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Abstract

Given a closed plane cunet) = (cy,¢p)(t) € R? and associated
function valueg(t) we present a geometric idea and an algorithm to
solve the equatiofiJf|| = a = const with respect to the boundary
valuesg(t) along the boundarg(t). This is equivalent to finding

a developable surfac® of constant slopa = tana through the
spatial curveC determined by(cy, c2,9)(t). The presented method
constructs level curves of the surfdde We put some emphasis on
the treatment of the singularities of the solution which Rieself
intersections.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and abje
representations; J.6 [Computer—Aided Engineering]: Qaetp
Aided Design—(CAD)

Keywords: developable surface, distance function, eikonal equa-
tion, level curves.

1 Introduction

This article presents geometric ideas to solve the eikomadtion
|IOf|| = a= const for given boundary data. These data consist of
a closed plane curve= (c1,¢)(t) € R? and function valueg(t)
alongc.

The eikonal equation is a well studied subject in numerinalysis.
The fast marching[Sethian 1999] andast sweepindOsher and
Fedkiw 2003]methodsare probably the most famous techniques
in this context. Often the eikonal equatidflf| = a = const is
solved for given boundary data consisting of an interfa¢bérform

of a curvec € R? andg = 0 alongc. The construction of a solution
is equivalent to evaluate the distance function of the carwehich

is in fact a planar problem.

The solution to the eikonal equation is known in advance, orem
precisely, the solutiorf (x,y) determines a developable surfe@e

of constant slop&, whereD is represented by the graph surface
(x,y, f(x,y)). Since geometric properties of developable surfaces
of constant slope are quite well understood, we presentaitpee
motivated by the constructive geometric properties of ehgsr-
faces. We will discuss the special case of boundary vajue<
along the boundary curve, but this paper focuses on the more
general case where these valggy are not constant. Thuf is

a surface of constant slope through the spatial c@hgiven by
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(c1,¢2,0)(t). The functiony(t) = g(t)/||c(t)|| along the boundary
curvec is the slope of the spatial cur i.e. the slope of its tan-
gent lines. Real solutions exist exactlyy{t)| < a holds for allt.
Particular emphasis will be laid on the treatment of the diaudties
of f which are represented by the self intersectiond .of

The proposed method computes level curves of the develogabl
faceD at prescribed heights. Each surface stripafhich lies be-
tween two adjacent level curves is represented as a triangdsh.
This idea is a generalization of a scan-line algorithm areks s
moving horizontal plane instead of the line. The horizomheakl
curves will be trimmed. This leads to a smoothing of the siaigu
ties of the surfac®, and finally we study methods to improve the
shape oD near these self intersections.

This research has been motivated by a project with a civil-eng
neering company for the planning of artificial terrain ofdeaand
excavations. The primary problem has been the followingn-Co
sider a digital terrain model and a curve or a polyghnwe want

to construct a developable surfdaef constant slope (with respect
to the horizontal planes) which passes through the giveveddr
Thereby,C is considered as the boundary of a road or of an exca-
vation. The surfac® has to be represented by a triangulation and
the intersection oD and the given terrain has to be computed. If
the slopey of C is small, like for the boundary of a road, one can
use a modification or correction of the method for horizoirtput
curvesc (evaluation of the distance function).

The paper is organized as follows: In section 2 we briefly lfeca
some geometric properties of developable surfaces. ®sciiand

4 describe the practical implementation issues for hota&oand
general input curves, respectively. Finally, section Ssledth the
handling of global self intersections.

2 Some mathematical background

The discussion of geometric properties of developableased of
constant slope distinguishes between horizontal boundaryes
(g =0) and general boundary curv@swith g(t) # 0. Throughout
the paper we assume th@is slope satisfiesy(t)| < awith a> 0.

2.1 Plane input curve

Let C be a given horizontal curve, lying in a plaie z= 7y, and

let D be the developable surface of constant slapetana passing
throughC. The slope oD’s tangent planes equadsand soD can

be generated as the envelope of planes with shqgeessing through
the tangent lines dE. The surface is the graph of the function

1)

where x = (x,y,0) is an arbitrary query point in thay-plane,
p = (p1, P2,20) € Cis the closest point teanda with0 < a < 11/2
is the angle betweeD'’s tangent planes and thg-plane. The pro-
jection ofp € C ontoz= 0 is denoted by’ = (py, p2,0) € C'. The
function f (x) satisfies

f(x) = 2o £ dist(x,p’) tana,

|Of|| = tana. (2)



For a = m/4, (2) is calledeikonal equation This can always be
achieved by an appropriate scaling of the function valuezaBse
of the occurring singularitied, is a solution in the weak sense.

The surfaceD consists of two sheet®~,D™ which are given by
the different signs in (1). Concerning the applications,aneonly
interested in one of these two solutions and denote Dby

Fig. 1 shows a strip of a developable surface of constanteslop
through a closed cune.

Figure 1: Left: Developable surface through an elli@eeval-
uation of the distance function &' at x. Right: Ellipse with
untrimmed interior offset curves.

The geometric properties of developable surfaces are wellk,
and can be found in many textbooks, see for instance [Pottman
and Wallner 2001]. We list some important facts:

e The developable surfade of constant slope throughC is
the envelope of cones of revolutigd with slopea, whose
vertices move alon@, see Fig. 2.

e The surfaceD is the envelope of a one-parameter family of
planes which are tangentBpandG along the generating lines
of D. Thus,D is also generated by these lines.

Figure 2: Top view and axonometric view of the developable su
face through a horizontal curve, tangent cone and tangenepl
along two generators.

e The vertical projections of the contour linesdfonto thexy-
plane are offset curves of the projection of the input ci@ie
The singularities of the untrimmed offset curves are latate
the evoluteC* of C'.

e The evoluteC* is the vertical projection of the singular curve
Sof D onto thexy-plane.

e The medial axisv of C' is the orthogonal projection of those
parts of the self intersectio& of the surfaceD onto thexy-
plane which are visible from above.

e The normals of the curv&’ are the vertical projections of the
generating lines of the surfale These normals envelope the
projectionS of the singular curvé of D.

2.2 Spatial input curve

Let C be a spatial curve, parametrized (zy,c,,g)(t) and letD be
a developable surface of constant sl@pthroughC. In order to

obtain real solutions foD, it has to be required thay| < a, where
y=29(t)/||c(t)|| denoteC’s slope and(t) = (c1,¢2)(t).

The surfaceD is represented as gragR,y, f) of a functionf =
f(x,y) which solves the eikonal equatigiilf|| = a and satisfies
the boundary conditiorf (cy,c,) = g for all points(cy,cy) on the
projectionC’ of C.

Figure 3: Developable surface through a space cGrwéth level
curvesK ™, K~ of the two sheet®™, D~. Tangent cone and tangent
planes along two generators.

Fig. 3 shows a top view and an axonometric view of the two sheet
D", D~ of a developable surface through a general space €irve
The level curves in the plarte are denoted biK+, K—. We observe
the following properties ob:

e The developable surfade of constant slopa throughC is
the envelope of cones of revolutidd with slopea, whose
vertices move og.

e The surfaceD is the envelope of a one-parameter family of
planes of slopa which pass througlt’s tangent lines. These
planes are tangent @ along its generating lines, and are tan-
gent to the cone§, too. Thus,D contains a one parameter
family of lines with constant tangent planes along them.

e The generating lines are tangent to the singular c&oED,
their orthogonal projections are tangent to the projec8on
see Fig. 4.

e The generating lines are orthogonal trajectorie®f level
curves.

Fig. 4 shows a top view and an axonometric view of a devel-
opable surface of constant slope passing through a (naneimbal)
parabolaC.
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Figure 4: Developable surfaéethrough a space cun@ The sin-
gular curveS (curve of regression) is displayed in dotted linestyle.
Generating lines and level curves are shown.

3 The practical implementation for hori-
zontal input curves

Now we go into more detail concerning the practical impletaen
tion. Given a horizontal input cun, lying in the planeE : z= z,



we want to compute the developable surf&ef constant slope
a = tana passing througlc. We assume tha is given by a list
of (ordered) data pointp; = (Xi,Vi,20), i = 1,...,M. This sam-
pling has to be dense enough to represent all importantrissataf

the curve. For convenience we describe the constructiosirfgole

closed input curves only.

The algorithm consists of three main steps:

e Define a domaitJ for the evaluation of the functiofi which
determines the surfadz.

¢ Define query pointg = (x,y) to evaluate the distance function
of the curveC’ and compute .

e RepresenD by a triangular mesh with point,y, f (x,y)) as
vertices. The boundary curves Of are constraints for the
triangulation.

3.1 Details of the implementation

Domain U: The shape and the size of the dom&inare mainly
determined by the application. If no requirements are made,
U can be bounded bg’ and a trimmed offset cun@, of C’
for a suitably chosen distance

Query points: The query pointx € U are chosen as points on a
regular grid. The grid size shall not exceed the average seg-
ment length ofC. We propose to start with a dense sampling
of the input curveC, since the number of input data points is
much smaller than the number of grid pointfor evaluation
of the distance function. By refining the grid it is possilie t
improve the accuracy of the representation of the surface

Evaluation of the distancefunction: Assume we have choséh
query point € U, we evaluate the distance distp’) where
p’ is the closest point te onC’. The functionf which defines
D, evaluates to
f(x) = 2o — dist(x,p’) tana. (3)
The closest poinp’ is computed asearest neighboto the
query pointx. For this, one may use the implementation of
D. Mount [Arya et al. 1998].

Constrained triangulation: The surface is represented by a con-
strained triangular networkp which shall contain also the
list of segments of the boundary cun@sandQ as edges of
the triangulation. HereQ is the intersection of the vertical
cylinder throughC}; with D. Thez-values ofQ are computed
by 7zp — dtana. Our test implementation uses the program
Triangle by J.R. Shewchuk, see [Shewchuk 1996; Shewchuk
2002].
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Figure 5: Left: Triangular representation of the develdpalrface
through a horizontal curv€. Rigth: ProjectionC’ and trimmed
offset curve<C); for different distances.

Fig. 5 shows an axonometric view of the developable suriaoé
constant slopa = 1 through the curv€. The domain of evaluation

U is bounded by the top vie® of the input curveC and a trimmed
offsetC}; at a certain distance. The right hand side figure shows
different trimmed offset curve§) of the top viewC’ of the input
curveC.

What we did not discuss so far is the trimming operation ofedff
curves. An approach which is based on triangulations andtwhi
works well in our framework will be discussed in the next gatt

3.2 Trimming of offset curves

We are given a discretized input cur@by a list of pointsp;, i =
1,...,M which form a simple polygon. The trimmed offset curve
C, at signed distance is to be computed and has to be free of self
intersections.

To trim the offset curves we apply a triangulation based aggin.
For all segmentg;p;,1, withi =1,...,M we compute the paral-
lel segment;qi;1 at oriented distancd with g; = p; +dn; and

n; as unit normal of thé-th segment. The end points of the trans-
lated segments do not conincide in general but these segmwéht
intersect or there will be gaps between them, see Fig. 6.

Instead of translating segments one can move the vegijdespo-
sitions g; = p; + dn;, wheren; is the average normal of adjacent
segments op;. Trimming of the offsets is necessary in both cases.

Figure 6: Parallel segments in convex and non-convex regibn
the input curveC’.

The end points of the translated segments 1 are collected to
form a curveCqy which usually has self intersections. To trim these
self intersections, we perform a constrained triangutatidth the
data pointj,qg; as input points and the segments of these curves
as constraint segments of the triangulation. The extevantary

of the triangular net is then a sufficiently good represématf the
trimmed offset curveC); of C’, see right hand side of Fig. 5. The
intersection points of crossing segmeaqtq;1 are computed and
inserted as additional data points.

The advantages of this method are its good performance ariddh
that it works for all input curves and offset distances. ©hsly,
the point density o€ plays an important role and we want to note
that the sampling in highly curved regions ©f should be dense
enough, to represent all features of the curve. In order toaniee

a similar point density on the trimmed offs€}; can be resampled.



4 The practical implementation for spatial
input curves

We have already noted that the developable surfacé constant
slopea throughC will be represented by a triangular mesh based
on the level curves dD. The input curveC is given by a list of data
pointsp; € R%. The method we propose is a generalization of a
scan-line algorithm. In 2D, g-parallel line is moved ix-direction
and certain events, like when the moving line touches theabbgre
considered. The type of events depends on the type of apiplica

The basic idea is the following: We consider a horizontahpla

H : z= c and move this plane from above downwards, in several
steps. These planes carry the level curveB ofVe start at a level,
whereH is entirely above the input cun@, passing by the levels
whereH intersect<C, and let it move downwards to a level where
H is entirely belowC. If H is completely above the cun@ noth-

ing notable happens. H intersect<C, thenH also intersects the
developable surfade andK = DNH is a level curve oD. All the
level curvesK project to top viewsk’ which are offset curves of
each other.

Figure 7: Top view and axonometric view of the trimmed level
curves of a developable surface.

Now we consideD as the envelope of its generating lirleslt is
quite obvious that we can repla€dy one of the level curves and

the envelopé® will not change. Thus, we can also replace parts of
C by appropriate horizontal curve segme@tsC D being defined
later. In order to represent those parts and self intesecnf D
which are visible from above, the level curves will be trinrdnsee
Fig. 7.

The basic steps of the algorithm are the following. At first we
choosen+ 1 levelszy,z,...,zn, Wherez, > Zmax. LetF =C be
the input curve. Within a loop over attlevels starting frong, 1
down tozy, we proceed as follows:

1. Determine those part&; of F which lie above the current
levelH :z= 7.

2. Pass the developable surface patddeghrough the curve
segmentsA; and compute the intersectid®; = DjNH of
the patchDj and the current levedl, see Fig. 8.

3. Trim the horizontal curve segmerts.

4. Replace the curve segmertsin F by the horizontal curve
segments5; and store this collection as curi. Define this
as new input curvé = E;.

5. Choose the nextlevel and restart at 1.

This construction yields a list of curvé& which are defined during
the above loop. Each cung consists of horizontal components at
the levelz= z and possibly of components lying below the current

level. The components below the level are part of the orlgimaut
curveC.

Finally a constrained triangulation is performed w@fandE;, i =
1,...,n—1 as input. The data points as well as the segmen® of
andE; are considered, in order to represBrg level curves exactly.

4.1 Details for general input curves
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Figure 8: Componenta; of C above the current level and corre-
sponding horizontal componerigg. Top: top views. Bottom: front
view and axonometric view.

Determine parts of C above H: We compute those curve parts of
C which are above the currerdevelH; : z= 7. The intersec-
tion pointsC N H; are computed and are inserted into the list
of data pointg; representing. Thus, the curve is split into
a list of curve component8y, ..., Ay, Bs,...,By. We store
these curve components in the right ordering, but with flags
telling which component is above the curresdevel.

Developable surfacethrough acurve: For each curve compo-
nentA; the generating lines of the developable surface patch
D; passing througlA;j are considered. The intersection points
of these lines and the current pladedetermine the curve arc
Gj =DjnH. Since the end points of the componeAjsare
contained irH, the arcsAj andG; agree in their end points.

Trimming of the horizontal curve Gj: G;j is stored as a list of
segments, similar to the offset curve construction. Thege s
ments overlap in non convex regions of the input cubye
and thus have to be trimmed. The applied procedure is similar
to the one which is used for trimming offset curves.

Replace Aj by the horizontal curve Gj: We substitute the com-
ponentsA; by the trimmed curve componen@; and store
the collection as new input curve for the next step in the con-
struction. Fig. 8 illustrates this procedure showing topwi
and front views of the curve components.

Constrained triangulation: A constrained triangulation is per-
formed with data points and segments of the input c@ve
and level curve&; as input.

Fig. 9 shows the top views @ and the level curve&y,...,Kq
on the left hand side and the axonometric view of the triazigurh
representind on the right hand side. Most of the triangles shown
in Fig. 9 have the correct slope, but close to the self inttice the
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Figure 10: Triangles of wrong slope of Fig. 9.
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triangles are not correct. In Fig. 10 all triangles are sHadkose
slope differs from the required slopeby more than 1.

We describe some possibilities to improve the represemtati the Figure 12: Left: Top view of selected grid points. Right: Iroped
developable surface. The first and obvious one is to incrdese  representation of selected region.

number of level curves which are computed in the constroctio
We want to note that the level curve computation is costly iand
is always desirable to minimize the number of level curvegctvh
have to be computed. Results on increasing the number df leve
curves and the limitations of the currently implementedimer are

e Find nearly horizontal triangles and mark them. Determine
connected components of the marked triangles at haight

displayed in Fig. 11. Since the computed level curves ateict=] e For each connected component we use a fine grid and pick
to possess one component only, relevant parts of them emaéd. those grid points which are contained in the component.
p p Y, p gria p p

These parts are denoted ByandY in Fig. 11. Thus even by in- ) . . .

creasing the number of level curves, the developable sidan- » Compute new function values for the chosen grid points. This

tains horizontal triangles in these regiodsdndY). To solve this is similar to the case of horizontal input curves. Since each

problem and to model these features, the method has to bedexte connected component of marked triangles is at constaritheig

in the way that level curves can consist of more than one cempo Z, nearly all segments of its boundary are contained in the

nent. level curvesK; of D. Thus, the new function values are
computed as shortest distances from segments of these level

Alternative methods which increase the number of evalogi@nts curves, see Fig. 12,

:giﬁltlayn%;\t,v: é(é?l ;rny to compute the self intersection, arsatissed Another method to improve the behavior of the surface closhe

singularities tries to model the self intersections. Tdfqren this
one can proceed as follows:

e Find triangles with wrong slope and mark them. Determine

5 Handling self intersections connected components of the marked triangles.

e For each connected componéttwe determine its boundary
Let T be a triangulation of a developable surface as shown in b;. If the shape of componeR is curve-like, we compute its
Fig. 10. We propose a method to improve the representatitimeof medial axism. This medial axis can have different branches,
surface near self intersections. For that the resolutiorcigased in depending on whethd®; is a simple curve-like shape or not.
regions containing nearly horizontal triangles. The cphegorks The boundanyb; of R consists of parts of level curves and

as follows: parts of the given input cune.



e Assume thatm is a simple curve and consists only of one Acknowledgementd:his work has been carried out partially within
branch, see Fig. 13. Now we consider vertical planes per- the Kplus competence centddvanced Computer Vision

pendicular to the medial axisy and denote them as profile-
planes. Each profile-plane intersects the bountiaof R; in
at least two pointd,,b,. Now we consider lineg, |, with

slopea (same slope as the surface) through these boundary
pointsb1,b,. As these lines lie close to the developable sur-

faceD, their intersection poing lies close to the self intersec-
tion of D.

e Build a polygonS from these intersection pointssand use
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Conclusion
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