσ. It acts on (homoge-
neous coordinate) triplets in the following way
σ(x0 : x1 : x2) = (x2 : x0 : x1). In this paper
mappings will be written as superscripts, e.g.,
σ ◦ ζ(X) = Xσζ = Xζσ if applied to points.
Note thatζ ◦ σ = σ ◦ ζ , provided thatxi are
homogeneous functions ina, b, c.

2 EQUIOPTIC CIRCLES OF THE EX-
CIRCLES

In order to construct the equioptic circles of
a pair of excircles we determine the respective
centers of similitude. First we observe that the
internal centers of similitude ofΓi and Γj is
the k-th vertex of∆, where(i, j, k) ∈ I

3 :=
{(1, 2, 3), (2, 3, 1), (3, 1, 2)}. Second we have
to find the external centers of similitude. For
any pair(Γi, Γj) the k-th side of∆ is an ex-
terior common tangent of bothΓi andΓj, re-
spectively, and thus[Ii, Ij ] and thek-th side of
∆ meet in the external center of similitudeSij

of Γi andΓj . Now we are able to show a first
result:

Corollary 1.
The external centers of similitudeSij of the ex-
circlesΓi andΓj of a triangle∆ are collinear.
The line carrying these points is the polar of
X1 with respect to∆ and the polar line with re-
spect to the excentral triangle of∆ at the same
time.

Proof. We construct the polar line of the in-
centerX1 with respect to∆. For that pur-
pose we projectI from C to the line [A, B].
This givesS3 := [A, B] ∩ [I, C]. Then we de-
termine a fourth pointC ′ on [A, B] such that
(A, B, S3, C

′) is a harmonic quadrupel. The
four lines[C, A], [C, B], [C, I], and[I1, I2] ob-
viously form a harmonic quadrupel and thus
any line (which is not passing throughC)
meets these four lines in four points of a har-
monnic quadrupel. So we haveC ′ = [I1, I2] ∩
[A, B] and obviouislyC ′ = S12. Cycli-
cally shifting labels of points givesS23, S31

which are collinear withS12 and lie on the
polar of X1. On the other hand we have the
harmonic quadruples(I1, I2, C, S12) (cyclic)
which shows that[S12, S23] is the polar ofX1

with respect to the excentral triangle, see Fig.
3.

The centersTij of the equioptic circleseij

are the midpoints of the line segments bounded
by Sij and thek-th vertex of∆ with (i, j, k) ∈
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I
3. Their trilinears are

S12 = (−1 : 1 : 0),

S23 = Sσ
12, S31 = Sσ

23.

The centersTij are thus

T12 = (c : −c : a − b),

T23 = T σζ
12 , T31 = T σζ

23 ,
(1)

and we can easily prove:

Corollary 2.
The centersTij of the equioptic circleseij of
any pair(Γi, Γj) of excircles of∆ are collinear.
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Figure 3: Centers of similtude and harmonic
quadruples.

Proof. The coordinate vectors ofTij given in
(1) are linearly dependent.

Remark 1.
The line t connecting anyTij with any Tjk

(with (i, j, k) ∈ I
3) has trilinear coordinates

[λ0 : λ1 : λ2], whereλ0 = a(−a + b + c) and
λi = ζ i(λ0) with i ∈ {0, 1, 2}. Obviouslyt is
the polar ofX55 with respect to∆. The center
X55 is the center of homothety of the tangential
triangle, the intangent triangle, and the extan-
gent triangle, see [1]. Further it is the internal
center of similitude of the incircle and the cir-
cumcircle of the base triangle.

We use the formula for the distance of two
points given by theiractual trilinear coordi-
natesgiven in [1, p. 31] and compute the radii

ρijof the equioptic circlescij and find

ρ12 = dist(C, T12) = dist(S12, T12)

=
ab

a − b
sin

C

2
,

ρ23 = ζ(ρ12), ρ31 = ζ(ρ23).

(2)

By means of the distance formula from [1, p.
31] or equivalently by means of the more com-
plicated equation for a circle given by center
and radius from [1, p. 223] we write down the
equations of the equioptic circles

e12 : − cA x2
0 + cB x2

1+
+(1 − cC)x2(x1 − x0)
+(cB − cA)x0x1 = 0,

e23 = ζ(e12), e31 = ζ(e23),

(3)

wherecA, cB, andcC are shorthand forcos A,
cos B, andcos C, respectively. Now it is easily
verified that the following holds:

Theorem 1.
1. The three equioptic circles of the excircles
of generic triangle∆ have a common radical
axis r and thus they have up to two common
real points, i.e., the equioptic points of the ex-
circles from which the excircles can be seen un-
der equal angles.
2. The radical axisr containsX4 (ortho cen-
ter), X9 (Mittenpunkt),X10 (Spieker center),
and furtherXi with

i ∈ {19, 40, 71, 169, 242, 281, 516, 573,
966, 1276, 1277, 1512, 1542, 1544,
1753, 1766, 1826, 1839, 1842, 1855,
1861, 1869, 1890, 2183, 2270, 2333,
2345, 2354, 2550, 2551, 3496, 3501}.

Proof. 1. LetP1 := µe12 + νe23, P2 := µe23 +
νe31, andP3 := µ e31 + νe12 be the equations
of the conic sections in the pencils panned by
any pair of equioptic circleseij. We compute
the singular conic sections in the pencils and
find that for all pencils the real singular conic
sections consist of the ideal lineω : ax0 +
bx1 + cx2 and the line

∑

cyclic

(b − c) cA x0 = 0, (4)
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which is the radical axis of any pair of equiop-
tic circles. 2. In [1, pp. 64 ff.] we find
X4 = [cosec A : cosec B : cosec C] and
X9 = [b+c−a, c+a−b, a+b−c] and obviously
these coordinate vectors annihilate Eq. (4). By
inserting the trilinears of the other points men-
tioned in the theorem we proof the incidence.
The trilinears of pointsXi with i ≤ 360 can be
found in [1] whereas the trilinears fori > 360
can be found in [2].

In Fig. 6 the equioptic circles as well as the
equioptic points of an acute triangle are de-
picted. Fig. 4 shows some of the centers men-
tioned in Th. 1 located onr.

X4

X9

X10

X19

X40

X71

X169

X242

X573
X966

X1277

X1542

X1753

X1766

X1826

X1839, X1890X1842

X1861

X1855

X1869

X2270X2333

X2345

X2354

X2550

X2551

X3496

X3501

A B

C

e12

e23

e31

E1

Figure 4: Some of the triangle centers on the radical
axis, cf. Th. 1.

The circles in a pencil of circles can share
two real points, one real point with multiplic-
ity two, or no real points. Thus a triangle has
either two equioptic points, or a single equiop-
tic point.

Remark 2.
In case of an equilateral triangle∆ there is
only one equioptic pointE that coincides with
the center of∆. The three equioptic circle be-
come straight lines:eij is thek-th interior an-
gle bisector and thek-th altitude of∆. Fig. 5
illustrates this case. FromE any excircleΓj

can be seen underarccos
(
−1

8

)
≈ 97.180756◦.

E

I1

I2I3

e12

e23

e31

Γ1

Γ2

Γ3

Figure 5: The only equioptic point of an equilateral
triangle.

The case of a single equioptic point is il-
lustrated in Fig. 8 at hand of an isosceles tri-
angle. It is easily shown that in this case
one has to choose∠ACB = 2 arcsin(

√
3 −

1) ≈ 94.11719432◦ in order to have a unique
equioptic point. Thus the triangle is obtuse.
The unique (real) equioptic angle now equals

2 arcsin
(

3−
√

3
2

)
≈ 78.68794716◦.

A generic triangle∆ has a unique equioptic
point if and only if

6a2b2c2 + 4
∑

cyclic

a3b(b2 − âc) =

=
∑

cyclic

(a6 + 2âa5 − a4(â2 + 4bc)).

Here and in the following we use the abbre-
viationsâ = b + c, b̂ = c + a, and ĉ = a + b.
We skip the proof since it is merely based on
simple and straight foreward computations.

3 EQUIOPTIC CIRCLES OF THE IN-
CIRCLE AND AN EXCIRCLE

We recall that the equioptic circles of a pair
(Γ, Γi) is the Thales circle of the line segment
bounded by the internal and external center of
similitude of the incircleΓ and thei-th excircle
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Figure 6: The equioptic circles and equioptic points of a triangle and the radical axis through some triangle
centers.
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Figure 7: The six equioptic circles of the incircle and the excircle, the three concurrent radical axes, and the
centerG from Th. 3.
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Γi. We observe that thei-th vertex of∆ is
the external center of similitude of the above
given pair of circles. The internal center is the
meet of a common internal tangent, i.e,∆’s i-th
side and the line[I, Ii] connecting the respec-
tive centers.
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A B

E

Figure 8: An iscosceles triangle with a unique
equioptic point.

Consequently the internal centers of simili-
tude are the pointsSi (i ∈ {1, 2, 3}). We have

S1 = (0 : 1 : 1), S2 = Sσ
1 , S3 = Sσ

2 .

As a consequence of Cor. 1 we have:

Corollary 3.
The two internal centersSi, Sj of similitude
of Γ and Γi, Γj are collinear with the exter-
nal centerSij of similitude ofΓi and Γj for
(i, j) ∈ {(1, 2), (2, 3), (3, 1)}.

Proof. The collinearity is easily checked by
showing the linear dependency of the respec-
tive coordinate vectors.

The centersTi of equioptic circlesei of Γ
andΓi are the midpoints of∆’s i-th vertex and
Si. Thus we have

T1 = (b + c : a : a), Ti+1 = T σζ
i . (5)

Now we observe the following:

Corollary 4.
The two centersTi andTj of equioptic circles
ei, ej of Γ and thei-th and j-th excircle are
collinear with the centerTij of the equioptic
circle eij of Γi andΓj .

Proof. We simply show dependencies of vec-
tors given in Eqs. (1) and (5).

Again we use the formulae given in [1, p.
223] in order to compute the equations of the
equioptic circlesei of the incircleΓ and thei-
th excircleΓi. Note that these homogeneous
equations can always be written in the form
ei : x

T ·Ai ·x = 0 with a regular and symmetric
3 × 3-matrixAi. The matrixA1 reads

[
2a2s(a − s) 2abs(a − s) 2acs(a − s)
2abs(a − s) (⋆⋆) (⋆)
2acs(a − s) (⋆) (⋆ ⋆ ⋆)

]
,

A2 = ζ(A1), A3 = ζ(A2),

(6)

where(⋆) = 2b2c2 + 3b3c + 3bc3 − 3a2bc +
2b4 + 2c4 − 2a2b2 − 2a2c2, (⋆⋆) = b(â2(4c −
b)+ a2b− 8b2c), and(⋆ ⋆ ⋆) = c(2bc2 +7b2c−
c3 + a2c + 4b3). Heres = (a + b + c)/2 is the
halfperimeter of∆.

Theorem 2.
The equioptic circlesei, ej , andeij defined by
the incircleΓ and the excirclesΓi, Γj have a
common radical axisrk (with (i, j, k) ∈ I

3)
and thusΓ, Γi, and Γj have up to two real
equioptic points.

Proof. With Eq. (3) and (6) we compute the
radical axis rk of Γ, Γi, and Γj (where
(i, j, k) ∈ I

3) as the singular conic sections in
the pencil of conics spanned by either two cir-
cles, cf. the proof of Th. 1. The radical axisr3

is given by

r3 = [−ba5 − (ba2 + 2bc)a4 + (ba2b + c(2ba2 − bc))a3

+ba2(ba2 + 6c2)a2 + c2ba2(b + 4c) :

: ab5 + 2(bb2 + 2ac)b4 − (abb2 + c(2bb2 − ac))b3

−bb2(bb2 + 6c2)b2 − c2bb2(a + 4c)bb :
: (b − a)c5 + 4(a − b)bcc4 + (a − b)(7bc3 − 3ab)c3

+4(a − b)bc(bc2 + ab)c2

+7ab(a − b)bc2c + 4a2b2(a − b)bc)].

(7)

Finally we haver1 = rσζ
3 andr2 = rσζ

1 .
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Figure 9: Equioptic circles and points ofΓ, Γ1, Γ2.

A certain triplet of equioptic circles is shown
in Fig. 9. Finally we have:

Theorem 3.
The three radical axesrk (cf. Th. 2) are con-
current in a new triangle center.

Proof. The homogeneous coordinate vectors
of the linesri given in (7) are linearly depen-
dent. This proves the concurrency.

We compute the meetG = (g0 : g1 : g2) of
any pair(ri, rj) of radical axes and find

g0 = bcba5(b − c)2 + 2bcba2(2ba4 − 10ba2bc + 5b2c2)a

+ba3(ba4 − 8ba2bc + 4b2c2)a2

−2(ba6 + 3bcba4 − 10b2c2ba2 + b3c3)a

−ba(8ba4 − 23bcba2 + 4b2c2)a4

−2(ba4 − 8bcba2 + 5b2c2)a5

+ba(7ba2 − 4bc)a6 + 2(2ba2 − bc)a7.

(8)

Sinceg1 = ζ(g0) andg2 = ζ(g1) we find that
G is a center of∆ which is not mentioned in
[2] and shown in Fig. 7.
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