Rational Families of Conics and Quadrics

Martin Peternell
Institute of Geometry, Vienna University of Technology
Wiedner Hauptstrafie 8-10, A-1040 Wien, Austria

Abstract

A surface generated by a one parameter family of conics ¢(t) is
called conic surface. If ¢(t) can be described by rational functions,
the generated conic surface is rational. An algorithm to construct
real rational parametrizations for such surfaces and some examples
will be given.
keywords: conic surfaces, canal surfaces, rational parametrizations,
quadrics, offset surfaces.

1 Introduction

In algebraic geometry it is known that a rational one parameter family of
(irreducible) conics generates a rational surface. This follows from Tsen’s
Theorem (see [9], p.73 f) which states that an equation F(xq,...,2,) =0
of degree m < n in z;, whose coefficients are polynomials in one variable
t, has a polynomial solution z; = p;(t), i =1,...,n.

But since p;(t) is a solution of a system of polynomial equations, p;(t)
will not define a real curve in general, such that this method will not lead
to real rational parametrizations. The aim of this article is to construct
real rational parametrizations for real rational conic surfaces.

The article is organized as follows. Section 2 discusses the parametriza-
tion problem in the plane. Section 3 provides some geometric properties
of conic surfaces. In Section 4 rational parametrizations for rational conic
surfaces are constructed. Section 5 discusses the dual surfaces to Section
3, namely envelopes of quadratic cones and finally Section 6 tells about
some applications of the obtained results.

2 Rational Family of Conics in the Plane

Let © = (xg,21,29) be homogeneous coordinates of points with respect
to an arbitrary, but fixed coordinate system in real projective plane P2
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Let C' be a non-—zero real symmetric 3 x 3—matrix with coefficients c;;. A
quadratic equation ¢ : z7Cz = 0 defines a (not necessarily regular) conic
in P? as set of points. The conic is called singular, if det(C) = 0. In detail,
rk(C') = 2 defines a pair of lines, rk(C') = 1 defines a double counted line.
If rk(C') = 3, we call it regular or irreducible.

Dualities can be applied in P?, and we will use X = (Xg, X1, X5) as
coordinates of lines. Any non trivial quadratic equation X7CX = 0 with
a symmetric 3 X 3-matrix C' # 0 defines a (not necessarily regular) conic
in P? as set of tangent lines. If rk(C) = 2, the quadratic curve ¢ contains
two pencils of lines and if rk(C') = 1 it is a double counted pencil.

If the coefficients c;; depend on a parameter ¢, the equation

c(t): Y ez, =3"C(t)x =0, (2.1)

J,k=0

defines a one parameter family of conics c(t) in the plane P?. We call
c(t) € P* a real rational one parameter family of conics, if there is a
representation of ¢(t), such that the coefficients of the defining equation
(2.1) are rational functions and ¢(t) possesses real points for all real ¢.

We assume that c(¢) is a real rational family of regular conics, that means
det(C') = 0 just for finitely many ¢. For simpler notation, let X, Y
and Z be homogeneous coordinates of points or lines in P?. By rational
coordinate transformations we can assume that the family of conics ¢(¢)
is given by

c(t) : X2L(t) + Y2M(t) + Z*N(t) = 0, (2.2)

where L, M and N are considered to be polynomials in R[¢]. Our aim is
to construct polynomials z,y, z € R[t], which satisfy (2.2) identically.

Proposition 2.1 Let L, M and N be polynomials in R[t] \ 0 possessing
constant signs for all real t. Further, L, M and N do not have multiple
zeros and neither L and M, nor L and N nor M and N possess common
2€T08.

If L, M and N define a real rational family of reqular conics, there exist
polynomials x(t), y(t) and z(t) in R[t], which satisfy (2.2) identically and
(x,y,2)(t) # (0,0,0).

Proof Since L, M and N possess constant signs, they are of
even degrees, say 2[, 2m and 2n. Note that L, M and N are
not divisible by ¢ since they possess no double zeros. The zeros
of L, M and N shall be denoted by

Ply---5P20,015---,092m and Tl...TQnG(C\R.
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We look for polynomials z,y and z which satisfy (2.2) identi-
cally. We set

z(t) = zo+x1t+ ...+ 3,17,
y(t) = yo+ it + ...+ y,tl, (2.3)
2(t) = 2o+ 2t + ...+ 21",

with (p+¢+7)+3 unknown real coefficients. We will see soon
that the degrees shall be chosen to be

p=m+nqg=L+nr=10+m. (2.4)

For simplicity, let 7 € {7,...,7,} be an arbitrary zero of
N. Analogously, let p and o be arbitrary zeros of L and M,
respectively. Inserting (2.3) in equation (2.2) and evaluating
at these zeros leads to

w(r)*L(7) + y(7)*M(7)
y(0)*M(0) + 2(0)*N(0)
2(p)*L(p) + 2(p)*N(p)

If sgn(L(7)) = sgn(M (7)) the first equation (2.5) factorizes to

(#(1) /L) +iy(r)y M(7)) (2(r)/ L(7) — iy(7)/M (7)) =0,

(2.8)

0,
0,
0.

and otherwise we obtain

(#(MVL(T) + y()yM(7)) (2(7) L(7) = y(7)/M(7)) = 0.

(2.9)
Analogously equations (2.6) and (2.7) can be factorized. De-
pending on the signs of L and M, equation (2.5) is satisfied
if one of the factors in (2.8) or (2.9) is zero. Taking all ze-
ros into account, one obtains 2(I 4+ m + n) linear homogeneous
equations to compute 2(I + m + n) + 3 unknowns z, ..., 7,
Yo, - -, Yq and 2o, ..., 2.

The coefficients of this linear system are complex. But by
adding and subtracting equations to a conjugate pair (7,7)
one obtains a linear system with real coefficients. The zero
space of this linear system is at least 3—dimensional. In the
case of maximal rank the solutions can be parametrized by

T = TigUo + TiUy + Tigug, for i =0,...,p,
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with parameters ug, u; and uy. Analogously for y;,7 =0,...,q
and 2,k =0,...,r. Now, consider the polynomial

P(t) : x()?L(t) + y(t)> M (t) + 2(t)*N(1).

It is of degree < 2(I+m + n) in ¢t and possesses 2(l +m + n)
zeros at p;, 0; and 7. Note that P(t) also depends on the
free parameters ug, uy, us. If deg(P(t)) < 2(1 + m + n) we are
already done and (x,y, z)(t) is a solution.

Otherwise, let Ly, My and Ny be the trailing coefficients of the
polynomials L, M and N, and (Lo, My, Ny) # (0,0,0). The
trailing coefficient of P is

2 2 2
d= (Z xgaua)QLo + (Z yoﬁUﬂ)QM() + (Z ZOWU7)2NU-
=0

a=0 v=0

If we interpret (ug,u;,us) as coordinates in a the projective
plane, d = 0 is a quadratic curve and is generated by trans-
forming the conic ¢(t = 0) under the map

X Zoo To1 To2 Ug
Y | =1%o Yo1 Yoz |- |w |,
Z 200 <01 202 Ug

which proves that d = 0 has real points. Choose (ug, u1, us) as
a real point on d = 0. It follows that P(t) possesses a further
zero at ¢ = 0 such that it is identically zero. This implies that
(x,y,2)(t) is a non trivial solution of (2.2). O

If the polynomials possess multiple or/and common zeros, we proceed
as follows. Firstly, let 7 # 7 be a 2k + 1-fold zero of N, that means
N = (t—7)%*1(t—7)* 1N, where N is a polynomial of degree 2n—4k—2.
Choose

a(t) = (¢t = 7)"(t = 7)*2(t), and y(t) = (t — 7)"(t - 7)"5(2),

where T, y are of degree m +n — k and [ + n — k, respectively. We may
determine #(t),§(¢) and z(¢) such that the polynomial P(t) : 2L+ §2M +
2?(t — 7)(t — T)N is identically zero.

Secondly, let 7 # 7 be common 2k + 1-fold zero of L(t) and M (t). Let

L(t) = (t — 1) (t — 7)1 L(t) and M(t) = (t — )24 (¢ — 7) 2541 M (1),

where L(t) and M (t) are polynomials of degree 21 — 4k —2 and 2m — 4k —2,
respectively. Multiply equation (2.2) by (¢t — 7)(t — 7), such that L(t) and
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M (t) possess T and T as zeros of even multiplicity 2k 4+ 2. Choose z(t) =
(t— 1)k (t —7)¥+12(¢), where Z(¢) is a polynomial of degree [ +m —k — 1.
We determine z(t), y(¢) and Z(t) such that the polynomial

P(t) : z(t)L(t) + y(t)>M(t) + 2(t)*(t — 7)(t — T)N (1)

is identically zero.

Analogously one substitutes in case of 7 = 7 7 or if 7 is a 2k—fold
zero. It could be necessary to repeat such substitutions discussed above.
For instance in the case where 7 # 7 is of multiplicity 2j for L and of
multiplicity 2k + 1 for M. But in any case and clearly by a finite number
of steps the equation X?L(¢t)+Y?M(t)+ Z2N(t) = 0 can be reduced such
that it satisfies the conditions of Proposition 2.1.

Theorem 2.1 Let ¢(t) be a real rational one parameter family of reqular
conics in P2. There exists a rational curve f(t) = (x,vy,2)(t), such that
f(t) is contained in the conic c(t) for all t.

This will be the key idea to construct real rational parameterizations of
real rational conic surfaces in P®. This problem was recently also solved

by [8].

3 Conic Surfaces

Some important geometric properties of conic surfaces shall be collected.
An introduction as well as many, mainly differential geometric details may
be found in [1] and [10].

Let © = (xg,...,23) be homogeneous coordinates of points and X =
(Xo, ..., X3) be homogeneous coordinates of planes with respect to an
arbitrary, but fixed coordinate system in real projective 3-space P*(R).
Let C' be a symmetric 4 x 4-matrix with coefficients c;;. A quadratic
equation ¢ : XTC'X = 0 defines a (not necessarily regular) quadric ¢ in P
as set of tangent planes. The quadric is called singular, if det(C) = 0. In
detail, if rk(C') = 3, ¢ is a conic as set of tangent planes (see Figure 1).
The case rk(C') = 2 characterizes a pair of bundles of planes and finally
rk(C) = 1 defines a double counted bundle of planes.

If ¢jr depend on a parameter ¢ and rk(C') = 3 in I, the equation

C(t) . Z Cjk(t)Xij = XTC(t)X = 0, (31)

3
J,k=0

defines a one parameter family of conics in space.
Let v(t) be the plane containing ¢(¢). The homogeneous coordinates
(7o, - - -, 73) (t) are solutions of the homogeneous linear system C(¢)X = 0.
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Figure 1. Conic as set of tangent planes

If 4(t) and 4(t) are linearly independent, The family ¢(¢) defines a
conic surface. Let g(t) = v(¢) N 4(t). Depending on the number 0,1 or 2
of real intersection points of ¢Ng, the corresponding conic surface is called
elliptic, parabolic or hyperbolic. This is a local property, such that also the
conic c itself shall be called elliptic, parabolic or hyperbolic, see Figure 2.

Since () satisfies v(t)TC(t)y(t) = 0 identically, the derivative with
respect to ¢ leads to the identity

Y (TC)y(t) = 0. (3-2)

This means that v is tangent to all regular dual quadrics of the pencil
Ac+ pé. The common tangent planes of quadrics in the pencil Ac+ ué are
tangent planes of ® in points of a generating conic ¢. These planes define
a developable surface D,(¢), which is in general rational of class 4. Later
we will deal with cases where D,(t) is a quadratic cone.

Let p(t) be the point of contact between (¢) and any arbitrary regular
dual quadric of the pencil Ac(t) + pé(t). Thus we obtain

p(t) = C)y(t) = =COF (). (3-3)

Additionally, p is also the pole of ¢ with respect to ¢, considered as a
planar curve in v, see Figure 2.

4 Rational Conic Surfaces

Let assume that c(t) is a real rational family of conics in space which means
that the coefficients c;i(t) of C(t) are polynomials in R[¢] and ¢(t) contains
real points for all real ¢. For practical calculations it is useful to introduce
a local coordinate system. For simplicity we omit the dependency of the
parameter t. Let ¢ be of elliptic or hyperbolic type. Let p be the pole of
g with respect to ¢ and choose ¢, r on g, such that ¢ and r are conjugate
with respect to ¢, see Figure 2. Using (p, ¢, ) as coordinate triangle and an
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FIGURE 2. Polar triangle of a conic of hyp/ell type

appropriate normalization of the vectors, the conics ¢(t) can be represented
in diagonal form

c(t) s co(t) X3 + e (H)XE + eo(t) X5 =0, (4.1)

where c¢g, ¢; and ¢y are polynomials in R[¢]. Note that with respect to each
polar triangle a conic ¢ can be represented in such a diagonal form. Invert-
ing the diagonal matrix C' = diag(co, ¢1, ¢2) leads to a point representation
of c.

4.1 Stereographic Projection

Let ¢ be a conic in P? and f a real point on ¢. Let a frame by chosen such
that ¢ as point set is represented by the equation

corg + 123 + cpy = 0,

where (¢, x1, z3) are homogeneous coordinates of points in the plane and
f = (fo, f1, f2). Projecting ¢ from one of its points, for instance f, to a
line g with f ¢ g, is a birational map. The inverse map o : g — ¢ is called
stereographic projection. With help of the map o one can derive rational
parametrizations of conics.

Let g : zo = 0 be parametrized by ¢(u) = (0,1, u), where u is an inho-
mogeneous projective parameter, thus u € RUoo. Let a(u) = Af + pq(u)
be the pencil of lines passing through f, where (A, 1) is a homogeneous
projective parameter on the line a(u). The intersection points of a(u) N ¢
are obtained for parameter values ;1 = 0 and

Ao = 1+ cu?, g = —=2(e1 f1 + o fau).
The point f corresponds to u = 0. This leads to the quadratic parametriza-
tion
c:z(u) = Xof + pogq(u). (4.2)
Since the principle of duality applies in P?, a conic as set of tangents can
be represented by an equation
c:coXg + X+ Xl =0,

where X; are homogeneous line coordinates. If y is a real tangent line, one
finds completely dual to the above construction a quadratic parametriza-
tion of ¢ as set of tangent lines.
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() p() c® =t

Z(t,u,v)
F(t,u)

&()

Ficure 3. Construction of a rational tangent plane

4.2 Rational Parametrizations

Let ¢(t) be a real rational one parameter family of regular conics in P?.
Let ¢(t) be of elliptic or hyperbolic type. Representing c¢(t) with respect
to an appropriate coordinate system we can assume that ¢(¢) is given by
(4.1).

In the first step one applies Theorem 2.1 to compute polynomials v, 11
and y, which satisfy (4.1) identically. Interpreting y; as homogeneous line
coordinates in v(t), the vector y(t) = (vo, y1,y2)(t) defines a real rational
tangent line of ¢(¢). Applying the dual stereographic projection to ¢(¢)
leads to a dual rational parametrization of ¢(¢) by functions z(t, u).

The tangent line z(¢, u) is carrier of a pencil of tangent planes Z (¢, u, v)
of the conic ¢(t). The tangent plane F(t,u) C Z(t,u,v) of the conic
surface @ is also tangent to the quadric ¢. There are two tangent planes
of ¢, passing through z(¢,u). But since one is ¥(t), the remaining F'(¢, u)
can be computed linearly, see Figure 3. These tangent planes F'(¢,u) are
a dual parametrization of ®. For fixed ¢, the planes F'(tq,u) are tangent
along the conic ¢(ty) and therefore parametrize the developable D,(tp).
For a fixed ug the planes F(t,u) are tangent to D.(t) for all ¢.

It remains to discuss the case where ¢(¢) is parabolic for (almost) all
t in R. Since g(t) is already a real rational tangent line one immediately
applies a stereographic projection to obtain a dual parametrization z(t, u)
of the conic ¢(t). A real rational dual parametrization F'(f,u) of @ is
constructed analogously to the elliptic and hyperbolic case.

Proposition 4.1 A conic surface ® defined by a real rational one param-
eter family of reqular conics c(t) possesses a real rational dual parametriza-
tion.

A real rational parametrization of ® as point set can be obtained in the
following way. We assume that ¢(t) is given by (4.1) but convert this to a
point representation of ¢(t), considered as a planar curve in y(t). Applying
Theorem 2.1 leads to a real rational curve f(¢) which satisfies f(t) €
c(t) for all t. By a stereographic projection one computes a real rational
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parametrization z(t,u) of ®. Each fixed conic ¢(tg) is parametrized by
2(to, u). On the other hand, for fixed uq one obtains a curve with z (¢, ug) €
c(t) for all t.

If ¢(t) defines a parabolic conic surface ® the construction simplifies
since a rational curve f(¢) = p(t) is already given.

Proposition 4.2 A conic surface ® defined by a real rational one param-
eter family of reqular conics c(t) possesses a real rational parametrization.

5 Envelopes of Quadratic Cones

Dual to one parameter families of conics in P? are one parameter families
of quadratic cones. Therefore, dual to conic surfaces are envelopes of
quadratic cones. We use the same notation as before and will outline
some basic properties. Let (zg,...,x3) be coordinate vectors of points x
in P*. A quadratic equation ¢ : z7Cxz = 0 defines a quadratic cone, if
the matrix C' possesses rank 3. Rank 2 defines a pair of planes, rank 1 a
double plane.

If the coefficients ¢;;, of C' are functions of a parameter ¢, a one param-
eter family of quadratic cones is defined by

c(t): Y ez, =3"C(t)x = 0. (5.1)

j’k:(]

Let v(t) be the vertex of ¢(¢). It is the solution of the homogeneous linear
system C'x = 0. If v and ¢ are linearly independent, the cones ¢(¢) envelope
a surface . The vertices v of the cones ¢ form a curve with tangent lines
g = vV v. Depending on the number 0,1 or 2 of real tangent planes
of ¢, which pass through ¢, the corresponding envelopes ® and also the
quadratic cones itself are called elliptic, parabolic or hyperbolic. Note that
this is a local property of a cone ¢ and its derivative quadric ¢.
We obtain the analogous identity

v(t)TC(t)v(t) =0 (5.2)

as in the case of conic surfaces, which says that v(¢) is a common point of
all quadrics of the pencil Ac(t) + pé(t). Further, ¢(t) denotes the common
tangent plane of all regular quadrics of the pencil Ac(t) + pé(t) in the
point v. A vector representation of ¢(t) is obtained by ¢ = Cv = —C'.
Additionally, ¢ is the polar plane to g with respect to c.
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FIGURE 4. Local frame of a one parameter family of ell. /hyp.
quadratic cones

5.1 Rational Envelopes of Quadratic Cones

We call ¢(t) C P? a real rational one parameter family of quadratic cones if
a representation exists such that the defining equation possesses rational
coefficients and ¢(¢) — v(t) contains real points.

As in case of conic surfaces it is again useful to represent ¢(¢) in a local
coordinate system. Let ¢(t) be of elliptic or hyperbolic type, that means
g(t) is not a generator line of ¢(t). Let v(t) be the origin of the local frame.
Further let ¢(t), 1(t) and p(t) be pairwise conjugate planes with respect
to c(t). If the coordinate system shall be connected in an invariant way
with ¢(t), one will choose ¢(t) to be the polar plane to g(¢) with respect
to ¢. Then, ¢(t) is represented by the diagonal form

c(t) : er(t)x] + ea(t)ws + es(t)as = 0. (5.3

)
Note that with respect to each three pairwise conjugate planes and v(t)
as origin, we obtain a diagonal form of ¢(¢). One can interpret (xq, o, T3)
as homogeneous projective coordinate vectors of lines in the bundle v(t),
or of points in plane w : Ty = 0.

5.2 Rational Parametrizations

Completely dual to rational conic surfaces one computes real rational
parametrizations of envelopes of real rational one parameter families of
quadratic cones.

In case of elliptic or hyperbolic type one applies Theorem 2.1 to com-
pute polynomials (y1, y2, y3)(t) which satisfy (5.3) identically. On the one
hand these polynomials define a real rational generating line y(t) of each
quadratic cone ¢(t). On the other hand y(¢) defines a real rational point
on the conic ¢(t) Nw. In the parabolic case a real rational generating line

is g(t).
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Interpreting y(¢) as real rational generator, the polarity with respect
to ¢(t) maps y(t) to a real rational tangent plane Y (¢).

A real rational parametrization Z(t, u) of ® is then computed by apply-
ing a dual stereographic projection to the cones ¢(t). The parametrization
Z(t,u) represents ® as envelope of its tangent planes.

To compute a point representation of ® one can proceed as follows. Let
y(t) be a rational generator line of ¢(t) as above. Each cone ¢(t) is tangent
to @ in points of the characteristic curve d.(t). Since the generator y(t)
intersects ¢(t) in the known vertex v(t¢), the further intersection point
f(t) is rational in t. So, f(t) is a rational curve on ¢ and for each ¢ the
curve point f(¢) lies on d.(t). To obtain the entire parametrization one
will first apply a stereographic projection to the cone ¢(t), based on the
rational generator y(¢). The resulting parametrization shall be denoted
by z(t,u) and represents for fixed ¢y the generators of a cone ¢(tg). Next,
one intersects these generators z(t,u) with the quadrics ¢é(t) for each ¢.
Then, Z(t,u) = z(t,u) N é(t) is already a real rational parametrization
of ® as point set. For a fixed ¢y, Z(to,u) parametrizes the characteristic
curve d.(t9), and for a fixed uy we obtain a rational curve Z(t,uq) = f(t),
such that for all ¢ the point f(t) € d,.(¢).

Proposition 5.1 The envelope @ of a real rational one parameter family
of quadratic cones c(t) possesses rational parametrizations.

6 Applications

The families of conic surfaces and envelopes of quadratic cones is quite
large. Certain classes, as quadrics and Dupin cyclides are also used in
surface modeling. We give some more general examples in Euclidean 3—
space.

6.1 Rational Canal Surfaces in Euclidean 3—Space

Points y in Euclidean 3—space are represented by their coordinate vectors
(y1, Y2, y3) with respect to a fixed, but arbitrary coordinate system. Let
a canal surface ® be defined as envelope of a one parameter family of
spheres S(t). A family of spheres shall be called rational, if the defining
equation of S(t) possesses only rational coefficients.

The envelope ® of a rational one parameter set of spheres is defined
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FiGURE 5. Local properties of a canal surface

by the equations

S(t) : le(yj—’mj(t))Q—T(t)2 =0, S(1) : le(yj—mj(t))mj(t)ﬂ“(t)?'“(t) =0,

(6.1)
where m;(t) are coordinates of the rational center curve m(t) of S(¢). The
radius function r(¢) of the spheres is not necessarily rational, but a square
root of a rational function.

The generating conics of ® are the characteristic circles ¢ = SN S.
The circles contain real points, if and only if m? — 72 > 0. Equality holds,
if the plane S is tangent to S and ¢ degenerates to a point. Further, ® is
enveloped by a one parameter family of cones of revolution D(t), which
are tangent to ® in points of c¢. The axis of D is the tangent line of the
center curve m(t).

Let AS(t)+S(t) be a pencil of quadrics, where S(t) is considered to be
a double plane. The cone of revolution D(t) is a further singular quadric,
contained in this pencil. Since det(\S + 1S) possesses a 3-fold zero at \,
it follows that D(t) is given by an equation with rational coefficients.

Proposition 6.1 The real envelope ® of a rational one parameter family
of spheres S(t) can be generated as envelope of a real rational one pa-
rameter family of cones of revolution D(t), in the sense of Proposition
5.1.

We mention that the envelope of the one parameter family of cones of rev-
olution D(t) also contains two, not necessarily real developable surfaces,
which are not considered in the above Theorem. From Proposition 5.1 it
is clear that ® is a rational surface.

Special rational canal surfaces are those, whose radius function is ra-
tional and not just a square root of a rational function. Those surfaces
possess additionally rational unit normals. A detailed description of algo-
rithms and low degree representations is given in [5].



M. Peternell 13

5
aQS=
NEFEEA
\\EH.II 772
= ’I'.z\
D S
A

A\

i

i

i
i
il

I

’
i

S ==

\

)
Il

\\\‘\

Z

£
y === N
y ——— = N
= SO
) S o SN
OIS SN KON
ISR SO
NN %
NS ———— 5
\N\\SSESEESSeeee—
NSSSSSSSSSEsse==e

i
10
N
0

/
i
i
/,{’//
il
Il
i
W

Ficure 7. Ellipsoid of revolution and outside offset

6.2 Rational Surfaces with Rational Offsets

The results about conic surfaces apply to parametrizing certain rational
surfaces with rational offsets. It is proofed in [6] that the envelope of a
rational one parameter family of cones of revolution D(¢) with rational
radius function is a rational surface with rational offset surfaces. Such a
cone of revolution D(¢) is given by an equation with rational coefficients,
but additionally D(t) possesses an inscribed sphere S(¢) with rational
center and rational radius function. Further it is proofed there that all
those envelopes possess rational unit normals. Specializing the family D(¢)
one obtains the following results, see [4] and [6].

Proposition 6.2 All reqular quadrics in Fuclidean 3—space possess ratio-
nal offsets.

One Proof is based on the fact that a quadric is the envelope of a ra-
tional one parameter family of cones of revolution. The offset surfaces
can be represented by explicit formulae. An ellipsoid of revolution can
be parametrized as rational tensor product surface of degrees 4 and 2; its
offset surface possesses degrees 8 and 2. An example is shown in Figure
7. Another proof of Proposition 6.2 can be found in [3].

A further example are ruled surfaces. Those are envelopes of a one
parameter family of lines. Viewing the generating lines as cylinders of
revolution with zero radius, an offset of a ruled surface at distance d
is enveloped by cylinders of revolution of radius d. For rational ruled
surfaces, the family of cylinders is rational and possesses a rational radius
function. Another proof of the following result can be found in [7].
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Proposition 6.3 All offset surfaces of rational non developable ruled sur-
faces are rational.

Remark: As outlined in [4] most of the results described here can be
generalized to projective or Euclidean n—space.

This research was partly supported by the Austrian Science
Foundation through project P09790.
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