
A geometric idea to solve the eikonal equation

Martin Peternell∗

Institute of Discrete Mathematics and Geometry
Vienna University of Technology

Tibor Steiner†

Institute of Discrete Mathematics and Geometry
Vienna University of Technology

Abstract

Given a closed plane curvec(t) = (c1,c2)(t) ∈ R
2 and associated

function valuesg(t) we present a geometric idea and an algorithm to
solve the equation‖∇ f ‖ = a = const. with respect to the boundary
valuesg(t) along the boundaryc(t). This is equivalent to finding
a developable surfaceD of constant slopea = tanα through the
spatial curveC determined by(c1,c2,g)(t). The presented method
constructs level curves of the surfaceD. We put some emphasis on
the treatment of the singularities of the solution which areD’s self
intersections.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations; J.6 [Computer–Aided Engineering]: Computer–
Aided Design—(CAD)

Keywords: developable surface, distance function, eikonal equa-
tion, level curves.

1 Introduction

This article presents geometric ideas to solve the eikonal equation
‖∇ f ‖ = a = const. for given boundary data. These data consist of
a closed plane curvec = (c1,c2)(t) ∈ R

2 and function valuesg(t)
alongc.

The eikonal equation is a well studied subject in numerical analysis.
The fast marching[Sethian 1999] andfast sweeping[Osher and
Fedkiw 2003]methodsare probably the most famous techniques
in this context. Often the eikonal equation‖∇ f ‖ = a = const. is
solved for given boundary data consisting of an interface inthe form
of a curvec ∈ R

2 andg = 0 alongc. The construction of a solution
is equivalent to evaluate the distance function of the curvec, which
is in fact a planar problem.

The solution to the eikonal equation is known in advance, or more
precisely, the solutionf (x,y) determines a developable surfaceD
of constant slopea, whereD is represented by the graph surface
(x,y, f (x,y)). Since geometric properties of developable surfaces
of constant slope are quite well understood, we present a technique
motivated by the constructive geometric properties of these sur-
faces. We will discuss the special case of boundary valuesg = 0
along the boundary curvec, but this paper focuses on the more
general case where these valuesg(t) are not constant. Thus,D is
a surface of constant slope through the spatial curveC given by

∗e-mail: martin@geometrie.tuwien.ac.at
†e-mail: tibor@geometrie.tuwien.ac.at

(c1,c2,g)(t). The functionγ(t) = ġ(t)/‖ċ(t)‖ along the boundary
curvec is the slope of the spatial curveC, i.e. the slope of its tan-
gent lines. Real solutions exist exactly if|γ(t)| ≤ a holds for allt.
Particular emphasis will be laid on the treatment of the singularities
of f which are represented by the self intersections ofD.

The proposed method computes level curves of the developable sur-
faceD at prescribed heights. Each surface strip ofD which lies be-
tween two adjacent level curves is represented as a triangular mesh.
This idea is a generalization of a scan-line algorithm and uses a
moving horizontal plane instead of the line. The horizontallevel
curves will be trimmed. This leads to a smoothing of the singulari-
ties of the surfaceD, and finally we study methods to improve the
shape ofD near these self intersections.

This research has been motivated by a project with a civil engi-
neering company for the planning of artificial terrain of roads and
excavations. The primary problem has been the following: Con-
sider a digital terrain model and a curve or a polygonC. We want
to construct a developable surfaceD of constant slope (with respect
to the horizontal planes) which passes through the given curve C.
Thereby,C is considered as the boundary of a road or of an exca-
vation. The surfaceD has to be represented by a triangulation and
the intersection ofD and the given terrain has to be computed. If
the slopeγ of C is small, like for the boundary of a road, one can
use a modification or correction of the method for horizontalinput
curvesc (evaluation of the distance function).

The paper is organized as follows: In section 2 we briefly recall
some geometric properties of developable surfaces. Sections 3 and
4 describe the practical implementation issues for horizontal and
general input curves, respectively. Finally, section 5 deals with the
handling of global self intersections.

2 Some mathematical background

The discussion of geometric properties of developable surfaces of
constant slope distinguishes between horizontal boundarycurves
(g = 0) and general boundary curvesC with g(t) 6= 0. Throughout
the paper we assume thatC’s slope satisfies|γ(t)| ≤ a with a > 0.

2.1 Plane input curve

Let C be a given horizontal curve, lying in a planeE : z= z0, and
let D be the developable surface of constant slopea= tanα passing
throughC. The slope ofD’s tangent planes equalsa and soD can
be generated as the envelope of planes with slopea passing through
the tangent lines ofC. The surfaceD is the graph of the function

f (x) = z0±dist(x,p′) tanα, (1)

where x = (x,y,0) is an arbitrary query point in thexy-plane,
p = (p1, p2,z0)∈C is the closest point tox andα with 0< α < π/2
is the angle betweenD’s tangent planes and thexy-plane. The pro-
jection ofp ∈C ontoz= 0 is denoted byp′ = (p1, p2,0) ∈C′. The
function f (x) satisfies

‖∇ f ‖ = tanα. (2)

For α = π/4, (2) is calledeikonal equation. This can always be
achieved by an appropriate scaling of the function values. Because
of the occurring singularities,f is a solution in the weak sense.

The surfaceD consists of two sheetsD−,D+ which are given by
the different signs in (1). Concerning the applications, weare only
interested in one of these two solutions and denote it byD.

Fig. 1 shows a strip of a developable surface of constant slope
through a closed curveC.

C p

p′
x

D

C′ α

C

Figure 1: Left: Developable surface through an ellipseC, eval-
uation of the distance function ofC′ at x. Right: Ellipse with
untrimmed interior offset curves.

The geometric properties of developable surfaces are well known,
and can be found in many textbooks, see for instance [Pottmann
and Wallner 2001]. We list some important facts:

• The developable surfaceD of constant slopea throughC is
the envelope of cones of revolutionG with slopea, whose
vertices move alongC, see Fig. 2.

• The surfaceD is the envelope of a one-parameter family of
planes which are tangent toD andGalong the generating lines
of D. Thus,D is also generated by these lines.

C

K− D−

K+

D+

C

K−
D− K+

D+

Figure 2: Top view and axonometric view of the developable sur-
face through a horizontal curve, tangent cone and tangent planes
along two generators.

• The vertical projections of the contour lines ofD onto thexy-
plane are offset curves of the projection of the input curveC′.
The singularities of the untrimmed offset curves are located at
the evoluteC∗ of C′.

• The evoluteC∗ is the vertical projection of the singular curve
Sof D onto thexy-plane.

• The medial axisM of C′ is the orthogonal projection of those
parts of the self intersectionS of the surfaceD onto thexy-
plane which are visible from above.

• The normals of the curveC′ are the vertical projections of the
generating lines of the surfaceD. These normals envelope the
projectionS′ of the singular curveSof D.

2.2 Spatial input curve

Let C be a spatial curve, parametrized by(c1,c2,g)(t) and letD be
a developable surface of constant slopea throughC. In order to

obtain real solutions forD, it has to be required that|γ | ≤ a, where
γ = ġ(t)/‖ċ(t)‖ denotesC’s slope andc(t) = (c1,c2)(t).

The surfaceD is represented as graph(x,y, f) of a function f =
f (x,y) which solves the eikonal equation‖∇ f ‖ = a and satisfies
the boundary conditionf (c1,c2) = g for all points(c1,c2) on the
projectionC′ of C.

CK− D−

K+

D+

C

K−

D−
K+

D+

Figure 3: Developable surface through a space curveC with level
curvesK+, K− of the two sheetsD+, D−. Tangent cone and tangent
planes along two generators.

Fig. 3 shows a top view and an axonometric view of the two sheets
D+, D− of a developable surface through a general space curveC.
The level curves in the planeH are denoted byK+, K−. We observe
the following properties ofD:

• The developable surfaceD of constant slopea throughC is
the envelope of cones of revolutionG with slopea, whose
vertices move onC.

• The surfaceD is the envelope of a one-parameter family of
planes of slopea which pass throughC’s tangent lines. These
planes are tangent toD along its generating lines, and are tan-
gent to the conesG, too. Thus,D contains a one parameter
family of lines with constant tangent planes along them.

• The generating lines are tangent to the singular curveSof D,
their orthogonal projections are tangent to the projectionS′,
see Fig. 4.

• The generating lines are orthogonal trajectories ofD’s level
curves.

Fig. 4 shows a top view and an axonometric view of a devel-
opable surface of constant slope passing through a (non-horizontal)
parabolaC.

C
S S D

C

S

S

D

Figure 4: Developable surfaceD through a space curveC. The sin-
gular curveS (curve of regression) is displayed in dotted linestyle.
Generating lines and level curves are shown.

3 The practical implementation for hori-

zontal input curves

Now we go into more detail concerning the practical implementa-
tion. Given a horizontal input curveC, lying in the planeE : z= z0,

we want to compute the developable surfaceD of constant slope
a = tanα passing throughC. We assume thatC is given by a list
of (ordered) data pointspi = (xi ,yi ,z0), i = 1, . . . ,M. This sam-
pling has to be dense enough to represent all important features of
the curve. For convenience we describe the construction forsimple
closed input curves only.

The algorithm consists of three main steps:

• Define a domainU for the evaluation of the functionf which
determines the surfaceD.

• Define query pointsx = (x,y) to evaluate the distance function
of the curveC′ and computef .

• RepresentD by a triangular mesh with points(x,y, f (x,y)) as
vertices. The boundary curves ofU are constraints for the
triangulation.

3.1 Details of the implementation

Domain U: The shape and the size of the domainU are mainly
determined by the application. If no requirements are made,
U can be bounded byC′ and a trimmed offset curveC′

d of C′

for a suitably chosen distanced.

Query points: The query pointsx ∈ U are chosen as points on a
regular grid. The grid size shall not exceed the average seg-
ment length ofC. We propose to start with a dense sampling
of the input curveC, since the number of input data points is
much smaller than the number of grid pointsx for evaluation
of the distance function. By refining the grid it is possible to
improve the accuracy of the representation of the surfaceD.

Evaluation of the distance function: Assume we have chosenN
query pointsx ∈U , we evaluate the distance dist(x,p′) where
p′ is the closest point tox onC′. The functionf which defines
D, evaluates to

f (x) = z0−dist(x,p′) tanα. (3)

The closest pointp′ is computed asnearest neighborto the
query pointx. For this, one may use the implementation of
D. Mount [Arya et al. 1998].

Constrained triangulation: The surface is represented by a con-
strained triangular networkTD which shall contain also the
list of segments of the boundary curvesC andQ as edges of
the triangulation. Here,Q is the intersection of the vertical
cylinder throughC′

d with D. Thez-values ofQ are computed
by z0 − d tanα. Our test implementation uses the program
Triangleby J.R. Shewchuk, see [Shewchuk 1996; Shewchuk
2002].

C

Q

C′

C′
d

Figure 5: Left: Triangular representation of the developable surface
through a horizontal curveC. Rigth: ProjectionC′ and trimmed
offset curvesC′

d for different distances.

Fig. 5 shows an axonometric view of the developable surfaceD of
constant slopea= 1 through the curveC. The domain of evaluation
U is bounded by the top viewC′ of the input curveC and a trimmed
offset C′

d at a certain distance. The right hand side figure shows
different trimmed offset curvesC′

d of the top viewC′ of the input
curveC.

What we did not discuss so far is the trimming operation of offset
curves. An approach which is based on triangulations and which
works well in our framework will be discussed in the next section.

3.2 Trimming of offset curves

We are given a discretized input curveC′ by a list of pointspi , i =
1, . . . ,M which form a simple polygon. The trimmed offset curve
C′

d at signed distanced is to be computed and has to be free of self
intersections.

To trim the offset curves we apply a triangulation based approach.
For all segmentspipi+1, with i = 1, . . . ,M we compute the paral-
lel segmentqiqi+1 at oriented distanced with qi = pi + dni and
ni as unit normal of thei-th segment. The end points of the trans-
lated segments do not conincide in general but these segments will
intersect or there will be gaps between them, see Fig. 6.

Instead of translating segments one can move the verticespi to po-
sitionsqi = pi + dni , whereni is the average normal of adjacent
segments ofpi . Trimming of the offsets is necessary in both cases.

pi

qi

C′

C′
d pi

qi

C′

C′
d

Figure 6: Parallel segments in convex and non-convex regions of
the input curveC′.

The end points of the translated segmentsqiqi+1 are collected to
form a curveC̃d which usually has self intersections. To trim these
self intersections, we perform a constrained triangulation with the
data pointspi ,qi as input points and the segments of these curves
as constraint segments of the triangulation. The exterior boundary
of the triangular net is then a sufficiently good representation of the
trimmed offset curveC′

d of C′, see right hand side of Fig. 5. The
intersection points of crossing segmentsqiqi+1 are computed and
inserted as additional data points.

The advantages of this method are its good performance and the fact
that it works for all input curves and offset distances. Obviously,
the point density ofC plays an important role and we want to note
that the sampling in highly curved regions ofC′ should be dense
enough, to represent all features of the curve. In order to guarantee
a similar point density on the trimmed offset,C′

d can be resampled.

4 The practical implementation for spatial

input curves

We have already noted that the developable surfaceD of constant
slopea throughC will be represented by a triangular mesh based
on the level curves ofD. The input curveC is given by a list of data
points pi ∈ R

3. The method we propose is a generalization of a
scan-line algorithm. In 2D, ay-parallel line is moved inx-direction
and certain events, like when the moving line touches the object, are
considered. The type of events depends on the type of application.

The basic idea is the following: We consider a horizontal plane
H : z = c and move this plane from above downwards, in several
steps. These planes carry the level curves ofD. We start at a level,
whereH is entirely above the input curveC, passing by the levels
whereH intersectsC, and let it move downwards to a level where
H is entirely belowC. If H is completely above the curveC, noth-
ing notable happens. IfH intersectsC, thenH also intersects the
developable surfaceD andK = D∩H is a level curve ofD. All the
level curvesK project to top viewsK′ which are offset curves of
each other.

Figure 7: Top view and axonometric view of the trimmed level
curves of a developable surface.

Now we considerD as the envelope of its generating linesL. It is
quite obvious that we can replaceC by one of the level curvesK and
the envelopeD will not change. Thus, we can also replace parts of
C by appropriate horizontal curve segmentsG j ⊂ D being defined
later. In order to represent those parts and self intersections ofD
which are visible from above, the level curves will be trimmed, see
Fig. 7.

The basic steps of the algorithm are the following. At first we
choosen+ 1 levelsz0,z1, . . . ,zn, wherezn ≥ zmax. Let F = C be
the input curve. Within a loop over allz-levels starting fromzn−1
down toz0, we proceed as follows:

1. Determine those partsA j of F which lie above the current
level H : z= zi .

2. Pass the developable surface patchesD j through the curve
segmentsA j and compute the intersectionG j = D j ∩H of
the patchD j and the current levelH, see Fig. 8.

3. Trim the horizontal curve segmentsG j .

4. Replace the curve segmentsA j in F by the horizontal curve
segmentsG j and store this collection as curveEi . Define this
as new input curveF = Ei .

5. Choose the nextz-level and restart at 1.

This construction yields a list of curvesEi which are defined during
the above loop. Each curveEi consists of horizontal components at
the levelz= zi and possibly of components lying below the current

level. The components below the level are part of the original input
curveC.

Finally a constrained triangulation is performed withC andEi , i =
1, . . . ,n−1 as input. The data points as well as the segments ofC
andEi are considered, in order to representD’s level curves exactly.

4.1 Details for general input curves

A1

A2

A3

B1

B2

B4

A1

A2

A3

G1

G2

G3

B1

B2

B4

G1

G2

G3

Figure 8: ComponentsA j of C above the current level and corre-
sponding horizontal componentsG j . Top: top views. Bottom: front
view and axonometric view.

Determine parts of C above H: We compute those curve parts of
C which are above the currentz-levelHi : z= zi . The intersec-
tion pointsC∩Hi are computed and are inserted into the list
of data pointspi representingC. Thus, the curve is split into
a list of curve componentsA1, . . . ,Aa, B1, . . . ,Bb. We store
these curve components in the right ordering, but with flags
telling which component is above the currentz-level.

Developable surface through a curve: For each curve compo-
nentA j the generating lines of the developable surface patch
D j passing throughA j are considered. The intersection points
of these lines and the current planeH determine the curve arc
G j = D j ∩H. Since the end points of the componentsA j are
contained inH, the arcsA j andG j agree in their end points.

Trimming of the horizontal curve G j : G j is stored as a list of
segments, similar to the offset curve construction. These seg-
ments overlap in non convex regions of the input curveA j ,
and thus have to be trimmed. The applied procedure is similar
to the one which is used for trimming offset curves.

Replace A j by the horizontal curve G j : We substitute the com-
ponentsA j by the trimmed curve componentsG j and store
the collection as new input curve for the next step in the con-
struction. Fig. 8 illustrates this procedure showing top view
and front views of the curve components.

Constrained triangulation: A constrained triangulation is per-
formed with data points and segments of the input curveC
and level curvesKi as input.

Fig. 9 shows the top views ofC and the level curvesK1, . . . ,K4
on the left hand side and the axonometric view of the triangulation
representingD on the right hand side. Most of the triangles shown
in Fig. 9 have the correct slope, but close to the self intersection the

C

K1K2

K4
K3

Figure 9: Top view of level curves and axonometric view of the
triangular representation of the developable surfaceD.

Figure 10: Triangles of wrong slope of Fig. 9.

triangles are not correct. In Fig. 10 all triangles are shaded whose
slope differs from the required slopea by more than 1◦.

We describe some possibilities to improve the representation of the
developable surface. The first and obvious one is to increasethe
number of level curves which are computed in the construction.
We want to note that the level curve computation is costly andit
is always desirable to minimize the number of level curves which
have to be computed. Results on increasing the number of level
curves and the limitations of the currently implemented version are
displayed in Fig. 11. Since the computed level curves are restricted
to possess one component only, relevant parts of them are trimmed.
These parts are denoted byX andY in Fig. 11. Thus even by in-
creasing the number of level curves, the developable surface con-
tains horizontal triangles in these regions (X andY). To solve this
problem and to model these features, the method has to be extended
in the way that level curves can consist of more than one compo-
nent.

Alternative methods which increase the number of evaluation points
locally or which try to compute the self intersection, are discussed
in the next section.

5 Handling self intersections

Let T be a triangulation of a developable surface as shown in
Fig. 10. We propose a method to improve the representation ofthe
surface near self intersections. For that the resolution isincreased in
regions containing nearly horizontal triangles. The concept works
as follows:

X Y X Y

X Y X Y

Figure 11: Top view of level curves and the triangular representa-
tion of a developable surface.

Figure 12: Left: Top view of selected grid points. Right: Improved
representation of selected region.

• Find nearly horizontal triangles and mark them. Determine
connected components of the marked triangles at heightzi .

• For each connected component we use a fine grid and pick
those grid points which are contained in the component.

• Compute new function values for the chosen grid points. This
is similar to the case of horizontal input curves. Since each
connected component of marked triangles is at constant height
zi , nearly all segments of its boundary are contained in the
level curvesKi of D. Thus, the new function values are
computed as shortest distances from segments of these level
curves, see Fig. 12.

Another method to improve the behavior of the surface close to the
singularities tries to model the self intersections. To perform this
one can proceed as follows:

• Find triangles with wrong slope and mark them. Determine
connected components of the marked triangles.

• For each connected componentRi we determine its boundary
bi . If the shape of componentRi is curve-like, we compute its
medial axismi . This medial axis can have different branches,
depending on whetherRi is a simple curve-like shape or not.
The boundarybi of Ri consists of parts of level curves and
parts of the given input curveC.

• Assume thatmi is a simple curve and consists only of one
branch, see Fig. 13. Now we consider vertical planes per-
pendicular to the medial axismi and denote them as profile-
planes. Each profile-plane intersects the boundarybi of Ri in
at least two pointsb1,b2. Now we consider linesl1, l2 with
slopea (same slope as the surface) through these boundary
pointsb1,b2. As these lines lie close to the developable sur-
faceD, their intersection points lies close to the self intersec-
tion of D.

• Build a polygonS from these intersection pointss and use
S as a constraint boundary for the final triangulation of the
developable surfaceD.

We note that this method can be applied to a regionRi whose medial
axis mi consists of several branches. According to our experience
this can become arbitrarily complicated and we propose to use the
previous method (refinement of the region by using a regular grid)
in these cases.

Figure 13: Self intersections of developable surfaces

Conclusion

So far we have presented methods to compute the developable sur-
faceD of constant slopea through a curveC. If C lies in a horizontal
plane, the task is simply solved by evaluating the distance function
of the top viewC′ of C. In case of general input curves we have
proposed a generalization of scan-line algorithms by stepwise com-
putation of the trimmed level curves of the developable surfaceD.
By triangulating these level curves we obtain useful modelsfor the
developable surfaceD.

The test implementation has been performed inMatlab. The con-
strained triangulation and the nearest neighbors are computed with
help of the programsTriangleby J.R. Shewchuk andANN(approx-
imate nearest neighbor searching) by D. Mount.

In applications it is often required to compute a developement of
a developable surfaceD or to compute the volume enclosed byD
(represented byf (x,y)) and a horizontal plane. At least the com-
putation of volumes can be carried out in a straightforward man-
ner using the proposed representation ofD. The development to a
plane works basically but close to self intersections the developa-
bility condition might not be fulfilled.

Acknowledgements:This work has been carried out partially within
the Kplus competence centerAdvanced Computer Vision.

References

ARYA , S., MOUNT, D. M., NETANYAHU , N. S., SILVERMAN , R.,
AND WU, A. Y. 1998. An optimal algorithm for approximate
nearest neighbor searching.Journal of the ACM 45, 891–923.

AUMANN , G. 2003. A simple algorithm for designing developable
Bézier surfaces.Computer Aided Geometric Design 20, 8–9,
601–619.

CHALFANT, J., AND MAEKAWA , T. 1998. Design for manufac-
toring using b-spline developable surfaces.Journal of Ship Re-
search 42, 3, 207–215.

CHU, C.-H.,AND SÉQUIN, C. 2002. Developable Bézier patches:
properties and design.Computer-Aided Design 34, 7, 511–527.

DE BERG, M., VAN KREVELD, M., OVERMARS, M., AND
SCHWARZKOPF, O. 1997. Computational Geometry, Algo-
rithms and Applications. Springer, Berlin, Heidelberg.

FREY, W., AND WAMPLER, C. 1999. Boundary triangulations
approximating developable surfaces. Tech. Rep. 8997, GM Re-
search and Development Center.

HOSCHEK, J.,AND LASSER, D. 1993.Fundamentals of Computer
Aided Geometric Design. AK Peters, Wellesley, MA.

HOSCHEK, J., AND POTTMANN , H. 1995. Interpolation and ap-
proximation with developable B–spline surfaces. InMathemati-
cal Methods for Curves and Surfaces, M. Daehlen, T. Lyche, and
L. Schumaker, Eds. Vanderbilt University Press, Nashville, TN,
255–264.

KLEIN , R. 1997. Algorithmische Geometrie. Addison-Wesley,
Bonn.

OSHER, S., AND FEDKIW, R. 2003. Level Set Methods and Dy-
namic Implicit Surfaces. Springer.

PARK , F., YU, J., CHUN, C., AND RAVANI , B. 2002. Design of
developable surfaces using optimal control.Transactions of the
ASME, Journal of Mechanical Design 124, 602–608.

POTTMANN , H., AND WALLNER , J. 1999. Approximation al-
gorithms for developable surfaces.Computer Aided Geometric
Design 16, 539–556.

POTTMANN , H., AND WALLNER , J. 2001. Computational Line
Geometry. Springer, Berlin-Heidelberg-New York.

SETHIAN , J. 1999. Level Set Methods and Fast Marching Meth-
ods: Evolving Interfaces in Computational Geometry, FluidMe-
chanics, Computer Vision, and Materials Science. Cambridge
University Press.

SHEWCHUK, J. R. 1996. Triangle: Engineering a 2D Quality
Mesh Generator and Delaunay Triangulator. InApplied Compu-
tational Geometry: Towards Geometric Engineering, M. C. Lin
and D. Manocha, Eds., vol. 1148 ofLecture Notes in Computer
Science. Springer-Verlag, May, 203–222. From the First ACM
Workshop on Applied Computational Geometry.

SHEWCHUK, J. R. 2002. Delaunay refinement algorithms for tri-
angular mesh generation.Computational Geometry: Theory and
Applications 22, 1-3, 21–74.

